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Abstract

Despite the prevalence of collaborative filtering in recommendation systems, there
has been little theoretical development on why and how well it works, especially
in the “online” setting, where items are recommended to users over time. We
address this theoretical gap by introducing a model for online recommendation
systems, cast item recommendation under the model as a learning problem, and
analyze the performance of a cosine-similarity collaborative filtering method. In
our model, each of n users either likes or dislikes each of m items. We assume
there to be k types of users, and all the users of a given type share a common
string of probabilities determining the chance of liking each item. At each time
step, we recommend an item to each user, where a key distinction from related
bandit literature is that once a user consumes an item (e.g., watches a movie),
then that item cannot be recommended to the same user again. The goal is to
maximize the number of likable items recommended to users over time. Our main
result establishes that after nearly log(km) initial learning time steps, a simple
collaborative filtering algorithm achieves essentially optimal performance without
knowing k. The algorithm has an exploitation step that uses cosine similarity and
two types of exploration steps, one to explore the space of items (standard in the
literature) and the other to explore similarity between users (novel to this work).

1 Introduction

Recommendation systems have become ubiquitous in our lives, helping us filter the vast expanse of
information we encounter into small selections tailored to our personal tastes. Prominent examples
include Amazon recommending items to buy, Netflix recommending movies, and LinkedIn recom-
mending jobs. In practice, recommendations are often made via collaborative filtering, which boils
down to recommending an item to a user by considering items that other similar or “nearby” users
liked. Collaborative filtering has been used extensively for decades now including in the GroupLens
news recommendation system [20], Amazon’s item recommendation system [17], the Netflix Prize
winning algorithm by BellKor’s Pragmatic Chaos [16, 24, 19], and a recent song recommendation
system [1] that won the Million Song Dataset Challenge [6].

Most such systems operate in the “online” setting, where items are constantly recommended to
users over time. In many scenarios, it does not make sense to recommend an item that is already
consumed. For example, once Alice watches a movie, there’s little point to recommending the same
movie to her again, at least not immediately, and one could argue that recommending unwatched
movies and already watched movies could be handled as separate cases. Finally, what matters is
whether a likable item is recommended to a user rather than an unlikable one. In short, a good
online recommendation system should recommend different likable items continually over time.
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Despite the success of collaborative filtering, there has been little theoretical development to justify
its effectiveness in the online setting. We address this theoretical gap with our two main contributions
in this paper. First, we frame online recommendation as a learning problem that fuses the lines of
work on sleeping bandits and clustered bandits. We impose the constraint that once an item is
consumed by a user, the system can’t recommend the item to the same user again. Our second
main contribution is to analyze a cosine-similarity collaborative filtering algorithm. The key insight
is our inclusion of two types of exploration in the algorithm: (1) the standard random exploration
for probing the space of items, and (2) a novel “joint” exploration for finding different user types.
Under our learning problem setup, after nearly log(km) initial time steps, the proposed algorithm
achieves near-optimal performance relative to an oracle algorithm that recommends all likable items
first. The nearly logarithmic dependence is a result of using the two different exploration types. We
note that the algorithm does not know k.

Outline. We present our model and learning problem for online recommendation systems in Section
2, provide a collaborative filtering algorithm and its performance guarantee in Section 3, and give
the proof idea for the performance guarantee in Section 4. An overview of experimental results is
given in Section 5. We discuss our work in the context of prior work in Section 6.

2 A Model and Learning Problem for Online Recommendations

We consider a system with n users and m items. At each time step, each user is recommended an
item that she or he hasn’t consumed yet, upon which, for simplicity, we assume that the user imme-
diately consumes the item and rates it +1 (like) or −1 (dislike).1 The reward earned by the recom-
mendation system up to any time step is the total number of liked items that have been recommended
so far across all users. Formally, index time by t ∈ {1, 2, . . . }, and users by u ∈ [n] , {1, . . . , n}.
Let πut ∈ [m] , {1, . . . ,m} be the item recommended to user u at time t. Let Y (t)

ui ∈ {−1, 0,+1}
be the rating provided by user u for item i up to and including time t, where 0 indicates that no rating
has been given yet. A reasonable objective is to maximize the expected reward r(T ) up to time T :

r(T ) ,
T∑
t=1

n∑
u=1

E[Y (T )
uπut

] =

m∑
i=1

n∑
u=1

E[Y
(T )
ui ].

