
Zeta Hull Pursuits:
Learning Nonconvex Data Hulls

Yuanjun Xiong† Wei Liu‡ Deli Zhao� Xiaoou Tang†
†Information Engineering Department, The Chinese University of Hong Kong, Hong Kong

‡IBM T. J. Watson Research Center, Yorktown Heights, New York, USA
�Advanced Algorithm Research Group, HTC, Beijing, China

{yjxiong,xtang}@ie.cuhk.edu.hk weiliu@us.ibm.com deli zhao@htc.com

Abstract

Selecting a small informative subset from a given dataset, also called column sam-
pling, has drawn much attention in machine learning. For incorporating structured
data information into column sampling, research efforts were devoted to the cases
where data points are fitted with clusters, simplices, or general convex hulls. This
paper aims to study nonconvex hull learning which has rarely been investigated in
the literature. In order to learn data-adaptive nonconvex hulls, a novel approach
is proposed based on a graph-theoretic measure that leverages graph cycles to
characterize the structural complexities of input data points. Employing this mea-
sure, we present a greedy algorithmic framework, dubbed Zeta Hulls, to perform
structured column sampling. The process of pursuing a Zeta hull involves the
computation of matrix inverse. To accelerate the matrix inversion computation
and reduce its space complexity as well, we exploit a low-rank approximation to
the graph adjacency matrix by using an efficient anchor graph technique. Exten-
sive experimental results show that data representation learned by Zeta Hulls can
achieve state-of-the-art accuracy in text and image classification tasks.

1 Introduction

In the era of big data, a natural idea is to select a small subset of m samples Ce = {xe1 , . . . ,xem}
from a whole set of n data points X = {x1, . . . ,xn} such that the selected points Ce can capture
the underlying properties or structures of X . Then machine learning and data mining algorithms can
be carried out with Ce instead of X , thereby leading to significant reductions in computational and
space complexities. Let us write the matrix forms of Ce and X as C = [xe1 , . . . ,xem ] ∈ R

d×m

and X = [x1, . . . ,xn] ∈ R
d×n, respectively. Here d is the dimensions of input data points. In

other words, C is a column subset selection of X. The task of selecting C from X is also called by
column sampling in the literature, and maintains importance in a variety of fields besides machine
learning, such as signal processing, geoscience and remote sensing, and applied mathematics. This
paper concentrates on solving the column sampling problem by means of graph-theoretic methods.

Existing methods in column sampling fall into two main categories according to their objectives: 1)
approximate the data matrix X, and 2) discover the underlying data structures. For machine learning
methods using kernel or similar “N-Body” techniques, the Nyström matrix approximation is usually
applied to approximate large matrices. Such circumstances include fast training of nonlinear kernel
support vector machines (SVM) in the dual form [30], spectral clustering [8], manifold learning [25],
etc. Minimizing a relative approximation error is typically harnessed as the objective of column sam-
pling, by which the most intuitive solution is to perform uniform sampling [30]. Other non-uniform
sampling schemes choose columns via various criteria, such as probabilistic samplings according
to diagonal elements of a kernel matrix [7], reconstruction errors [15], determinant measurements
[1], cluster centroids [33], and statistical leverage scores [21]. On the other hand, column sampling
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may be cast into a combinatorial optimization problem, which can be tackled by using greedy strate-
gies in polynomial time [4] and boosted by using advanced sampling strategies to further reduce the
relative approximation error [14].

