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Abstract

We consider the Principal Component Analysis problem for large tensors of ar-
bitrary order k under a single-spike (or rank-one plus noise) model. On the one
hand, we use information theory, and recent results in probability theory, to es-
tablish necessary and sufficient conditions under which the principal component
can be estimated using unbounded computational resources. It turns out that this
is possible as soon as the signal-to-noise ratio β becomes larger than C

√
k log k

(and in particular β can remain bounded as the problem dimensions increase).
On the other hand, we analyze several polynomial-time estimation algorithms,
based on tensor unfolding, power iteration and message passing ideas from graph-
ical models. We show that, unless the signal-to-noise ratio diverges in the system
dimensions, none of these approaches succeeds. This is possibly related to a fun-
damental limitation of computationally tractable estimators for this problem.
We discuss various initializations for tensor power iteration, and show that a
tractable initialization based on the spectrum of the unfolded tensor outperforms
significantly baseline methods, statistically and computationally. Finally, we con-
sider the case in which additional side information is available about the unknown
signal. We characterize the amount of side information that allows the iterative
algorithms to converge to a good estimate.

1 Introduction

Given a data matrix X, Principal Component Analysis (PCA) can be regarded as a ‘denoising’ tech-
nique that replaces X by its closest rank-one approximation. This optimization problem can be
solved efficiently, and its statistical properties are well-understood. The generalization of PCA to
tensors is motivated by problems in which it is important to exploit higher order moments, or data
elements are naturally given more than two indices. Examples include topic modeling, video pro-
cessing, collaborative filtering in presence of temporal/context information, community detection
[1], spectral hypergraph theory. Further, finding a rank-one approximation to a tensor is a bottle-
neck for tensor-valued optimization algorithms using conditional gradient type of schemes. While
tensor factorization is NP-hard [11], this does not necessarily imply intractability for natural statis-
tical models. Over the last ten years, it was repeatedly observed that either convex optimization or
greedy methods yield optimal solutions to statistical problems that are intractable from a worst case
perspective (well-known examples include sparse regression and low-rank matrix completion).

In order to investigate the fundamental tradeoffs between computational resources and statistical
power in tensor PCA, we consider the simplest possible model where this arises, whereby an un-
known unit vector v0 is to be inferred from noisy multilinear measurements. Namely, for each
unordered k-uple {i1, i2, . . . , ik} ⊆ [n], we measure

Xi1,i2,...,ik = β(v0)i1(v0)i2 · · · (v0)ik + Zi1,i2,...,ik , (1)
with Z Gaussian noise (see below for a precise definition) and wish to reconstruct v0. In tensor
notation, the observation model reads (see the end of this section for notations)

X = β v0
⊗k + Z . Spiked Tensor Model
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This is analogous to the so called ‘spiked covariance model’ used to study matrix PCA in high
dimensions [12].

It is immediate to see that maximum-likelihood estimator vML is given by a solution of the following
problem

maximize 〈X,v⊗k〉, Tensor PCA
subject to ‖v‖2 = 1 .

Solving it exactly is –in general– NP hard [11].

We next summarize our results. Note that, given a completely observed rank-one symmetric tensor
v0
⊗k (i.e. for β = ∞), it is easy to recover the vector v0 ∈ Rn. It is therefore natural to ask the

question for which signal-to-noise ratios can one still reliably estimate v0? The answer appears to
depend dramatically on the computational resources1.
Ideal estimation. Assuming unbounded computational resources, we can solve the Tensor PCA
optimization problem and hence implement the maximum likelihood estimator v̂ML. We use recent
results in probability theory to show that this approach is successful for β ≥ µk =

√
k log k(1 +

ok(1)). In particular, above this threshold2 we have, with high probability,

‖v̂ML − v0‖22 .
2.01µk
β

. (2)

We use an information-theoretic argument to show that no approach can do significantly better,
namely no procedure can estimate v0 accurately for β ≤ c

√
k (for c a universal constant).

Tractable estimators: Unfolding. We consider two approaches to estimate v0 that can be
implemented in polynomial time. The first approach is based on tensor unfolding: starting from
the tensor X ∈

⊗k Rn, we produce a matrix Mat(X) of dimensions nq × nk−q . We then perform
matrix PCA on Mat(X). We show that this method is successful for β & n(dk/2e−1)/2. A heuristics
argument suggests that the necessary and sufficient condition for tensor unfolding to succeed is
indeed β & n(k−2)/4 (which is below the rigorous bound by a factor n1/4 for k odd). We can
indeed confirm this conjecture for k even and under an asymmetric noise model.