The ratings are noisy: the latent item preferences for user u are represented by a length-m vector
pu ∈ [0, 1]m, where user u likes item i with probability pui, independently across items. For a user
u, we say that item i is likable if pui > 1/2 and unlikable if pui < 1/2. To maximize the expected
reward r(T ), clearly likable items for the user should be recommended before unlikable ones.

In this paper, we focus on recommending likable items. Thus, instead of maximizing the expected
reward r(T ), we aim to maximize the expected number of likable items recommended up to time T :

r
(T )
+ ,

T∑
t=1

n∑
u=1

E[Xut] , (1)

where Xut is the indicator random variable for whether the item recommended to user u at time t is
likable, i.e., Xut = +1 if puπut > 1/2 and Xut = 0 otherwise. Maximizing r(T ) and r(T )

+ differ
since the former asks that we prioritize items according to their probability of being liked.

Recommending likable items for a user in an arbitrary order is sufficient for many real recommen-
dation systems such as for movies and music. For example, we suspect that users wouldn’t actually
prefer to listen to music starting from the songs that their user type would like with highest probabil-
ity to the ones their user type would like with lowest probability; instead, each user would listen to
songs that she or he finds likable, ordered such that there is sufficient diversity in the playlist to keep
the user experience interesting. We target the modest goal of merely recommending likable items,
in any order. Of course, if all likable items have the same probability of being liked and similarly
for all unlikable items, then maximizing r(T ) and r(T )

+ are equivalent.

1In practice, a user could ignore the recommendation. To keep our exposition simple, however, we stick to
this setting that resembles song recommendation systems like Pandora that per user continually recommends
a single item at a time. For example, if a user rates a song as “thumbs down” then we assign a rating of −1
(dislike), and any other action corresponds to +1 (like).
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The fundamental challenge is that to learn about a user’s preference for an item, we need the user to
rate (and thus consume) the item. But then we cannot recommend that item to the user again! Thus,
the only way to learn about a user’s preferences is through collaboration, or inferring from other
users’ ratings. Broadly, such inference is possible if the users preferences are somehow related.

In this paper, we assume a simple structure for shared user preferences. We posit that there are
k < n different types of users, where users of the same type have identical item preference vectors.
The number of types k represents the heterogeneity in the population. For ease of exposition, in this
paper we assume that a user belongs to each user type with probability 1/k. We refer to this model
as a latent source model, where each user type corresponds to a latent source of users. We remark
that there is evidence suggesting real movie recommendation data to be well modeled by clustering
of both users and items [21]. Our model only assumes clustering over users.

Our problem setup relates to some versions of the multi-armed bandit problem. A fundamental
difference between our setup and that of the standard stochastic multi-armed bandit problem [23, 8]
is that the latter allows each item to be recommended an infinite number of times. Thus, the solution
concept for the stochastic multi-armed bandit problem is to determine the best item (arm) and keep
choosing it [3]. This observation applies also to “clustered bandits” [9], which like our work seeks to
capture collaboration between users. On the other hand, sleeping bandits [15] allow for the available
items at each time step to vary, but the analysis is worst-case in terms of which items are available
over time. In our setup, the sequence of items that are available is not adversarial. Our model
combines the collaborative aspect of clustered bandits with dynamic item availability from sleeping
bandits, where we impose a strict structure on how items become unavailable.

3 A Collaborative Filtering Algorithm and Its Performance Guarantee

This section presents our algorithm COLLABORATIVE-GREEDY and its accompanying theoretical
performance guarantee. The algorithm is syntactically similar to the ε-greedy algorithm for multi-
armed bandits [22], which explores items with probability ε and otherwise greedily chooses the best
item seen so far based on a plurality vote. In our algorithm, the greedy choice, or exploitation, uses
the standard cosine-similarity measure. The exploration, on the other hand, is split into two types, a
standard item exploration in which a user is recommended an item that she or he hasn’t consumed
yet uniformly at random, and a joint exploration in which all users are asked to provide a rating for
the next item in a shared, randomly chosen sequence of items. Let’s fill in the details.