From another perspective, we are aware that data points may form some interesting structures. Un-
derstanding these structures has been proven beneficial to approximate or represent data inputs [11].
One of the most famous algorithms for dimensionality reduction, Non-negative Matrix Factorization
(NMF) [16], learns a low-dimensional convex hull from data points through a convex relaxation [3].
This idea was extended to signal separation by pursuing a convex hull with a maximized volume
[27] to enclose input data points. Assuming that vertices are equally distant, the problem of fitting
a simplex with a maximized volume to data reduces to a simple greedy column selection procedure
[26]. The simplex fitting approach demonstrated its success in face recognition tasks [32]. Paral-
lel research in geoscience and remote sensing is also active, where the vertices of a convex hull
are coined as endmembers or extreme points, leading to a classic “N-Finder” algorithm [31]. The
above approaches tried to learn data structures that are usually characterized by convexity. Hence,
they may fail to reveal the intrinsic data structures when the distributions of data points are diverse,
e.g., data being on manifolds or concave structures. Probabilistic models like Determinantal Point
Process (DPP) [13] measure data densities, so they are likely to overcome the convexity issue. How-
ever, few previous work accessed structural information of possibly nonconvex data for column
sampling/subset selection tasks.

This paper aims to address the issue of learning nonconvex structures of data in the case where
the data distributions can be arbitrary. More specifically, we learn a nonconvex hull to encapsulate
the data structure. The on-hull points tightly enclose the dataset but do not need to form a convex
set. Thus, nonconvex hulls can be more adaptive to capture practically complex data structures.
Akin to convex hull learning, our proposed approach also extracts extreme points from an input
dataset. To complete this task, we start with exploring the property of graph cycles in a neighborhood
graph built over the input data points. Using cycle-based measures to characterize data structures
has been proven successful in clustering data of multiple types of distributions [34]. To induce a
measure of structural complexities stemming from graph cycles, we introduce the Zeta Function
which applies the integration of graph cycles to model the linkage properties of the neighborhood
graph. The key advantage of the Zeta function is uniting both global and local connection properties
of the graph. As such, we are able to learn a hull which encompasses almost all input data points
but is not necessary to be convex. With structural complexities captured in the form of the Zeta
function, we present a leave-one-out strategy to find the extreme points. The basic idea is that
removing the on-hull points only has weak impact on structural complexities of the graph. The
decision of removal will be based on extremeness of a data point. Our model, dubbed Zeta Hulls, is
derived by computing and analyzing the extremeness of data points. The greedy pursuit of the Zeta
Hull model requires the computation of the inversion of a matrix obtained from the graph affinity
matrix, which is computationally prohibitive for massive-scale data. To accelerate such a matrix
manipulation, we employ the Anchor Graph [18] technique in the sense that the original graph can
be approximated with respect to the anchors originating from a randomly sampled data subset. Our
model is testified through extensive experiments on toy data and real-world text and image datasets.
Experimental results show that in terms of unsupervised data representation learning, the Zeta Hull
based methods outperform the state-of-the-art methods used in convex hull learning, clustering,
matrix factorization, and dictionary learning.

2 Nonconvex Hull Learning

To elaborate on our approach, we first introduce and define the point extremeness. It measures the
degree of a data point being prone to lie on or near a nonconvex hull by virtue of a neighborhood
graph drawn from an input dataset. As an intuitive criterion, the data point with strong connections
in the graph should have the low point extremeness. To obtain the extremeness measure, we need to
explore the underlying structure of the graph, where graph cycles are employed.

2.1 Zeta Function and Structural Complexity

We model graph cycles by means of a sum-product rule and then integrate them using a Zeta func-
tion. There are many variants of original Riemann Zeta Function, one of which is specialized in
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(a) Original Graph (b) Remaining Graph

Figure 1: An illustration of pursuing on-hull points using the graph measure. (a) shows a point set
with a k-nearest neighbor graph. Points in red are ones lying on the hull of the point set, e.g., the
points we tend to select by the Zeta Hull Pursuit algorithm. (b) shows the remaining point set and the
graph after removing the on-hull points together with their corresponding edges. We observe that
the removal of the on-hull (i.e., “extreme”) points yields little impact on the structural complexity
of the graph.

weighted adjacency graphs. Applying the theoretical results of Zeta functions provides us a pow-
erful tool for characterizing structural complexities of graphs. The numerical description of graph
structures will play a critical role in column sampling/subset selection tasks.

