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Abstract

Estimating a vector from noisy quadratic observations is a task that arises nat-
urally in many contexts, from dimensionality reduction, to synchronization and
phase retrieval problems. It is often the case that additional information is avail-
able about the unknown vector (for instance, sparsity, sign or magnitude of its
entries). Many authors propose non-convex quadratic optimization problems that
aim at exploiting optimally this information. However, solving these problems is
typically NP-hard.
We consider a simple model for noisy quadratic observation of an unknown vector
v0. The unknown vector is constrained to belong to a cone C 3 v0. While
optimal estimation appears to be intractable for the general problems in this class,
we provide evidence that it is tractable when C is a convex cone with an efficient
projection. This is surprising, since the corresponding optimization problem is
non-convex and –from a worst case perspective– often NP hard. We characterize
the resulting minimax risk in terms of the statistical dimension of the cone δ(C).
This quantity is already known to control the risk of estimation from gaussian
observations and random linear measurements. It is rather surprising that the same
quantity plays a role in the estimation risk from quadratic measurements.

1 Introduction

In many statistical estimation problems, observations can be modeled as noisy quadratic functions
of an unknown vector v0 = (v0,1,v0,2, . . . ,v0,n)T ∈ Rn. For instance, in positioning and graph
localization [5, 24], one is given noisy measurements of pairwise distances (v0,i − v0,j)

2 (where
–for simplicity– we consider the case in which the underlying geometry is one-dimensional). In
principal component analysis (PCA) [15], one is given a data matrix X ∈ Rn×p, and tries to reduce
its dimensionality by postulating an approximate factorization X ≈ u0 v0

T. Hence Xij can be
interpreted as a noisy observation of the quadratic function u0,iv0,j . As a last example, there has
been significant interest recently in phase retrieval problems [11, 6]. In this case, the unknown vector
v0 is –roughly speaking– an image, and the observations are proportional to the square modulus of
a modulated Fourier transform |Fv0|2.

In several of these contexts, a significant effort has been devoted to exploiting additional structure
of the unknown vector v0. For instance, in Sparse PCA, various methods have been developed to
exploit the fact that v0 is known to be sparse [14, 25]. In sparse phase retrieval [13, 18], a similar
assumption is made in the context of phase retrieval.

All of these attempts face a recurring dichotomy. One the hand, additional information on v0 can
increase dramatically the estimation accuracy. On the other, only a fraction of this additional in-
formation is exploited by existing polynomial time algorithms. For instance in sparse PCA, if it is
known that only k entries of the vector v0 are non-vanishing, an optimal estimator is successful in
identifying them from roughly k samples (neglecting logarithmic factors) [2]. On the other hand,
known polynomial-time algorithms require about k2 samples [16, 7].
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This fascinating phenomenon is however poorly understood so far. Classifying estimation problems
as to whether optimal estimation accuracy can be achieved or not in polynomial time is an out-
standing challenge. In this paper we develop a stylized model to study estimation from quadratic
observations, under additional constraints. Special choices of the constraint set yield examples for
which optimal estimation is thought to be intractable.

However we identify a large class of constraints for which estimation appears to be tractable, de-
spite the corresponding maximum likelihood problem is non-convex. This shows that computational
tractability is not immediately related to simple considerations of convexity or worst-case complex-
ity.

Our model assumes v0 ∈ Cn with Cn ⊆ Rn a closed cone. Observations are organized in a sym-
metric matrix X = (Xij)1≤i,j≤n defined by

X = β v0v0
T + Z . (1)

Here Z is a symmetric noise matrix with independent entries (Zij)i≤j with Zij ∼ N(0, 1/n) for
i < j and Zii ∼ N(0, 2/n). We assume, without loss of generality, ‖v0‖2 = 1, and hence β is the
signal to noise ratio. We will assume β to be known to avoid non-essential complications.