Algorithm. At each time step t, either all the users are asked to explore, or an item is recommended
to each user by choosing the item with the highest score for that user. The pseudocode is described
in Algorithm 1. There are two types of exploration: random exploration, which is for exploring the
space of items, and joint exploration, which helps to learn about similarity between users. For a
pre-specified rate α ∈ (0, 4/7], we set the probability of random exploration to be εR(n) = 1/nα

Algorithm 1: COLLABORATIVE-GREEDY

Input: Parameters θ ∈ [0, 1], α ∈ (0, 4/7].
Select a random ordering σ of the items [m]. Define

εR(n) =
1

nα
, and εJ(t) =

1

tα
.

for time step t = 1, 2, . . . , T do
With prob. εR(n): (random exploration) for each user, recommend a random item that the
user has not rated.
With prob. εJ(t): (joint exploration) for each user, recommend the first item in σ that the user
has not rated.
With prob. 1− εJ(t)− εR(n): (exploitation) for each user u, recommend an item j that the
user has not rated and that maximizes score p̃(t)

uj , which depends on threshold θ.
end
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(decaying with the number of users), and the probability of joint exploration to be εJ(t) = 1/tα

(decaying with time).2

Next, we define user u’s score p̃(t)
ui for item i at time t. Recall that we observe Y (t)

ui = {−1, 0,+1}
as user u’s rating for item i up to time t, where 0 indicates that no rating has been given yet. We
define

p̃
(t)
ui ,


∑
v∈Ñ (t)

u
1{Y (t)

vi = +1}∑
v∈Ñ (t)

u
1{Y (t)

vi 6= 0}
if
∑
v∈Ñ (t)

u
1{Y (t)

vi 6= 0} > 0,

1/2 otherwise,

where the neighborhood of user u is given by

Ñ (t)
u , {v ∈ [n] : 〈Ỹ (t)

u , Ỹ (t)
v 〉 ≥ θ|supp(Ỹ (t)

u ) ∩ supp(Ỹ (t)
v )|},

and Ỹ (t)
u consists of the revealed ratings of user u restricted to items that have been jointly explored.

In other words,

Ỹ
(t)
ui =

{
Y

(t)
ui if item i is jointly explored by time t,

0 otherwise.

The neighborhoods are defined precisely by cosine similarity with respect to jointed explored items.
To see this, for users u and v with revealed ratings Ỹ (t)

u and Ỹ (t)
v , let Ωuv , supp(Ỹ

(t)
u )∩supp(Ỹ

(t)
v )

be the support overlap of Ỹ (t)
u and Ỹ (t)

v , and let 〈·, ·〉Ωuv
be the dot product restricted to entries in

Ωuv . Then
〈Ỹ (t)
u , Ỹ

(t)
v 〉

|Ωuv|
=

〈Ỹ (t)
u , Ỹ

(t)
v 〉Ωuv√

〈Ỹ (t)
u , Ỹ

(t)
u 〉Ωuv

√
〈Ỹ (t)
v , Ỹ

(t)
v 〉Ωuv

,

which is the cosine similarity of revealed rating vectors Ỹ (t)
u and Ỹ (t)

v restricted to the overlap of
their supports. Thus, users u and v are neighbors if and only if their cosine similarity is at least θ.

Theoretical performance guarantee. We now state our main result on the proposed collaborative
filtering algorithm’s performance with respect to the objective stated in equation (1). We begin with
two reasonable, and seemingly necessary, conditions under which our the results will be established.

A1 No ∆-ambiguous items. There exists some constant ∆ > 0 such that

|pui − 1/2| ≥ ∆

for all users u and items i. (Smaller ∆ corresponds to more noise.)

A2 γ-incoherence. There exist a constant γ ∈ [0, 1) such that if users u and v are of different
types, then their item preference vectors pu and pv satisfy

1

m
〈2pu − 1, 2pv − 1〉 ≤ 4γ∆2,

where 1 is the all ones vector. Note that a different way to write the left-hand side is
E[ 1

m 〈Y ∗u , Y ∗v 〉], where Y ∗u and Y ∗v are fully-revealed rating vectors of users u and v, and
the expectation is over the random ratings of items.