Formally, given a graph G(X , E) with n nodes being data points in X = {xi}ni=1, let the n × n
matrix W denote the weighted adjacency (or affinity) matrix of the graph G built over the dataset X .
Usually the graph affinities are calculated with a proper distance metric. To be generic, we assume
that G is directed. Then an edge leaving from xi to xj is denoted as eij . A path of length � from

xi to xj is defined as P (i, j, �) = {ehktk}�k=1 with h1 = i and t� = j. Note that the nodes in
this path can be duplicate. A graph cycle, as a special case of paths of length �, is also defined as
γ� = P (i, i, �) (i = 1, . . . , n). The sum-product path affinity ν� for all �-length cycles can then

be computed by ν� =
∑

γ�∈κ�
νγ�

=
∑

γ�∈κ�
wt�−1h1

∏�−1
k=1 whktk , where κ� denotes the set of all

possible cycles of length � and whktk denotes the (hk, tk)-entry of W, i.e., the affinity from node
xhk

to node xtk . The edge et�−1h1 is the last edge that closes the cycle. The computed compound
affinity ν� provides a measure for all cyclic connections of length �. Then we integrate such affinities
for the cycles of lengths being from one to infinity to derive the graph Zeta function as follows,

ζz(G) = exp

( ∞∑
�=1

ν�
z�

�

)
, (1)

where z is a constant. We only consider the situation where z is real-valued. The Zeta function
in Eq. (1) has been proven to enjoy a closed form. Its convergence is also guaranteed when z <
1/ρ(W), where ρ(W) is the spectral radius of W. These lead to Theorem 1 [23].

Theorem 1. Let I be the identity matrix and ρ(W) be the spectral radius of the matrix W, respec-
tively. If 0 < z < 1/ρ(W), then ζz(G) = 1/ det(I− zW).

Note that W can be asymmetric, implying that λi can be complex. In this case, Theorem 1 still
holds. Theorem 1 indicates that the graph Zeta function we formulate in Eq. (1) provides a closed-
form expression for describing the structural complexity of a graph. The next subsection will give
the definition of the point extremeness by analyzing the structural complexity.

2.2 Zeta Hull Pursuits

From now on, for simplicity we use εG = ζz(G) to represent the structural complexity of the original
graph G. To measure the point extremeness numerically, we perform a leave-one-out strategy in the
sense that each point in C is successively left out and the variation of εG is investigated. This is a
natural way to pursue extreme points, because if a point xj lies on the hull it has few communications
with the other points. After removing this point and its corresponding edges, the reductive structural
complexity of the remaining graph G/xj , which we denote as εG/xj

, will still be close to εG. Hence,
the point extremeness εxj

is modeled as the relative change of the structural complexity εG, that is
εxj

= εG
εG/xj

. Now we have the following theorem.

Theorem 2. Given εG and εG/xj
as in Theorem 1, the point extremeness measure εxj of point xj

satisfies εxj
= (I − zW)−1

(jj), i.e., the point extremeness measure of point xj is equal to the j-th
diagonal entry of the matrix (I− zW)−1.
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Algorithm 1 Zeta Hull Pursuits

Input: A dataset X , the number m of data points to be selected, and free parameters z, λ and k.
Output: The hull of sampled columns Ce := Cm+1.
Initialize: construct W, C1 ← ∅, X1 = X , c1 = 0, and W1 = W
for i = 1 to m do

εxj
:= (I− zWi)

−1
(jj), for xj ∈ Xi

xei := argminxj∈Xi
(εxj

+ λ
i e

�
j Wci)

Ci+1 := Ci ∪ xei
ci+1 := ci + eeiXi+1 := Ci/xei
Wi+1 := Wi with the ei-th row and column removed

end for

According to previous analysis, the data point with a small εxj
tends to be on the hull and therefore

has a strong extremeness. To seek the on-hull points, we need to select a subset of m points Ce =
{xe1 , . . . ,xem} from X such that they have the strongest point extremenesses. We formulate this
goal into the following optimization problem:

Ce = argmin
C⊂X

g(C) + λc�Wc, (2)

where c is a selection vector with m nonzero elements cei = 1 (i = 1, . . . ,m), and g(C) is the
function which measures the impact on the structural complexity after removing the extracted points.
In our case, g(C) = ∑m

i=1 εxci
. The second term in Eq. (2) is a regularization term enforcing that

the selected data points do not intersect with each other. It will enable the selection process to have
a better representative capability. The parameter λ controls the extent of the regularization.

Naively solving the combinatorial optimization problem in Eq. (2) requires exponential time. By
adopting a greedy strategy, we can solve this optimization problem in an iterative manner and with
a feasible time complexity. Specifically, in each iteration we extract one point from the current data
set and add it to the subset of the selected points. Sticking to this greedy strategy, we will attain the
desired m on-hull points after m iterations. In the i-th iteration, we extract the point xei according
to the criterion

xei = argmin
xj∈Xi−1

εxj +
λ

i
e�j Wci−1, (3)

where ej is the j-th standard basis vector, and ci−1 is the selection vector according to i−1 selected
points before the i-th iteration.

We name our algorithm Zeta Hull Pursuits in order to emphasize that we use the Zeta function to
pursue the nonconvex data hull. Algorithm 1 summarizes the Zeta Hull Pursuits algorithm.

3 Zeta Hull Pursuits via Anchors
Algorithm 1 is applicable to small to medium-scale data X due to its cubical time complexity and
quadratic space complexity with respect to the data size |X |. Here we propose a scalable algorithm
facilitated by a reasonable prior to tackle the nonconvex hull learning problem efficiently. The idea is
to build a low-rank approximation to the graph adjacency matrix W with a small number of sampled
data points, namely anchor points. We resort to the Anchor Graph technique [18], which has been
successfully applied to handle large-scale hashing[20] and semi-supervised learning problems.

3.1 Anchor Graphs

The anchor graph framework is an elegant way to approximate neighborhood graphs. It first chooses
a subset of l anchor points U = {uj}lj=1 from X . Then for each data point in X , its s nearest anchors
in U are sought, thereby forming an s-nearest anchor graph. The anchor graph theory assumes that
the original graph affinity matrix W can be reconstructed from the anchor graph with a small number
of anchors (l � n). Anchor points can be selected by random sampling or a rough clustering
process. Many algorithms are available to embed a data point to its s nearest anchor points, as

suggested in [18]. Here we adopt the simplest approach to build the anchor embedding matrix Ĥ;

say, ĥij =

{
exp

(−d2ij/σ
2
)
, uj ∈ {s nearest anchors of xi}

0, otherwise
, where dij is the distance from data
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Algorithm 2 Anchor-based Zeta Hull Pursuits

Input: A dataset X , the number m of data points to be sampled, the number l of anchors, the
number s of nearest anchors, and a free parameter z.
Output: The hull of sampled columns Ce := Cm+1.
Initialize: construct H, X1 = X , C1 = ∅, and H1 = H
for i = 1 to m do

perform SVD to obtain Hi := UΣVT

εxj
:= z

∑l
k=1

λ2
j

1−zλ2
k
(Ujk)

2, for xj ∈ Xi

xei := argminxj∈Xi
(εxj

+
∑

xt∈Ci

λ
i hjht

�)

Ci+1 := Ci ∪ xeiXi+1 := Xi/xei
Hi+1 := Hi with the ei-th row removed

end for

point xi to anchor uj , and σ is a parameter controlling the bandwidth of the exponential function.