Tractable estimators: Warm-start power iteration and Approximate Message Passing. We
prove that, initializing power iteration uniformly at random, it converges very rapidly to an accurate
estimate provided β & n(k−1)/2. A heuristic argument suggests that the correct necessary and
sufficient threshold is given by β & n(k−2)/2. Motivated by the last observation, we consider a
‘warm-start’ power iteration algorithm, in which we initialize power iteration with the output of
tensor unfolding. This approach appears to have the same threshold signal-to-noise ratio as simple
unfolding, but significantly better accuracy above that threshold. We extend power iteration to
an approximate message passing (AMP) algorithm [7, 4]. We show that the behavior of AMP is
qualitatively similar to the one of naive power iteration. In particular, AMP fails for any β bounded
as n→∞.

Side information. Given the above computational complexity barrier, it is natural to study weaker
version of the original problem. Here we assume that extra information about v0 is available. This
can be provided by additional measurements or by approximately solving a related problem, for
instance a matrix PCA problem as in [1]. We model this additional information as y = γv0 + g
(with g an independent Gaussian noise vector), and incorporate it in the initial condition of AMP
algorithm. We characterize exactly the threshold value γ∗ = γ∗(β) above which AMP converges to
an accurate estimator. The thresholds for various classes of algorithms are summarized below.

1Here we write F (n) . G(n) if there exists a constant c independent of n (but possibly dependent on n,
such that F (n) ≤ cG(n)

2Note that, for k even, v0 can only be recovered modulo sign. For the sake of simplicity, we assume here
that this ambiguity is correctly resolved.
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Method Required β (rigorous) Required β (heuristic)
Tensor Unfolding O(n(dk/2e−1)/2) n(k−2)/4

Tensor Power Iteration (with random init.) O(n(k−1)/2) n(k−2)/2

Maximum Likelihood 1 –
Information-theory lower bound 1 –

We will conclude the paper with some insights that we believe provide useful guidance for tensor
factorization heuristics. We illustrate these insights through simulations.

1.1 Notations

Given X ∈
⊗k Rn a real k-th order tensor, we let {Xi1,...,ik}i1,...,ik denote its coordinates and

define a map X : Rn → Rn, by letting, for v ∈ Rn,

X{v}i =
∑

j1,··· ,jk−1∈[n]

Xi,j1,··· ,jk−1
vj1 · · ·vjk−1

. (3)

The outer product of two tensors is X⊗Y, and, for v ∈ Rn, we define v⊗k = v⊗· · ·⊗v ∈
⊗k Rn

as the k-th outer power of v. We define the inner product of two tensors X,Y ∈
⊗k Rn as

〈X,Y〉 =
∑

i1,··· ,ik∈[n]

Xi1,··· ,ikYi1,··· ,ik . (4)

We define the Frobenius (Euclidean) norm of a tensor X, by ‖X‖F =
√
〈X,X〉, and its operator

norm by

‖X‖op ≡ max{〈X,u1 ⊗ · · · ⊗ uk〉 : ∀i ∈ [k] , ‖ui‖2 ≤ 1}. (5)

For the special case k = 2, it reduces to the ordinary `2 matrix operator norm. For π ∈ Sk, we
will denote by Xπ the tensor with permuted indices Xπ

i1,··· ,ik = Xπ(i1),··· ,π(ik). We call the tensor
X symmetric if, for any permutation π ∈ Sk, Xπ = X. It is proved [23] that, for symmetric
tensors, the value of problem Tensor PCA coincides with ‖X‖op up to a sign. More precisely, for
symmetric tensors we have the equivalent representation max{|〈X,u⊗k〉| : ‖u‖2 ≤ 1}. We denote
by G ∈

⊗k Rn a tensor with independent and identically distributed entries Gi1,··· ,ik ∼ N(0, 1)
(note that this tensor is not symmetric). We define the symmetric standard normal noise tensor
Z ∈

⊗k Rn by

Z =
1

k!

√
k

n

∑
π∈Sk

Gπ . (6)

We use the loss function

Loss(v̂,v0) ≡ min
(
‖v̂ − v0‖22, ‖v̂ + v0‖22

)
= 2− 2|〈v̂,v0〉| . (7)

2 Ideal estimation

In this section we consider the problem of estimating v0 under the observation model Spiked Tensor
Model, when no constraint is imposed on the complexity of the estimator. Our first result is a lower
bound on the loss of any estimator.
Theorem 1. For any estimator v̂ = v̂(X) of v0 from data X, such that ‖v̂(X)‖2 = 1 (i.e. v̂ :
⊗kRn → Sn−1), we have, for all n ≥ 4,

β ≤
√

k

10
⇒ E Loss(v̂,v0) ≥

1

32
. (8)

In order to establish a matching upper bound on the loss, we consider the maximum likelihood
estimator v̂ML, obtained by solving the Tensor PCA problem. As in the case of matrix denoising, we
expect the properties of this estimator to depend on signal to noise ratio β, and on the ‘norm’ of the
noise ‖Z‖op (i.e. on the value of the optimization problem Tensor PCA in the case β = 0). For the
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matrix case k = 2, this coincides with the largest eigenvalue of Z. Classical random matrix theory
shows that –in this case– ‖Z‖op concentrates tightly around 2 [10, 6, 3].