We consider estimators that return normalized vectors v̂ : Rn×n → Sn−1 ≡ {v ∈ Rn : ‖v‖2 = 1},
and will characterize such an estimator through the risk function

RCn(v̂;v0) =
1

2
E
{

min(‖v̂(X)− v0‖22, ‖v̂(X)− v0‖22)
}

= 1− E{|〈v̂(X),v0〉|} . (2)

The corresponding worst-case risk is R(v̂; Cn) ≡ supv0∈Cn RCn(v̂;v0), and the minimax risk
R(Cn) = inf v̂ R(v̂; Cn).
Remark 1.1. Let Cn = Sn,k be the cone of vectors v0 that have at most k non-zero entries, all
positive, and with equal magnitude. The problem of testing whether β = 0 or β ≥ β0 within
the model (1) coincides with the problem of detecting a non-zero mean submatrix in a Gaussian
matrix. For the latter, Ma and Wu [20] proved that it cannot be accomplished in polynomial time
unless an algorithm exists for the so-called planted clique problem in a regime in which the latter is
conjectured to be hard.

This suggests that the problem of estimating v0 with rate-optimal minimax risk is hard for the
constraint set Cn = Sn,k.

We next summarize our results. While –as shown by the last remark– optimal estimation is generi-
cally intractable for the model (1) under the constraint v0 ∈ Cn, we show that –roughly speaking– it
is instead tractable if Cn is a convex cone. Note that this does not follow from elementary convexity
considerations. Indeed, the maximum likelihood problem

maximize 〈v,Xv〉 , (3)
subject to v ∈ Cn, ‖v‖2 = 1 ,

is non-convex. Even more, solving exactly this optimization problem is NP-hard even for simple
choices of the convex cone Cn. For instance, if Cn = Pn ≡ {v ∈ Rn : v ≥ 0} is an orthant, then
solving the above is equivalent to copositive programming, which is NP-hard by reduction from
maximum independent sets [12, Chapter 7].

Our results naturally characterize the cone Cn through its statistical dimension [1]. If PCn denotes
the orthogonal projection on Cn, then the fractional statistical dimension of Cn is defined as

δ(Cn) ≡ 1

n
E
{∥∥PCn(g)

∥∥2
2

}
, (4)

where expectation is with respect to g ∼ N(0, In×n). Note that δ(Cn) ∈ [0, 1] can be significantly
smaller than 1. For instance, if Cn = Mn ≡ {v ∈ Rn

+ : ∀i , vi+1 ≥ vi} is the cone of non-
negative, monotone increasing sequences, then [9, Lemma 4.2] proves that δ(Cn) ≤ 20(log n)2/n.

Below is an informal summary of our results, with titles referring to sections where these are estab-
lished.

Information-theoretic limits. We prove that in order to estimate accurately v0, it is necessary
to have β &

√
δ(Cn). Namely, there exist universal constants c1, c2 > 0 such that, if

β ≤ c1
√
δ(Cn), then R(Cn) ≥ c2.
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Maximum likelihood estimator. Let v̂ML(X) be the maximum-likelihood estimator, i.e. any solu-
tion of Eq. (3). We then prove that, for β ≥

√
δ(Cn)

R(v̂ML; Cn) ≤
4
√
δ(Cn)

β
. (5)

Low-complexity iterative estimator. In the special case Cn = Rn, the solution of the optimiza-
tion problem (3) is given by the eigenvector with the largest eigenvalue. A standard
low-complexity approach to computing the leading eigenvector is provided by the power
method. We consider a simple generalization that –starting from the initialization v0– al-
ternates between projection onto Cn and multiplication by (X + ρIn) (ρ > 0 is added to
improve convergence):

v̂t+1 =
PCn(ut)

‖PCn(ut)‖2
, (6)

ut = (X + ρIn)v̂t . (7)

We prove that, for t & log n iterations, this algorithm yields an estimate with R(v̂t; Cn) .√
δ(Cn)/β, and hence order optimal, for β &

√
δ(Cn). (Our proof technique requires the

initialization to have a positive scalar product with v0.)

As a side result of our analysis of the maximum likelihood estimator, we prove a new, el-
egant, upper bound on the value of the optimization problem (3), denoted by λ1(Z; Cn) ≡
maxv∈Cn∩Sn−1〈v,Zv〉. Namely

Eλ1(Z; Cn) ≤ 2
√
δ(Cn) . (8)

In the special case Cn = Rn, λ1(Z;Rn) is the largest eigenvalue of Z, and the above inequality
shows that this is bounded in expectation by 2. In this case, the bound is known to be asymptotically
tight [10]. In the supplementary material, we prove that it is tight for certain other examples such
as the nonnegative orthant and for circular cones (a.k.a. ice-cream cones). We conjecture that this
inequality is asymptotically tight for general convex cones.

Unless stated otherwise, in the following we will defer proofs to the Supplementary Material.

