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Abstract

Self-paced learning (SPL) is a recently proposed learning regime inspired by the
learning process of humans and animals that gradually incorporates easy to more
complex samples into training. Existing methods are limited in that they ignore
an important aspect in learning: diversity. To incorporate this information, we
propose an approach called self-paced learning with diversity (SPLD) which for-
malizes the preference for both easy and diverse samples into a general regularizer.
This regularization term is independent of the learning objective, and thus can be
easily generalized into various learning tasks. Albeit non-convex, the optimization
of the variables included in this SPLD regularization term for sample selection can
be globally solved in linearithmic time. We demonstrate that our method signifi-
cantly outperforms the conventional SPL on three real-world datasets. Specifical-
ly, SPLD achieves the best MAP so far reported in literature on the Hollywood?2
and Olympic Sports datasets.

1 Introduction

Since it was raised in 2009, Curriculum Learning (CL) [1] has been attracting increasing attention
in the field of machine learning and computer vision [2]. The learning paradigm is inspired by the
learning principle underlying the cognitive process of humans and animals, which generally starts
with learning easier aspects of an aimed task, and then gradually takes more complex examples into
consideration. It has been empirically demonstrated to be beneficial in avoiding bad local minima
and in achieving a better generalization result [1]].

A sequence of gradually added training samples [[1] is called a curriculum. A straightforward way
to design a curriculum is to select samples based on certain heuristical “easiness”” measurements [3,
4, 15]. This ad-hoc implementation, however, is problem-specific and lacks generalization capacity.
To alleviate this deficiency, Kumar et al. [[6] proposed a method called Self-Paced Learning (SPL)
that embeds curriculum designing into model learning. SPL introduces a regularization term into
the learning objective so that the model is jointly learned with a curriculum consisting of easy to
complex samples. As its name suggests, the curriculum is gradually determined by the model itself
based on what it has already learned, as opposed to some predefined heuristic criteria. Since the
curriculum in the SPL is independent of model objectives in specific problems, SPL represents a
general implementation [7} 8] for curriculum learning.

In SPL, samples in a curriculum are selected solely in terms of “easiness”. In this work, we reveal
that diversity, an important aspect in learning, should also be considered. Ideal self-paced learning
should utilize not only easy but also diverse examples that are sufficiently dissimilar from what has
already been learned. Theoretically, considering diversity in learning is consistent with the increas-
ing entropy theory in CL that a curriculum should increase the diversity of training examples [[1].
This can be intuitively explained in the context of human education. A rational curriculum for a
pupil not only needs to include examples of suitable easiness matching her learning pace, but also,
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Figure 1: Illustrative comparison of SPL and SPLD on “Rock Climbing” event using real sam-
ples [15]. SPL tends to first select the easiest samples from a single group. SPLD inclines to select
easy and diverse samples from multiple groups.

importantly, should include some diverse examples on the subject in order for her to develop more
comprehensive knowledge. Likewise, learning from easy and diverse samples is expected to be
better than learning from either criterion alone.

We name the learning paradigm that considers both easiness and diversity Self-Paced Learning with
Diversity (SPLD). SPLD proves to be a general learning framework as its intuition is embedded as
a regularization term that is independent of specific model objectives. In addition, by considering
diversity in learning, SPLD is capable of obtaining better solutions. For example, Fig. [l plots some
positive samples for the event “Rock Climbing” on a real dataset, named MED [15]]. Three groups
of samples are depicted for illustration. The number under the keyframe indicates the loss, and a
smaller loss corresponds to an easier sample. Every group has easy and complex samples. Having
learned some samples from a group, the SPL model prefers to select more samples from the same
group as they appear to be easy to what the model has learned. This may lead to overfitting to a data
subset while ignoring easy samples in other groups. For example, in Fig.[Il the samples selected in
first iterations of SPL are all from the “Outdoor bouldering” sub-event because they all look like a; .
This is significant as the overfitting becomes more and more severe as the samples from the same
group are kept adding into training. This phenomenon is more evident in real-world data where the
collected samples are usually biased towards some groups. In contrast, SPLD, considering both eas-
iness and diversity, produces a curriculum that reasonably mixes easy samples from multiple groups.
The diverse curriculum is expected to help quickly grasp easy and comprehensive knowledge and to
obtain better solutions. This hypothesis is substantiated by our experiments.