The first condition is a low noise condition to ensure that with a finite number of samples, we can
correctly classify each item as either likable or unlikable. The incoherence condition asks that the
different user types are well-separated so that cosine similarity can tease apart the users of different
types over time. We provide some examples after the statement of the main theorem that suggest the
incoherence condition to be reasonable, allowing E[〈Y ∗u , Y ∗v 〉] to scale as Θ(m) rather than o(m).

We assume that the number of users satisfies n = O(mC) for some constant C > 1. This is without
loss of generality since otherwise, we can randomly divide the n users into separate population

2For ease of presentation, we set the two explorations to have the same decay rate α, but our proof easily
extends to encompass different decay rates for the two exploration types. Furthermore, the constant 4/7 ≥ α
is not special. It could be different and only affects another constant in our proof.
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pools, each of size O(mC) and run the recommendation algorithm independently for each pool to
achieve the same overall performance guarantee.

Finally, we define µ, the minimum proportion of likable items for any user (and thus any user type):

µ , min
u∈[n]

∑m
i=1 1{pui > 1/2}

m
.

Theorem 1. Let δ ∈ (0, 1) be some pre-specified tolerance. Take as input to COLLABORATIVE-
GREEDY θ = 2∆2(1 + γ) where γ ∈ [0, 1) is as defined in A2, and α ∈ (0, 4/7]. Under the latent
source model and assumptions A1 and A2, if the number of users n = O(mC) satisfies

n = Ω
(
km log

1

δ
+
(4

δ

)1/α)
,

then for any Tlearn ≤ T ≤ µm, the expected proportion of likable items recommended by
COLLABORATIVE-GREEDY up until time T satisfies

r
(T )
+

Tn
≥
(

1− Tlearn

T

)
(1− δ),

where

Tlearn = Θ

((
log km

∆δ

∆4(1− γ)2

)1/(1−α)

+
(4

δ

)1/α
)
.

Theorem 1 says that there are Tlearn initial time steps for which the algorithm may be giving poor
recommendations. Afterward, for Tlearn < T < µm, the algorithm becomes near-optimal, recom-
mending a fraction of likable items 1−δ close to what an optimal oracle algorithm (that recommends
all likable items first) would achieve. Then for time horizon T > µm, we can no longer guarantee
that there are likable items left to recommend. Indeed, if the user types each have the same fraction
of likable items, then even an oracle recommender would use up the µm likable items by this time.
Meanwhile, to give a sense of how long the learning period Tlearn is, note that when α = 1/2, we
have Tlearn scaling as log2(km), and if we choose α close to 0, then Tlearn becomes nearly log(km).
In summary, after Tlearn initial time steps, the simple algorithm proposed is essentially optimal.

To gain intuition for incoherence condition A2, we calculate the parameter γ for three examples.

Example 1. Consider when there is no noise, i.e., ∆ = 1
2 . Then users’ ratings are deterministic

given their user type. Produce k vectors of probabilities by drawing m independent Bernoulli( 1
2 )

random variables (0 or 1 with probability 1
2 each) for each user type. For any item i and pair of

users u and v of different types, Y ∗ui · Y ∗vi is a Rademacher random variable (±1 with probability 1
2

each), and thus the inner product of two user rating vectors is equal to the sum of m Rademacher

random variables. Standard concentration inequalities show that one may take γ = Θ
(√

logm
m

)
to

satisfy γ-incoherence with probability 1− 1/poly(m).

Example 2. We expand on the previous example by choosing an arbitrary ∆ > 0 and making all
latent source probability vectors have entries equal to 1

2 ±∆ with probability 1
2 each. As before let

user u and v are from different type. Now E[Y ∗ui ·Y ∗vi] = (1
2 + ∆)2 + ( 1

2 −∆)2− 2( 1
4 −∆2) = 4∆2

if pui = pvi and E[Y ∗ui · Y ∗vi] = 2( 1
4 − ∆2) − ( 1

2 + ∆)2 − ( 1
2 − ∆)2 = −4∆2 if pui = 1 − pvi.

The value of the inner product E[〈Y ∗u , Y ∗v 〉] is again equal to the sum of m Rademacher random

variables, but this time scaled by 4∆2. For similar reasons as before, γ = Θ
(√

logm
m

)
suffices to

satisfy γ-incoherence with probability 1− 1/poly(m).