2 Information-theoretic limits

We use an information-theoretic argument to show that, under the observation model (1), then the
minimax risk can be bounded below for β .

√
δ(Cn). As is standard, our bound employs the

so-called packing number of Cn.
Definition 2.1. For a cone Cn ⊆ Rn, we define its packing number N(Cn, ε) as the size of the
maximal subset X of Cn ∩ Sn−1 such that for every x1, x2 ∈ Cn ∩ Sn−1, ‖x1 − x2‖ ≥ ε.

We then have the following.
Theorem 1. There exist universal constants C1, C2 > 0 such that for any closed convex cone Cn
with δ(Cn) ≥ 3/n:

β ≤ C1

√
δ(Cn) ⇒ R(Cn) ≥ C2δ(Cn)

log(1/δ(Cn))
. (9)

Notice that the last expression for the lower bound depends on the cone width, as it is to be expected:
even for β = 0, it is possible to estimate v0 with risk going to 0 if the cone Cn ‘shrinks’ as n→∞.
The proof of this theorem is provided in Section 2 of the supplement.

3 Maximum likelihood estimator

Under the Gaussian noise model for Z, cf. Eq. (1), the likelihood of observing X under a hypothesis
v is proportional to exp(−‖X − vvT‖2F /2). Using the constraint that ‖v‖ = 1, it follows that any
solution of (3) is a maximum likelihood estimator.
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Theorem 2. Consider the model as in (1). Then, when β ≥
√
δ(Cn), any solution v̂ML(X) to the

maximum likelihood problem (3) satisfies

RCn(v̂ML; Cn) ≤ min

{
4
√
δ(Cn)

β
,

16

β2

}
. (10)

Thus, for β &
√
δ(Cn), the risk of the maximum likelihood estimator decays as

√
δ(Cn)/β while

for β & 1, it shifts to a faster decay of 1/β2. We have made no attempt to optimize the constants in
the statement of the theorem, though we believe that the correct leading constant in either case is 1.

Note that without the cone constraint (or with Cn = Rn) the maximum likelihood estimator reduces
to computing the principal eigenvector v̂PC of X. Recent results in random matrix theory [10] and
statistical decision theory [4] prove that in the case of principal eigenvector, a nontrivial risk (i.e.
RCn(v̂PC; Cn) < 1 asymptotically) is obtained only when β > 1. Our result shows that this threshold
is, instead, reduced to

√
δ(Cn), which can be significantly smaller than 1. The proof of this theorem

is provided in Section 3 of the supplement.

4 Low-complexity iterative estimator

Sections 2 and 3 provide theoretical insight into the fundamental limits of estimation of v0 from
quadratic observations of the form βv0v0

T + Z. However, as previously mentioned, the maximum
likelihood estimator of Section 3 is NP-hard to compute, in general. In this section, we propose a
simple iterative algorithm that generalizes the well-known power iteration to compute the principal
eigenvector of a matrix. Furthermore, we prove that, given an initialization with positive scalar
product with v0, this algorithm achieves the same risk of the maximum likelihood estimator up to
constants. Throughout, the cone Cn is assumed to be convex.

Our starting point is the power iteration to compute the principal eigenvector v̂PC of X. This is
given by letting, for t ≥ 0: v̂t+1 = Xv̂t/‖Xv̂t‖. Under our observation model, we have X =
βv0v0

T + Z with v0 ∈ Cn. We can incorporate this information by projecting the iterates on to the
cone Cn (see e.g. [19] for related ideas):

v̂t =
PCn(ut)

‖PCn(ut)‖
, ut+1 = Xvt + ρvt. (11)

The projection is defined in the standard way:

PCn(x) ≡ arg min
y∈Cn
‖y − x‖2. (12)

If Cn is convex, then the projection is unique. We have implicitly assumed that the operation of
projecting to the cone Cn is available to the algorithm as a simple primitive. This is the case for many
convex cones of interest, such as the orthant Pn, the monotone coneMn, and ice-cream cones the
projection is easy to compute. For instance, if Cn = Pn is the non-negative orthant PCn(x) = (x)+
is the non-negative part of x. For the monotone cone, the projection can be computed efficiently
through the pool-adjacent violators algorithm.