The matrix Ĥ is then normalized so that its every row sums to one. In doing so, we can approximate

the affinity matrix of the original graph as Ŵ = ĤΛ−1Ĥ�, where Λ is a diagonal matrix whose i-th

diagonal element is equal to the sum of the i-th column of Ĥ. As a result, all matrix manipulations
upon the original graph affinity matrix W can be approximated by substituting the anchor graph

affinity matrix Ŵ for W.

3.2 Extremeness Computation via Anchors
Note that the computation of the point extremeness for εxj

depends on the diagonal elements of

(I − zW)−1. Using the anchor graph technique, we can write (I − zW)−1 = (I − zHH�)−1,

where H = ĤΛ− 1
2 . Thus we have the following theorem that enables an efficient computation of

εxj . The proof is detailed in the supplementary material.

Theorem 3. Let the singular vector decomposition of H be H = UΣV�, where Σ =

diag(λ1, . . . , λl). If H�H is not singular, then ε−1
xj

= 1 + z
∑l

k=1
λ2
k

1−zλ2
k
(Ujk)

2, where U =

HVΣ−1 and Ujk denotes the (i, j)-th entry of U.

Theorem 3 reveals that the major computation of εxj
will reduce to the eigendecomposition of a

much smaller matrix H�H, which results in a direct acceleration of the Zeta hull pursuit process.
At the same time, the second term of Eq. (3) encountered in the i-th iteration can be estimated by

e�j Wci =
1
i

∑
xt∈Ci

hjht
�, where hj denotes the j-th row of H and ci−1 is the selection vector

of the extracted point set before the i-th iteration. These lead to the Anchor-based Zeta Hull Pursuits
algorithm shown in Algorithm 2.

3.3 Downdating SVD

In Algorithm 2, the singular value decomposition dominates the total time cost. We notice that
reusing information in previous iterations can save the computation time. The removal of one row
from H is equivalent to a rank-one modification to the original matrix. Downdating SVD [10] was
proposed to handle this operation. Given the diagonal singular value matrix Σi and the point xei
chosen in the i-th iteration, the singular value matrix Σi+1 for the next iteration can be calculated
by the eigendecomposition of an l× l matrix D derived from Σi, where D = (I− 1

1+μheih
�
ei)Σi,

and μ2 + ‖hei‖22 = 1. The decomposition of D can be efficiently performed in O(l2) time [10].
Then the computation of Ui+1 is achieved by a multiplication of Ui with an l × l matrix produced
by the decomposition operation on D, which permits a natural parallelism. Consequently, we can
further accelerate Algorithm 2 by using a parallel computing scheme.

3.4 Complexity Analysis

We now analyze the complexities of Algorithms 1 and 2. For Algorithm 1, the most time-consuming
step is to solve the matrix inverse of n × n size, which costs a time complexity of O(n3). The
overall time complexity is thus O(mn3) for extracting m points. In the implementation we can use
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(a) m = 20, ZHP (b) m = 40, ZHP (c) m = 80, ZHP (d) m = 200, ZHP

(e) m = 20, A-ZHP (f) m = 40, A-ZHP (g) m = 80, A-ZHP (h) m = 200, A-ZHP

(i) m = 40, Leverage Score (j) m = 40, Simplex (k) m = 40, CUR (l) m = 40, K-medoids

Figure 2: Zeta hull pursuits on the two-moon toy dataset. We select m data points from the dataset
with various methods. In the sub-figures, blue dots are data points. The selected samples are sur-
rounded with red circles. The caption of each sub-figure describes the number of selected points m
and the method used to select those data points. First two rows shows the results of our algorithms
with different m. The third row illustrates the comparisons with other methods when m = 40. For
the leverage score approach, we follow the steps in [21].

the sparse matrix computation to reduce the constant factor [5]. For Algorithm 2, the most time-
consuming step is to perform SVD over H, so the overall time complexity is O(mnl2). Leveraging
downdating SVD, we only need to calculate the full SVD of H once in O(nl2) time and iteratively
update the decomposition in O(l2) time per iteration. The matrix multiplication operation then
dominates the total time cost. Also, it can be parallelized using a multi-core CPU or a modern GPU,
resulting in a very small constant factor in the time complexity. Since l is usually less than 10% of n,
Algorithm 2 is orders of magnitude faster than Algorithm 1. For cases where l needs to be relatively
large (20% of n for example), the computational cost will not show a considerable increase since H
is usually a very sparse matrix.