Example 3. Continuing with the previous example, now suppose each entry is 1
2 +∆ with probability

µ ∈ (0, 1/2) and 1
2 − ∆ with probability 1 − µ. Then for two users u and v of different types,

pui = pvi with probability µ2 + (1 − µ)2. This implies that E[〈Y ∗u , Y ∗v 〉] = 4m∆2(1 − 2µ)2.

Again, using standard concentration, this shows that γ = (1−2µ)2 +Θ
(√

logm
m

)
suffices to satisfy

γ-incoherence with probability 1− 1/poly(m).
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4 Proof of Theorem 1

Recall that Xut is the indicator random variable for whether the item πut recommended to user u
at time t is likable, i.e., puπut

> 1/2. Given assumption A1, this is equivalent to the event that
puπut

≥ 1
2 + ∆. The expected proportion of likable items is

r
(T )
+

Tn
=

1

Tn

T∑
t=1

n∑
u=1

E[Xut] =
1

Tn

T∑
t=1

n∑
u=1

P(Xut = 1).

Our proof focuses on lower-bounding P(Xut = 1). The key idea is to condition on what we call the
“good neighborhood” event Egood(u, t):

Egood(u, t) =
{

at time t, user u has ≥ n

5k
neighbors from the same user type (“good neighbors”),

and ≤ ∆tn1−α

10km
neighbors from other user types (“bad neighbors”)

}
.

This good neighborhood event will enable us to argue that after an initial learning time, with high
probability there are at most ∆ as many ratings from bad neighbors as there are from good neighbors.

The proof of Theorem 1 consists of two parts. The first part uses joint exploration to show that after
a sufficient amount of time, the good neighborhood event Egood(u, t) holds with high probability.
Lemma 1. For user u, after

t ≥
(

2 log(10kmnα/∆)

∆4(1− γ)2

)1/(1−α)

time steps,

P(Egood(u, t)) ≥ 1− exp
(
− n

8k

)
− 12 exp

(
− ∆4(1− γ)2t1−α

20

)
.

In the above lower bound, the first exponentially decaying term could be thought of as the penalty
for not having enough users in the system from the k user types, and the second decaying term could
be thought of as the penalty for not yet clustering the users correctly.

The second part of our proof to Theorem 1 shows that, with high probability, the good neighborhoods
have, through random exploration, accurately estimated the probability of liking each item. Thus,
we correctly classify each item as likable or not with high probability, which leads to a lower bound
on P(Xut = 1).
Lemma 2. For user u at time t, if the good neighborhood event Egood(u, t) holds and t ≤ µm, then

P(Xut = 1) ≥ 1− 2m exp
(
− ∆2tn1−α

40km

)
− 1

tα
− 1

nα
.

Here, the first exponentially decaying term could be thought of as the cost of not classifying items
correctly as likable or unlikable, and the last two decaying terms together could be thought of as the
cost of exploration (we explore with probability εJ(t) + εR(n) = 1/tα + 1/nα).

We defer the proofs of Lemmas 1 and 2 to the supplementary material. Combining these lemmas
and choosing appropriate constraints on the numbers of users and items, we produce the following
lemma.
Lemma 3. Let δ ∈ (0, 1) be some pre-specified tolerance. If the number of users n and items m
satisfy

n ≥ max
{

8k log
4

δ
,
(4

δ

)1/α}
,

µm ≥ t ≥ max

{(
2 log(10kmnα/∆)

∆4(1− γ)2

)1/(1−α)

,

(
20 log(96/δ)

∆4(1− γ)2

)1/(1−α)

,
(4

δ

)1/α
}
,

nt1−α ≥ 40km

∆2
log
(16m

δ

)
,

then P(Xut = 1) ≥ 1− δ.
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Proof. With the above conditions on n and t satisfied, we combine Lemmas 1 and 2 to obtain

P(Xut = 1) ≥ 1− exp
(
− n

8k

)
− 12 exp

(
− ∆4(1− γ)2t1−α

20

)
− 2m exp

(
− ∆2tn1−α

40km

)
− 1

tα
− 1

nα
≥ 1− δ

4
− δ

8
− δ

8
− δ

4
− δ

4
= 1− δ.