The memory term ρvt is necessary for our proof technique to go through. It is straightforward to
see that adding ρIn to the data X does not change the optimizers of the problem (3). The following
theorem provides deterministic conditions under which the distance between the iterative estimator
and the vector v0 can be bounded.
Theorem 3. Let v̂t be the power iteration estimator (11). Assume ρ > ∆ and that the noise matrix
Z satisfies:

max
{
|〈x,Zy〉| : x,y ∈ Cn ∩ Sn−1

}
≤ ∆ . (13)

If β > 4∆, and the initial point v̂0 ∈ Cn ∩ Sn−1 satisfies 〈v̂0,v0〉 ≥ 2∆/β, then there exits
t0 = t0(∆/β,∆/ρ) <∞ independent of n such that, for all t ≥ t0

‖v̂t − v0‖ ≤
4∆

β
. (14)
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We can apply this theorem to the Gaussian noise model to obtain the following bound on the risk of
the power iteration estimator.

Corollary 4.1. Under the model (1) let εn = 8
√

log n/n. Assume that 〈v̂0,v0〉 > 0 and

β > 2(
√
δ(Cn) + εn) max

(
2, 〈v̂0,v0〉−1

)
. (15)

Then R(v̂t, Cn) ≤ 2δ(Cn) + εn
β

. (16)

In other words, power iteration has risk within a constant from the maximum likelihood estimator,
provided an initialization is available whose scalar product with v0 is bounded away from zero. The
proofs of Theorem 3 and Corollary 4.1 are provided in Section 4 of the supplement.

5 A case study: sharp asymptotics and minimax results for the orthant

In this section, we will be interested in the example in which the cone Cn is the non-negative orthant
Cn = Pn. Non-negativity constraints within principal component analysis arise in non-negative
matrix factorization (NMF). Initially introduced in the context of chemometrics [23, 22], NMF at-
tracted considerable interest because of its applications in computer vision and topic modeling. In
particular, Lee and Seung [17] demonstrated empirically that NMF successfully identifies parts of
images, or topics in documents’ corpora.

Note that the in applications of NMF to computer vision or topic modeling the setting is somewhat
different from the model studied here: X is rectangular instead of symmetric, and the rank is larger
than one. Such generalizations of our analysis will be the object of future work.

Here we will use the positive orthant to illustrate the results in previous sections. Further, we will
show that stronger results can be proved in this case, thanks to the separable structure of this cone.
Namely, we derive sharp asymptotics and we characterize the least-favorable vectors for the maxi-
mum likelihood estimator.

We denote by λ+(X) = λ1(X; Cn = Pn) the value of the optimization problem (3). Our first result
yields the asymptotic value of this quantity for ‘pure noise,’ confirming the general conjecture put
forward above.
Theorem 4. We have almost surely limn→∞ λ+(Z) = 2

√
δ(Pn) =

√
2.

Next we characterize the risk phase transition: this result confirms and strengthen Theorem 2.
Theorem 5. Consider estimation in the non-negative orthant Cn = Pn under the model (1). If
β ≤ 1/

√
2, then there exists a sequence of vectors {v0(n)}n≥0 , such that almost surely

lim
n→∞

R(vML;v0(n)) = 1 . (17)

For β > 1/
√

2, there exists a function β 7→ R+(β) with R+(β) < 1 for all β > 1/
√

2, and
R+(β) ≥ 1 − 1/2β2, such that the following happens. For any sequence of vectors {v0(n)}n≥0,
we have, almost surely

lim sup
n→∞

R(vML;v0(n)) ≤ R+(β) . (18)

In other words, in the high-dimensional limit, the maximum likelihood estimator is positively corre-
lated with the signal v0(n) if and only if β >

√
δ(Cn) = 1/

√
2.

Explicit (although non-elementary) expressions for R+(β) can be computed, along with the limit
value of the risk R(vML;v0(n)) for sequences of vectors {v0(n)}n≥1 whose entries empirical dis-
tribution converges. These results go beyond the scope of the present paper (but see Fig. 1 below for
illustration).

As a byproduct of our analysis, we can characterize the least-favorable choice of the signal v0.
Namely for k ∈ [1, n], wee let u(n, k) denote a vector with bkc non-zero entries, all equal to
1/
√
bkc. Then we can prove that the asymptotic minimax risk is achieved along sequences of

vectors of this type.
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Theorem 6. Consider estimation in the non-negative orthant Cn = Pn under the model (1), and let
R+(β) be the same function as in Theorem 5. If β ≤ 1/

√
2 then there exists kn = o(n) such that

lim
n→∞

R(vML;u(n, kn)) = 1 . (19)

If β > 1/
√

2 then there exists ε# = ε#(β) ∈ (0, 1] such that

lim
n→∞

R(vML;u(n, nε#)) = R+(β) . (20)

We refer the reader to [21] for a detailed analysis of the case of nonnegative PCA and the full proofs
of Theorems 4, 5 and 6.