The contribution of this paper is threefold: (1) We propose a novel idea of considering both easiness
and diversity in the self-paced learning, and formulate it into a concise regularization term that
can be generally applied to various problems (Section 4.1). (2) We introduce the algorithm that
globally optimizes a non-convex problem w.r.t. the variables included in this SPLD regularization
term for sample selection (Section 4.2). (3) We demonstrate that the proposed SPLD significantly
outperforms SPL on three real-word datasets. Notably, SPLD achieves the best MAP so far reported
in literature on two action datasets.

2 Related work

Bengio et al. [1]] proposed a new learning paradigm called curriculum learning (CL), in which a mod-
el is learned by gradually including samples into training from easy to complex so as to increase the
entropy of training samples. Afterwards, Bengio and his colleagues [2]] presented insightful explo-
rations for the rationality underlying this learning paradigm, and discussed the relationship between
the CL and conventional optimization techniques, e.g., the continuation and annealing methods.
From human behavioral perspective, Khan et al. [10] provided evidence that CL is consistent with
the principle in teaching. The curriculum is often derived by predetermined heuristics in particular
problems. For example, Ruvolo and Eaton [3]] took the negative distance to the boundary as the in-
dicator for easiness in classification. Spitkovsky et al. [4] used the sentence length as an indicator in



studying grammar induction. Shorter sentences have fewer possible solutions and thus were learned
earlier. Lapedriza et al. [|5] proposed a similar approach by first ranking examples based on certain
“training values” and then greedily training the model on these sorted examples.

The ad-hoc curriculum design in CL turns out onerous or conceptually difficult to implement in
different problems. To alleviate this issue, Kumar et al. [6] designed a new formulation, called
self-paced learning (SPL). SPL embeds curriculum design (from easy to more complex samples)
into model learning. By virtue of its generality, various applications based on the SPL have been
proposed very recently [[7, |8 11}, [12, [13]]. For example, Jiang et al. [7] discovered that pseudo
relevance feedback is a type of self-paced learning which explains the rationale of this iterative
algorithm starting from the easy examples i.e. the top ranked documents/videos. Tang et al. [8]
formulated a self-paced domain adaptation approach by training target domain knowledge starting
with easy samples in the source domain. Kumar et al. [11] developed an SPL strategy for the
specific-class segmentation task. Supanci¢ and Ramanan [12] designed an SPL method for long-
term tracking by setting smallest increase in the SVM objective as the loss function. To the best of
our knowledge, there has been no studies to incorporate diversity in SPL.

3 Self-Paced Learning

Before introducing our approach, we first briefly review the SPL. Given the training dataset D =
{(x1,91), -, (Xn,Yn)}, where x; € R™ denotes the i*" observed sample, and y; represents its
label, let L(y;, f(x;, w)) denote the loss function which calculates the cost between the ground
truth label y; and the estimated label f(x;, w). Here w represents the model parameter inside the
decision function f. In SPL, the goal is to jointly learn the model parameter w and the latent weight
variable v = [vy, - - -+ , v, ] by minimizing:

min E(w,v;\) = ZviL(yi, f(xi,w)) — )\Zvi, s.t. v €[0,1]", 1)
v i=1 i=1

where ) is a parameter for controlling the learning pace. Eq. indicates the loss of a sample is

discounted by a weight. The objective of SPL is to minimize the weighted training loss together

with the negative l1-norm regularizer —||v||; = — Y " | v; (since v; > 0). This regularization term

is general and applicable to various learning tasks with different loss functions [7, [L1} [12].

ACS (Alternative Convex Search) is generally used to solve Eq. (@) [6}[8]]. It is an iterative method
for biconvex optimization, in which the variables are divided into two disjoint blocks. In each
iteration, a block of variables are optimized while keeping the other block fixed. When v is fixed,
the existing off-the-shelf supervised learning methods can be employed to obtain the optimal w*.