Theorem 1 follows as a corollary to Lemma 3. As previously mentioned, without loss of generality,
we take n = O(mC). Then with number of users n satisfying

O(mC) = n = Ω
(
km log

1

δ
+
(4

δ

)1/α)
,

and for any time step t satisfying

µm ≥ t ≥ Θ

((
log km

∆δ

∆4(1− γ)2

)1/(1−α)

+
(4

δ

)1/α
)

, Tlearn ,

we simultaneously meet all of the conditions of Lemma 3. Note that the upper bound on number of
users n appears since without it, Tlearn would depend on n (observe that in Lemma 3, we ask that t
be greater than a quantity that depends on n). Provided that the time horizon satisfies T ≤ µm, then

r
(T )
+

Tn
≥ 1

Tn

T∑
t=Tlearn

n∑
u=1

P(Xut = 1) ≥ 1

Tn

T∑
t=Tlearn

n∑
u=1

(1− δ) =
(T − Tlearn)(1− δ)

T
,

yielding the theorem statement.

5 Experimental Results

We provide only a summary of our experimental results here, deferring full details to the supple-
mentary material. We simulate an online recommendation system based on movie ratings from the
Movielens10m and Netflix datasets, each of which provides a sparsely filled user-by-movie rating
matrix with ratings out of 5 stars. Unfortunately, existing collaborative filtering datasets such as the
two we consider don’t offer the interactivity of a real online recommendation system, nor do they
allow us to reveal the rating for an item that a user didn’t actually rate. For simulating an online sys-
tem, the former issue can be dealt with by simply revealing entries in the user-by-item rating matrix
over time. We address the latter issue by only considering a dense “top users vs. top items” subset
of each dataset. In particular, we consider only the “top” users who have rated the most number of
items, and the “top” items that have received the most number of ratings. While this dense part of the
dataset is unrepresentative of the rest of the dataset, it does allow us to use actual ratings provided
by users without synthesizing any ratings. A rigorous validation would require an implementation
of an actual interactive online recommendation system, which is beyond the scope of our paper.

First, we validate that our latent source model is reasonable for the dense parts of the two datasets
we consider by looking for clustering behavior across users. We find that the dense top users vs. top
movies matrices do in fact exhibit clustering behavior of users and also movies, as shown in Figure
1(a). The clustering was found via Bayesian clustered tensor factorization, which was previously
shown to model real movie ratings data well [21].

Next, we demonstrate our algorithm COLLABORATIVE-GREEDY on the two simulated online movie
recommendation systems, showing that it outperforms two existing recommendation algorithms
Popularity Amongst Friends (PAF) [4] and a method by Deshpande and Montanari (DM) [12]. Fol-
lowing the experimental setup of [4], we quantize a rating of 4 stars or more to be +1 (likable), and
a rating less than 4 stars to be −1 (unlikable). While we look at a dense subset of each dataset, there
are still missing entries. If a user u hasn’t rated item j in the dataset, then we set the corresponding
true rating to 0, meaning that in our simulation, upon recommending item j to user u, we receive
0 reward, but we still mark that user u has consumed item j; thus, item j can no longer be recom-
mended to user u. For both Movielens10m and Netflix datasets, we consider the top n = 200 users
and the top m = 500 movies. For Movielens10m, the resulting user-by-rating matrix has 80.7%
nonzero entries. For Netflix, the resulting matrix has 86.0% nonzero entries. For an algorithm that
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Figure 1: Movielens10m dataset: (a) Top users by top movies matrix with rows and columns re-
ordered to show clustering of users and items. (b) Average cumulative rewards over time.

recommends item πut to user u at time t, we measure the algorithm’s average cumulative reward up
to time T as 1

n

∑T
t=1

∑n
u=1 Y

(T )
uπut , where we average over users. For all four methods, we recom-

mend items until we reach time T = 500, i.e., we make movie recommendations until each user has
seen all m = 500 movies. We disallow the matrix completion step for DM to see the users that we
actually test on, but we allow it to see the the same items as what is in the simulated online recom-
mendation system in order to compute these items’ feature vectors (using the rest of the users in the
dataset). Furthermore, when a rating is revealed, we provide DM both the thresholded rating and the
non-thresholded rating, the latter of which DM uses to estimate user feature vectors over time. We
discuss choice of algorithm parameters in the supplementary material. In short, parameters θ and
α of our algorithm are chosen based on training data, whereas we allow the other algorithms to use
whichever parameters give the best results on the test data. Despite giving the two competing algo-
rithms this advantage, COLLABORATIVE-GREEDY outperforms the two, as shown in Figure 1(b).
Results on the Netflix dataset are similar.