5.1 Approximate Message Passing

The next question is whether, in the present example Cn = Pn, the risk of the maximum likelihood
estimator can be achieved by a low-complexity iterative algorithm. We prove that this is indeed the
case (up to an arbitrarily small error), thus confirming Theorem 3. In order to derive an asymp-
totically exact analysis, we consider an ‘approximate message passing’ modification of the power
iteration.

Let f(x) = (x)+/‖(x)+‖2 denote the normalized projector. We consider the iteration defined by
v0 = (1, 1, . . . , 1)T/

√
n, v−1 = (0, 0, . . . , 0)T, and for t ≥ 0,

vt+1 = Xf(vt)− bt f(vt−1) and bt ≡ ‖(vt)+‖0/{
√
n‖(vt)+‖2} AMP

The algorithm AMP is a slight modification of the projected power iteration algorithm up to adding
at each step the “memory term” −bt f(vt−1). As shown in [8, 3] this term plays a crucial role in
allowing for an exact high-dimensional characterization. At each step the estimate produced by the
sequence is v̂t = (vt)+/‖(vt)+‖2. We have the following
Theorem 7. Let X be generated as in (1). Then we have, almost surely,

lim
t→∞

lim
n→∞

∣∣〈v̂ML,XvML〉 − 〈v̂t,Xv̂t〉
∣∣ = 0 . (21)

5.2 Numerical illustration: comparison with classical PCA

We performed numerical experiments on synthetic data generated according to the model (1) and
with signal v0 = u(n, nε) as defined in the previous section. We provide in the Appendix formulas
for the value of limn→∞〈v0, v̂

ML〉, which correspond to continuous black lines in the Figure 1. We
compare these predictions with empirical values obtained by running AMP.

We generated samples of size n = 104, sparsity level ε ∈ {0.001, 0.1, 0.8}, and signal-to-noise
ratios β ∈ {0.05, 0.10, . . . , 1.5}. In each case we run AMP for t = 50 iterations and plot the
empirical average of 〈v̂t,v0〉 over 32 instances. Even for such moderate values of n, the asymptotic
predictions are remarkably accurate.

Observe that sparse vectors (small ε) correspond to the least favorable signal for small signal-to-
noise ratio β, while the situation is reverted for large values of β. In dashed green we represented
the theoretical prediction for ε → 0. The value β = 1/

√
2 corresponds to the phase transition. At

the bottom the images correspond to values of the correlation 〈v0, v̂
ML〉 for a grid of values of β and

ε. The top left-hand frame in Figure 1 is obtained by repeating the experiment for a grid of values
of n, and fixed ε = 0.05 and several value of β. For each point we plot the average of 〈v̂t,v0〉 after
t = 50 iteration, over 32 instances. The data suggest 〈v̂ML,v0〉+ An−b ≈ limn→∞〈v0,v+〉 with
b ≈ 0.5.

6 Polyhedral cones and convex relaxations

A polyhedral cone Cn is a closed convex cone that can be represented in the form Cn = {x ∈ Rn :
Ax ≥ 0} for some matrix A ∈ Rm×n. In section 5 we considered the non-negative orthant, which
is an example of polyhedral cone with A = In. A number of other examples of practical interest fall
within this category of cones. For instance, monotonicity or convexity of a vector v = (v1, . . . ,vn)
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Figure 1: Numerical simulations with the model 1 for the positive orthant cone Cn = Pn. Top-
left: empirical deviation from asymptotic prediction. Top-right: black lines represent the theoretical
predictions of Theorem 5, and dots represent empirical values of 〈v̂t,v0〉 for the AMP estimator
(in red) and 〈v1,v0〉 for standard PCA (in blue). Bottom: a comparison of theoretical asymptotic
values (left frame) and empirical values (right frame) of 〈v0,v

ML〉 for a range of β and ε.

an be enforced –in their discrete version– through inequality constraints (respectively vi+1−vi ≥ 0
and vi+1 − 2vi + vi−1 ≥ 0), and hence give rise to polyhedral cones. Furthermore, it is possible to
approximate any convex cone Cn with a sequence of increasingly accurate polyhedral cones.