*

With the fixed w, the global optimum v* = [v], -, v] can be easily calculated by [6]]:

r n

1, Ly, f(xi, W) <A,

! {O, otherwise. @

There exists an intuitive explanation behind this alternative search strategy: 1) when updating v with
a fixed w, a sample whose loss is smaller than a certain threshold X is taken as an “easy” sample,
and will be selected in training (v = 1), or otherwise unselected (v; = 0); 2) when updating w
with a fixed v, the classifier is trained only on the selected “easy” samples. The parameter A controls
the pace at which the model learns new samples, and physically A corresponds to the “age” of the
model. When A is small, only “easy” samples with small losses will be considered. As A grows,
more samples with larger losses will be gradually appended to train a more “mature” model.

4 Self-Paced Learning with Diversity

In this section we detail the proposed learning paradigm called SPLD. We first formally define its
objective in Section and discuss an efficient algorithm to solve the problem in Section[4.2]

4.1 SPLD Model

Diversity implies that the selected samples should be less similar or clustered. An intuitive approach
for realizing this is by selecting samples of different groups scattered in the sample space. We
assume that the correlation of samples between groups is less than that of within a group. This



auxiliary group membership is either given, e.g. in object recognition frames from the same video
can be regarded from the same group, or can be obtained by clustering samples.

This aim of SPLD can be mathematically described as follows. Assume that the training samples
X = (X1, " ,X,) € R™*" are partitioned into b groups: XD ... X®  where columns of
XU € R™*"™ correspond to the samples in the j** group, n; is the sample number in the group

and 22:1 n; = n. Accordingly denote the weight vector as v = [v(1) ... v(®)], where v() =
(v%j), e ,vr(i))T € [0,1]™. SPLD on one hand needs to assign nonzero weights of v to easy

samples as the conventional SPL, and on the other hand requires to disperse nonzero elements across
possibly more groups v(*) to increase the diversity. Both requirements can be uniformly realized
through the following optimization model:

n n
minE(w,v; A, v) = ZUiL(yi, f(xi,w)) — /\Zvi —y[[vll2,1, s.t. v € [0,1]", 3
Y i=1 i=1

where A,y are the parameters imposed on the easiness term (the negative /;-norm: —||v||;) and the
diversity term (the negative I 1-norm: —||v||2,1), respectively. As for the diversity term, we have:

b
—[Vllzn == vV 2. “)
J=1

The SPLD introduces a new regularization term in Eq. (3) which consists of two components. One
is the negative /;-norm inherited from the conventional SPL, which favors selecting easy over com-
plex examples. The other is the proposed negative /5 ;-norm, which favors selecting diverse sam-
ples residing in more groups. It is well known that the I ;-norm leads to the group-wise sparse
representation of v [[14], i.e. non-zero entries of v tend to be concentrated in a small number of
groups. Contrariwise, the negative /5 1-norm should have a counter-effect to group-wise sparsity,
i.e. nonzero entries of v tend to be scattered across a large number of groups. In other words, this
anti-group-sparsity representation is expected to realize the desired diversity. Note that when each
group only contains a single sample, Eq. (3) degenerates to Eq. (@).

Unlike the convex regularization term in Eq. (1)) of SPL, the term in the SPLD is non-convex. Con-
sequently, the traditional (sub)gradient-based methods cannot be directly applied to optimizing v.
We will discuss an algorithm to resolve this issue in the next subsection.

4.2 SPLD Algorithm

Similar as the SPL, the alternative search strategy can be employed for solving Eq. (B). However, a
challenge is that optimizing v with a fixed w becomes a non-convex problem. We propose a simple
yet effective algorithm for extracting the global optimum of this problem, as listed in Algorithm [l
It takes as input the groups of samples, the up-to-date model parameter w, and two self-paced
parameters, and outputs the optimal v of min, E(w, v; A, v). The global minimum is proved in the
following theorem (see the proof in supplementary materials):

Theorem 1 Algorithm[ll attains the global optimum to min, E(w, v) for any given w in linearith-
mic time.

As shown, Algorithm [T selects samples in terms of both the easiness and the diversity. Specifically:

e Samples with L(y;, f(x;, w)) < X\ will be selected in training (v; = 1) in Step 5. These
samples represent the “easy” examples with small losses.

o Samples with L(y;, f(x;, w)) > A + ~ will not be selected in training (v; = 0) in Step 6.
These samples represent the “complex” examples with larger losses.

o Other samples will be selected by comparing their losses to a threshold A+ #\/ﬁ, where
1 is the sample’s rank w.r.t. its loss value within its group. The sample with a smaller loss

than the threshold will be selected in training. Since the threshold decreases considerably
as the rank ¢ grows, Step 5 penalizes samples monotonously selected from the same group.