6 Discussion and Related Work

This paper proposes a model for online recommendation systems under which we can analyze the
performance of recommendation algorithms. We theoretical justify when a cosine-similarity collab-
orative filtering method works well, with a key insight of using two exploration types.

The closest related work is by Biau et al. [7], who study the asymptotic consistency of a cosine-
similarity nearest-neighbor collaborative filtering method. Their goal is to predict the rating of the
next unseen item. Barman and Dabeer [4] study the performance of an algorithm called Popular-
ity Amongst Friends, examining its ability to predict binary ratings in an asymptotic information-
theoretic setting. In contrast, we seek to understand the finite-time performance of such systems.
Dabeer [11] uses a model similar to ours and studies online collaborative filtering with a moving
horizon cost in the limit of small noise using an algorithm that knows the numbers of user types and
item types. We do not model different item types, our algorithm is oblivious to the number of user
types, and our performance metric is different. Another related work is by Deshpande and Mon-
tanari [12], who study online recommendations as a linear bandit problem; their method, however,
does not actually use any collaboration beyond a pre-processing step in which offline collaborative
filtering (specifically matrix completion) is solved to compute feature vectors for items.

Our work also relates to the problem of learning mixture distributions (c.f., [10, 18, 5, 2]), where
one observes samples from a mixture distribution and the goal is to learn the mixture components
and weights. Existing results assume that one has access to the entire high-dimensional sample
or that the samples are produced in an exogenous manner (not chosen by the algorithm). Neither
assumption holds in our setting, as we only see each user’s revealed ratings thus far and not the user’s
entire preference vector, and the recommendation algorithm affects which samples are observed (by
choosing which item ratings are revealed for each user). These two aspects make our setting more
challenging than the standard setting for learning mixture distributions. However, our goal is more
modest. Rather than learning the k item preference vectors, we settle for classifying them as likable
or unlikable. Despite this, we suspect having two types of exploration to be useful in general for
efficiently learning mixture distributions in the active learning setting.
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[8] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

[9] Loc Bui, Ramesh Johari, and Shie Mannor. Clustered bandits, 2012. arXiv:1206.4169.

[10] Kamalika Chaudhuri and Satish Rao. Learning mixtures of product distributions using correlations and
independence. In Conference on Learning Theory, pages 9–20, 2008.

[11] Onkar Dabeer. Adaptive collaborating filtering: The low noise regime. In IEEE International Symposium
on Information Theory, pages 1197–1201, 2013.

[12] Yash Deshpande and Andrea Montanari. Linear bandits in high dimension and recommendation systems,
2013. arXiv:1301.1722.

[13] Roger B. Grosse, Ruslan Salakhutdinov, William T. Freeman, and Joshua B. Tenenbaum. Exploiting
compositionality to explore a large space of model structures. In Uncertainty in Artificial Intelligence,
pages 306–315, 2012.

[14] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the Amer-
ican statistical association, 58(301):13–30, 1963.

[15] Robert Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer Sharma. Regret bounds for sleeping ex-
perts and bandits. Machine Learning, 80(2-3):245–272, 2010.

[16] Yehuda Koren. The BellKor solution to the Netflix grand prize. http://www.netflixprize.com/
assets/GrandPrize2009_BPC_BellKor.pdf, August 2009.

[17] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: item-to-item collaborative
filtering. IEEE Internet Computing, 7(1):76–80, 2003.

[18] Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of gaussians. Pro-
ceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, 2010.

[19] Martin Piotte and Martin Chabbert. The pragmatic theory solution to the netflix grand prize. http://
www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf, Au-
gust 2009.

[20] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. Grouplens: An
open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM Conference on
Computer Supported Cooperative Work, CSCW ’94, pages 175–186, New York, NY, USA, 1994. ACM.

[21] Ilya Sutskever, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Modelling relational data using
bayesian clustered tensor factorization. In NIPS, pages 1821–1828, 2009.

[22] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

[23] William R. Thompson. On the Likelihood that one Unknown Probability Exceeds Another in View of the
Evidence of Two Samples. Biometrika, 25:285–294, 1933.
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