4 Experiments
The Zeta Hull model aims at learning the structures of dataset. We evaluate how well our model
achieves this goal by performing classification experiments. For simplicity, we abbreviate our al-
gorithms as follows: the original Zeta Hull Pursuit algorithm (Algorithm 1), ZHP and its anchor
version (Algorithm 2), A-ZHP. To compare with the state-of-the-art, we choose some renowned
methods: K-medoids, CUR matrix factorization (CUR) [29], simplex volume maximization (Sim-
plex) [26], sparse dictionary learning (DictLearn) [22] and convex non-negative matrix factorization
(C-NMF) [6]. Basically, we use the extracted data points to learn a representation for each data
point in an unsupervised manner. Classification is done by feeding the representation into a clas-
sifier. The representation will be built in two ways: 1) the sparse coding [22] and 2) the locality
simplex coding [26]. To differentiate our algorithms from the original anchor graph framework, we
conduct a set of experiments using the left singular vectors of the anchor embedding matrix H as
the representation. In these experiments, anchors used in the anchor graph technique are randomly
selected from the training set. To compare with existing low-dimension embedding approaches, we
run the Large-Scale Manifold method [24] using the same number of landmarks as that of extracted
points.

4.1 Toy Dataset
First we illustrate our algorithms on a toy dataset. The dataset, commonly known as ”the two
moons”, consists of 2000 data points on the 2D plane which are manifold-structured and comprise
nonconvex distributions. This experiment on the two moons provides illustrative results of our
algorithms in the presence of nonconvexity. We select different numbers of column subsets m =
{20, 40, 80, 200} and compare with various other methods. A visualization of the results is shown
in Figure 2. We can see that our algorithms can extract the nonconvex hull of the data cloud more
accurately.

4.2 Text and Image Datasets
For the classification experiments in this section, we derive the two types of data representations (the
sparse coding and the local simplex coding) from the points/columns extracted by compared meth-
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Table 1: Classification error rates in percentage (%) on texts (TDT2 and Newsgroups) and hand-
written number datasets (MNIST). The numbers in bold font highlight best results under the settings.
In this table, “SC” refers to the results using the sparse coding to form the representation, while
“LSC” refers to the results using local simplex coding. The cells with “-” indicate that the ZHP
method is too expensive to be performed under the associated settings. The “Anchor Graph” refers
to the additional experiments using the original anchor graph framework [18].

Methods TDT2 Newsgroups MNIST
m = 500 m = 1000 m = 500 m = 1000 m = 500 m = 2000

SC LSC SC LSC SC LSC SC LSC SC LSC SC LSC

ZHP 2.31 1.97 1.53 0.48 - - - - - - - -

A-ZHP 2.52 2.68 2.08 0.96 11.79 10.77 7.1 6.58 3.45 3.07 1.43 1.19
Simplex [26] 3.79 1.73 1.77 1.51 13.55 10.41 8.16 8.04 5.79 5.79 2.27 1.51