We study a tractable example that allows for clearer diagnosis in Fig.[2l where each keyframe rep-
resents a video sample on the event “Rock Climbing” of the TRECVID MED data [[15]], and the
number below indicates its loss. The samples are clustered into four groups based on the visual
similarity. A colored block on the right shows a curriculum selected by Algorithm[1l When v = 0,



Algorithm 1: Algorithm for Solving min,, E(w, v; A, ).

input : Input dataset D, groups XV, ... | X® w, A, v
output: The global solution v = (v(l), e ,v(b)) of miny E(w, v; A, 7).
1 fOI‘j =1tobdo // for each group
2 Sort the samples in X ) as (xgj )7 xx 7ngj)) in ascending order of their loss values L;
3 Accordingly, denote the labels and weights of X7) as (yij ), y,%)) and (fu%j U v,%));
4 for: =1to n; do // easy samples first
5 ifL(yEJI)7 f(xl(-J), w)) < A+ W#\/ﬁ then 'L)Z(J) =1;// select this sample
6 else 1)1(3) =0; // not select this sample
7 end
8 end
9 returnv
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Figure 2: An example on samples selected by Algorithm[Il A colored block denotes a curriculum
with given A and -, and the bold (red) box indicates the easy sample selected by Algorithm[Il

as shown in Fig.2{(a), SPLD, which is identical to SPL, selects only easy samples (with the smallest
losses) from a single cluster. Its curriculum thus includes duplicate samples like b, ¢, d with the same
loss value. When X # 0 and v # 0 in Fig. 2Ib), SPLD balances the easiness and the diversity, and
produces a reasonable and diverse curriculum: a, j, g, b. Note that even if there exist 3 duplicate
samples b, ¢, d, SPLD only selects one of them due to the decreasing threshold in Step 5 of Algorith-
m[Il Likewise, samples e and j share the same loss, but only j is selected as it is better in increasing
the diversity. In an extreme case where A = 0 and «y # 0, as illustrated in Fig. 2lc), SPLD selects
only diverse samples, and thus may choose outliers, such as the sample n which is a confusable
video about a bear climbing a rock. Therefore, considering both easiness and diversity seems to
be more reasonable than considering either one alone. Physically the parameters A and ~ together
correspond to the “age” of the model, where X focuses on easiness whereas -y stresses diversity.

As Algorithm [T] finds the optimal v, the alternative search strategy can be readily applied to solv-
ing Eq. (3). The details are listed in Algorithm[2l As aforementioned, Step 4 can be implemented
using the existing off-the-shelf learning method. Following [6]], we initialize v by setting v; = 1 to
randomly selected samples. Following SPL [6]], the self-paced parameters are updated by absolute
values of 7, o (1,2 > 1) in Step 6 at the end of every iteration. In practice, it seems more
robust by first sorting samples in ascending order of their losses, and then setting the A, « according
to the statistics collected from the ranked samples (see the discussion in supplementary material-
s). According to [6], the alternative search in Algorithm [I] converges as the objective function is
monotonically decreasing and is bounded from below.

S Experiments

We present experimental results for the proposed SPLD on two tasks: event detection and action
recognition. We demonstrate that our approach significantly outperforms SPL on three real-world
challenging datasets. The code is at (http://www.cs.cmu.edu/~1ujiang/spld).
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Algorithm 2: Algorithm of Self-Paced Learning with Diversity.

input : Input dataset D, self-pace parameters (i1, (12
output: Model parameter w

if no prior clusters exist then cluster the training samples X into b groups XM o x®,

Initialize v*, A, Y // assign the starting value

while not converged do
Update w* = argminw E(W,V*; )\,’y) ;// train a classification model
Update v* = arg min,, E(W*7V; )\,’y) using Algorithm[I]; // select easy & diverse samples
A — ,ulA S S 27 // update the learning pace

end

return w = w”