For a polyhedral cone, the maximum likelihood problem (3) reads:

maximize 〈v,Xv〉 (22)
subject to: Av ≥ 0; ‖v‖ = 1.

The modified power iteration (11), can be specialized to this case, via the appropriate projection.
The projection remains computationally feasible provided the matrix A is not too large. Indeed, it
is easy to show using convex duality that PCn(u) is given by:

PCn(u) = arg min
{
‖Ax + u‖2,x ≥ 0

}
.

This reduces the projection onto a general polyhedral cone to a non-negative least squares problem,
for which efficient routines exist. In special cases such as the orthant, the projection is closed form.
In the case of polyhedral cones, it is possible to relax this problem (22) using a natural convex
surrogate. To see this, we introduce the variable V = vvT and write the following equivalent
version of problem 22:

maximize 〈X,V〉
subject to: AVAT ≥ 0; Tr(V) = 1;

V�0; rank(V) = 1.

Here the constraint AVAT ≥ 0 is to be interpreted as entry-wise non-negativity, while we write
V�0 to denote that V is positive semidefinite. We can now relax this problem by dropping the rank
constraint:

maximize 〈X,V〉 (23)

subject to: AVAT ≥ 0; Tr(V) = 1;V�0.

Note that this increases the number of variables from n to n2, as V ∈ Rn×n, which results in a
significant cost increase for standard interior point methods, over the power iteration (11). Further-
more, if the solution V is not rank one, it is not clear how one can use it to form an estimate v̂. On
the other hand, this convex relaxation yields a principled approach to bounding the sub-optimality
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Figure 2: Value of the maximum likelihood problem (3) for Cn = Pn, as approximated by power
iteration. The red line is the value achieved by power iteration, and the blue points the upper bound
obtained by dual witness (25). The gap at small β is due to the suboptimal choice of the dual witness,
since solving exactly Problem (24) yields the dual witness with value given by the teal circles. As
can be seen, they match exactly the value obtained by power iteration, showing zero duality gap!
The simulation is for n = 50 and 40 Monte Carlo iterations.

of the estimate provided by the power iteration. It is straightforward to derive the dual program of
(23):

minimize λ1(X + ATYA) (24)
subject to: Y ≥ 0,

where Y is the decision variable, the constraint is interpreted as entry-wise nonnegativity as above,
and λ1( · ) denotes the largest eigenvalue. If one can construct a dual witness Y ≥ 0 such that
λ1(X + ATYA) = 〈v̂,Xv̂〉 for any estimator v̂, then this estimator is the maximum likelihood
estimator. In particular, using the power iteration estimator v̂ = v̂t , such a dual witness can provide
a certificate of convergence of the power iteration (11).

We next describe a construction of dual witness that we found empirically successful at large enough
signal-to-noise ratio. Assume that a heuristic (for instance, the modified power iteration (11)) has
produced an estimate v̂ that is a local maximizer of the problem (3). It is is proved in the Sup-
plementary Material, that such a local maximizer must satisfy the modified eigenvalue equation:
Xv̂ = λv̂ −ATµ, with µ ≥ 0 and 〈v̂,ATµ〉 = 0.

We then suggest the witness

Y(v̂) =
1

‖Av̂‖2
(
µv̂TAT + Av̂µT

)
. (25)

Note that Y(v̂) is non-negative by construction and hence dual feasible. A direct calculation shows
that v̂ is an eigenvector of the matrix X + ATYA with eigenvalue λ = 〈v̂,Xv̂〉. We then obtain
the following sufficient condition for optimality.
Proposition 6.1. Let v̂ be a local maximizer of the problem (3). If v̂ is the principal eigenvector of
X + ATY(v̂)A, then v̂ is a global maximizer.

In Figure 2 we plot the average value of the objective function over 50 instances of the problem for
Cn = Pn, n = 100. We solved the maximum likelihood problem using the power iteration heuristics
(11), and used the above construction to compute an upper bound via duality. It is possible to show
that this upper bound cannot be tight unless β > 1, but appears to be quite accurate. We also solve
the problem (24) directly for case of nonnegative PCA, and (rather surprisingly) the dual is tight for
every β > 0.
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