DictLearn [22] 3.73 5.62 1.18 2.57 9.51 10.76 6.72 9.63 3.16 3.16 1.36 2.11

C-NMF [6] 4.83 3.46 2.07 2.31 11.68 11.83 7.72 7.42 5.07 5.27 3.01 3.04

CUR [29] 6.82 3.73 2.37 1.52 15.32 11.44 12.38 9.47 10.13 10.13 3.79 5.27

K-medoids [12] 9.14 7.87 3.73 4.69 19.73 12.02 19.67 10.04 9.28 9.28 2.72 2.31

Anchor Graph [18] 5.81 2.68 12.32 8.76 3.17 2.33

Table 2: Recognition error rates in percentage (%) on object and face datasets. We select L samples
for each class in the training set for training or forming the gallery. The numbers in bold font
highlight best results under the settings. In this table, “SC” refers to the results using the sparse
coding to form the representation, while “LSC” refers to the results using local simplex coding. The
“Raw Feature” refers to the experiments conducted on the raw features vectors. The face recognition
process is described in Sec. (4.2).

Methods Caltech101
d = 21504, L = 30

Caltech101
d = 5120, L = 30

MultiPIE
d = 2000, L = 30

m = 500 m = 1000 m = 500 m = 1000 m = 500 m = 2000
SC LSC SC LSC SC LSC SC LSC SC LSC SC LSC

A-ZHP 25.77 26.82 23.13 25.81 29.61 28.95 25.62 26.59 20.8 14.2 19.6 11.3
Simplex [26] 29.83 26.16 26.83 25.18 32.43 29.66 30.62 27.47 19.9 15.8 17.7 13.7

DictLearn [22] 26.95 29.73 26.73 29.51 29.15 31.83 28.93 29.67 19.6 20.8 18.5 19.7

C-NMF [6] 30.66 27.83 28.72 27.62 32.57 31.13 31.15 28.73 20.4 17.5 19.9 14.8

CUR [21] 29.74 28.77 26.16 26.81 31.69 32.57 30.72 31.13 21.3 21.9 20.7 21.6

K-medoids [12] 27.82 27.64 26.09 25.73 29.85 29.63 28.97 28.28 29.7 19.8 25.4 17.7

Anchor Graph [18] 26.32 25.15 30.53 28.14 17.6 14.4

Large Manifold [24] 28.71 27.92 32.67 30.19 31.4 30.1

Raw Feature [28] 26.7 31.18 27.6

ods. By measuring the performance of applying these representations to solving the classification
tasks, we can evaluate the representative power of the compared point/column selection methods.

The sparse coding is widely used for obtaining the representation for classification. Here a standard
�1-regularized projection algorithm (LASSO) [22] is adopted to learn the sparse representation from
the extracted data points. LASSO will deliver a sparse coefficient vector, which is applied as the
representation of the data point. We use “SC” to indicate the related results in Table 1 and Table 2.

The local simplex coding reconstructs one data point as a convex combination of a set of nearest
exemplar points, which form local simplexes [26]. Imposing this convex reconstruction constraint
leads to non-negative combination coefficients. The sparse coefficients vector will be used as data
representation. “LSC” indicates the related results in Table 1 and Table 2.

The classification pipeline is as follows. After extracting m points/columns from the training set,
all data points will be represented with these selected points using the two approaches above. Then
we feed the representations into a linear SVM for the training and testing. The better classification
accuracy will reveal the stronger representative power of the column selection algorithm. In all
experiments, the parameter z is fixed at 0.05 to guarantee the convergence of the Zeta function. We
find that final results are robust to z once the convergence is guaranteed. For the A-ZHP algorithm,
the parameter s is fixed at 10 and the number of anchor points l is set as 10% of the training set
size. The bandwidth parameter σ of the exponential function is tuned on the training set to obtain a
reasonable anchor embedding.

The classification of text contents relies on the informative representation of the plain words or sen-
tences. Two text datasets are adopted for classification, i.e. the TDT2 dataset and the Newsgroups
dataset [2]. In experiments, a subset of TDT2 is used (TDT2-30). It has 9394 samples from 30
classes. Each feature vector is of 36771 dimensions and normalized into unit length. The training
set contains 6000 samples randomly selected from the dataset and rest of the samples are used for
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testing. The parameter m is set to be 500 and 1000 on this dataset. The Newsgroups dataset con-
tains 18846 samples from 20 classes. The training set contains 11314, while the testing set has 7532.
The two sets are separated in advance [2] and ordered in time sequence to be more challenging for
classifiers. The parameter m is set to be 500 and 1000 on this dataset. The classification results are
reported in Table 1.