® T AU R W =

SPLD is compared against four baseline methods: 1) RandomForest is a robust bootstrap method
that trains multiple decision trees using randomly selected samples and features [16]]. 2) AdaBoost is
a classical ensemble approach that combines the sequentially trained “base” classifiers in a weighted
fashion [[18]. Samples that are misclassified by one base classifier are given greater weight when
used to train the next classifier in sequence. 3) BatchTrain represents a standard training approach
in which a model is trained simultaneously using all samples; 4) SPL is a state-of-the-art method
that trains models gradually from easy to more complex samples [6]. The baseline methods are a
mixture of the well-known and the state-of-the-art methods on training models using sampled data.

5.1 Multimedia Event Detection (MED)

Problem Formulation Given a collection of videos, the goal of MED is to detect events of interest,
e.g. “Birthday Party” and “Parade”, solely based on the video content. The task is very challenging
due to complex scenes, camera motion, occlusions, etc. [[17, (19} 8]

Dataset The experiments are conducted on the largest collection on event detection: TRECVID
MED13Test, which consists of about 32,000 Internet videos. There are a total of 3,490 videos from
20 complex events, and the rest are background videos. For each event 10 positive examples are
given to train a detector, which is tested on about 25,000 videos. The official test split released by
NIST (National Institute of Standards and Technology) is used [15].

Experimental setting A Deep Convolutional Neural Network is trained on 1.2 million ImageNet
challenge images from 1,000 classes [20] to represent each video as a 1,000-dimensional vector.
Algorithm 2]is used. By default, the group membership is generated by the spectral clustering, and
the number of groups is set to 64. Following [9, [§]], LibLinear is used as the solver in Step 4 of
Algorithm 2] due to its robust performance on this task. The performance is evaluated using MAP as
recommended by NIST. The parameters of all methods are tuned on the same validation set.

Table [1l lists the overall MAP comparison. To reduce the influence brought by initialization, we
repeated experiments of SPL and SPLD 10 times with random starting values, and report the best
run and the mean (with the 95% confidence interval) of the 10 runs. The proposed SPLD outperforms
all baseline methods with statistically significant differences at the p-value level of 0.05, according
to the paired t-test. It is worth emphasizing that MED is very challenging [15] and 26% relative
(2.5 absolute) improvement over SPL is a notable gain. SPLD outperforms other baselines on both
the best run and the 10 runs average. RandomForest and AdaBoost yield poorer performance. This
observation agrees with the study in literature [15, 9] that SVM is more robust on event detection.

Table 1: MAP (x100) comparison with the baseline methods on MED.

Run Name RandomForest AdaBoost BatchTrain SPL SPLD
Best Run 3.0 2.8 8.3 9.6 12.1
10 Runs Average 3.0 2.8 8.3 8.6+0.42 9.84+0.45

BatchTrain, SPL and SPLD are all performed using SVM. Regarding the best run, SPL boosts the
MAP of the BatchTrain by a relative 15.6% (absolute 1.3%). SPLD yields another 26% (absolute
2.5%) over SPL. The MAP gain suggests that optimizing objectives with the diversity is inclined
to attain a better solution. Fig. 3] plots the validation and test AP on three representative events.
As illustrated, SPLD attains a better solution within fewer iterations than SPL, e.g. in Fig. Bl(a)
SPLD obtains the best test AP (0.14) by 6 iterations as opposed to AP (0.12) by 11 iterations in
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Figure 4: Comparison of positive samples used in each iteration by (a) SPL (b) SPLD.

SPL. Studies [1}[6] have shown that SPL converges fast, while this observation further suggests that
SPLD may lead to an even faster convergence. We hypothesize that it is because the diverse samples
learned in the early iterations in SPLD tend to be more informative. The best Test APs of both SPL
and SPLD are better than BatchTrain, which is consistent with the observation in [5]] that removing
some samples may be beneficial in training a better detector. As shown, Dev AP and Test AP share
a similar pattern justifying the rationale for parameters tuning on the validation set.

Fig.@lplots the curriculum generated by SPL and SPLD in a first few iterations on two representative
events. As we see, SPL tends to select easy samples similar to what it has already learned, whereas
SPLD selects samples that are both easy and diverse to the model. For example, for the event “E006
Birthday Party”, SPL keeps selecting indoor scenes due to the sample learned in the first place.
However, the samples learned by SPLD are a mixture of indoor and outdoor birthday parties. For
the complex samples, both methods leave them to the last iterations, e.g. the 10th video in “E007”.

5.2 Action Recognition
Problem Formulation The goal is to recognize human actions in videos.

Datasets Two representative datasets are used: Hollywood2 was collected from 69 different Holly-
wood movies [21]]. It contains 1,707 videos belonging to 12 actions, splitting into a training set (823
videos) and a test set (884 videos). Olympic Sports consists of athletes practicing different sports
collected from YouTube [22]. There are 16 sports actions from 783 clips. We use 649 for training
and 134 for testing as recommended in [22].

Experimental setting The improved dense trajectory feature is extracted and further represented by
the fisher vector [23}24]]. A similar setting discussed in Section[3.1lis applied, except that the groups
are generated by K-means (/=128).

Table [2f lists the MAP comparison on the two datasets. A similar pattern can be observed that
SPLD outperforms SPL and other baseline methods with statistically significant differences. We
then compare our MAP with the state-of-the-art MAP in Table 3l Indeed, this comparison may be



Table 2: MAP (x100) comparison with the baseline methods on Hollywood2 and Olympic Sports.

Run Name RandomForest AdaBoost BatchTrain SPL  SPLD
Hollywood2 28.20 41.14 58.16 63.72  66.65
Olympic Sports 63.32 69.25 90.61 90.83 93.11

less fair since the features are different in different methods. Nevertheless, with the help of SPLD,
we are able to achieve the best MAP reported so far on both datasets. Note that the MAPs in Table[3]
are obtained by recent and very competitive methods on action recognition. This improvement
confirms the assumption that considering diversity in learning is instrumental.

Table 3: Comparison of SPLD to the state-of-the-art on Hollywood2 and Olympic Sports

| Hollywood2

| Olympic Sports

Vig et al. 2012 [25] 59.4% | Brendel etal. 2011 [28] 73.7%
Jiang et al. 2012 [26]  59.5% Jiang et al. 2012 [26] 80.6%
Jain et al. 2013 [27] 62.5% | Gaidonetal. 2012 [29] 82.7%
Wang et al. 2013 [23] 64.3% Wang et al. 2013 [23] 91.2%
SPLD 66.7 % SPLD 93.1%

5.3 Sensitivity Study

We conduct experiments using different number of groups generated by two clustering algorithm:
K-means and Spectral Clustering. Each experiment is fully tuned under the given #groups and the
clustering algorithm, and the best run is reported in Table [l The results suggest that SPLD is
relatively insensitive to the clustering method and the given group numbers. We hypothesize that
SPLD may not improve SPL in the cases where the assumption in Section d.1]is violated, and the
given groups, e.g. random clusters, cannot reflect the latent variousness in data.

Table 4: MAP (x100) comparison of different clustering algorithms and #clusters.

Dataset SPL Clustering | #Groups=32 #Groups=64 #Groups=128 #Groups=256
K-means | 9.16£031 920036 9251032  9.03+0.28
MED | 864042 1 g ciral | 9294042 9794045 9224041 9384043
K-means | 66372 66358 86.653 86365
Hollywood2 | = 63.72 | g/ iral 66.639 66.504 66.264 66.709
omme | o0gs | K-means 91.86 9237 9311 92.65
ympt : Spectral 91.08 92.51 93.25 92.54

6 Conclusion

We advanced the frontier of the self-paced learning by proposing a novel idea that considers both
easiness and diversity in learning. We introduced a non-convex regularization term that favors s-
electing both easy and diverse samples. The proposed regularization term is general and can be
applied to various problems. We proposed a linearithmic algorithm that finds the global optimum of
this non-convex problem on updating the samples to be included. Using three real-world datasets,
we showed that the proposed SPLD outperforms the state-of-the-art approaches.

Possible directions for future work may include studying the diversity for samples in the mixture
model, e.g. mixtures of Gaussians, in which a sample is assigned to a mixture of clusters. Another
possible direction would be studying assigning reliable starting values for SPL/SPLD.
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