For object and face recognition tasks we conduct experiments under three classic scenarios, the
hand-written digits classification, the image recognition, and the human face recognition. Related
experimental results are reported in Table 1 and Table 2.

The MNIST dataset serves as a standard benchmark for machine learning algorithms. It contains 10
classes of images corresponding to hand-written numbers from 0 to 9. The training set has 60000
images and the testing set has 10000 images. Each sample is a 784-dimensional vector.

The Caltech101 dataset [17] is a widely used benchmark for object recognition systems. It consists
of images from 102 classes of objects (101 object classes and one background class). We randomly
select 30 labeled images from every class for training the classifier and 3000 images for testing.
The recognition rates averaged over all classes are reported. Every image is processed into a feature
vector of 21504 dimensions by the method in [28]. We also conduct experiment on a feature subset
of the top 5000 dimensions (Caltech101-5k). In this experiment, m is set to be 500 and 1000.
On-hull points are extracted on the training set.

The MultiPIE human face dataset is a widely applied benchmark for face recognition [9]. We follow
a standard gallery-probe protocol of face recognition. The testing set is divided into the gallery set
and the probe set. The identity predication of a probe image comes from its nearest neighbor of
Euclidean distance in the gallery. We randomly select 30, 000 images of 200 subjects as the training
set for learning the data representation. Then we pick out 3000 images of the other 100 subjects
(L = 30) to form the gallery set and 6000 images as the probes. The head poses of all these faces
are between ±15 degrees. Each face image is processed into a vector of 5000 dimensions using the
local binary pattern descriptor and PCA. We vary the parameter m from 500 to 2000 to evaluate the
influence of number of sampled points.

Discussion. For the experiments on these high-dimensional datasets, the methods based on the
Zeta Hull model outperform most compared methods and also show promising performance im-
provements over raw data representation. When the number of extracted points grows, the resulting
classification accuracy increases. This corroborates that the Zeta Hull model can effectively capture
intrinsic structures of given datasets. More importantly, the discriminative information is preserved
through learning these Zeta hulls. The representation yielded by the Zeta Hull model is sparse and of
manageable dimensionality (500-2000), which substantially eases the workload of classifier train-
ing. This property is also favorable for tackling other large-scale learning problems. Due to the
graph-theoretic measure that unifies the local and global connection properties of a graph, the Zeta
Hull model leads to better data representation compared against existing graph-based embedding
and manifold learning methods. For the comparison with the Large-Scale Manifold method [24]
on the MultiPIE dataset, we find that even using 10K landmarks, its accuracy is still inferior to our
methods relying on the Zeta Hull model. We also notice that noise may also affect the quality of Zeta
hulls. This difficulty can be circumvented by running a number of well-established outlier removal
methods such as [19].

5 Conclusion
In this paper, we proposed a geometric model, dubbed Zeta Hulls, for column sampling through
learning nonconvex hulls of input data. The Zeta Hull model was built upon a novel graph-theoretic
measure which quantifies the point extremeness to unify local and global connection properties of
individual data point in an adjacency graph. By means of the Zeta function defined on the graph,
the point extremeness measure amounts to the diagonal elements of a matrix related to the graph
adjacency matrix. We also reduced the time and space complexities for computing a Zeta hull by
incorporating an efficient anchor graph technique. A synthetic experiment first showed that the Zeta
Hull model can detect appropriate hulls for non-convexly distributed data. The extensive real-world
experiments conducted on benchmark text and image datasets further demonstrated the superiority
of the Zeta Hull model over competing methods including convex hull learning, clustering, matrix
factorization, and dictionary learning.
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