It turns out that tight results for k ≥ 3 follow immediately from a technically sophisticated analysis
of the stationary points of random Morse functions by Auffinger, Ben Arous and Cerny [2].

Lemma 2.1. There exists a sequence of real numbers {µk}k≥2, such that

lim sup
n→∞

‖Z‖op ≤ µk (k odd), (9)

lim
n→∞

‖Z‖op = µk (k even). (10)

Further ‖Z‖op concentrates tightly around its expectation. Namely, for any n, k

P
(∣∣‖Z‖op − E‖Z‖op

∣∣ ≥ s) ≤ 2 e−ns
2/(2k) . (11)

Finally µk =
√
k log k(1 + ok(1)) for large k.

For instance, a large order-3 Gaussian tensor should have ‖Z‖op ≈ 2.87, while a large order 10
tensor has ‖Z‖op ≈ 6.75. As a simple consequence of Lemma 2.1, we establish an upper bound on
the error incurred by the maximum likelihood estimator.

Theorem 2. Let µk be the sequence of real numbers introduced above. Letting v̂ML denote the
maximum likelihood estimator (i.e. the solution of Tensor PCA), we have for n large enough, and
all s > 0

β ≥ µk ⇒ Loss(v̂ML,v0) ≤
2

β
(µk + s) , (12)

with probability at least 1− 2e−ns
2/(16k).

The following upper bound on the value of the Tensor PCA problem is proved using Sudakov-
Fernique inequality. While it is looser than Lemma 2.1 (corresponding to the case β = 0), we
expect it to become sharp for β ≥ βk a suitably large constant.

Lemma 2.2. Under Spiked Tensor Model model, we have

lim sup
n→∞

E‖Z‖op ≤ max
τ≥0

{
β

(
τ√

1 + τ2

)k
+

k√
1 + τ2

}
. (13)

Further, for any s ≥ 0,

P
(∣∣‖Z‖op − E‖Z‖op

∣∣ ≥ s) ≤ 2 e−ns
2/(2k) . (14)

3 Tensor Unfolding

A simple and popular heuristics to obtain tractable estimators of v0 consists in constructing a suit-
able matrix with the entries of X, and performing PCA on this matrix.

3.1 Symmetric noise

For an integer k ≥ q ≥ k/2, we introduce the unfolding (also referred to as matricization or
reshape) operator Matq : ⊗kRn → Rnq×nk−q

as follows. For any indices i1, i2, · · · , ik ∈ [n],
we let a = 1 +

∑q
j=1(ij − 1)nj−1 and b = 1 +

∑k
j=q+1(ij − 1)nj−q−1, and define

[Matq(X)]a,b = Xi1,i2,··· ,ik . (15)

Standard convex relaxations of low-rank tensor estimation problem compute factorizations of
Matq(X)[22, 15, 17, 19]. Not all unfoldings (choices of q) are equivalent. It is natural to expect that
this approach will be successful only if the signal-to-noise ratio exceeds the operator norm of the
unfolded noise ‖Matq(Z)‖op. The next lemma suggests that the latter is minimal when Matq(Z) is
‘as square as possible’ . A similar phenomenon was observed in a different context in [17].
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Lemma 3.1. For any integer k/2 ≤ q ≤ k we have, for some universal constant Ck,

1√
(k − 1)!

n(q−1)/2
(
1− Ck

nmax(q,k−q))

)
≤ E‖Matq(Z)‖op ≤

√
k
(
n(q−1)/2 + n(k−q−1)/2

)
.

(16)

For all n large enough, both bounds are minimized for q = dk/2e. Further

P
{∣∣‖Matq(Z)‖op − E‖Matq(Z)‖op

∣∣ ≥ t} ≤ 2 e−nt
2/(2k) . (17)

The last lemma suggests the choice q = dk/2e, which we shall adopt in the following, unless stated
otherwise. We will drop the subscript from Mat.

Let us recall the following standard result derived directly from Wedin perturbation Theorem [24],
and stated in the context of the spiked model.

Theorem 3 (Wedin perturbation). Let M = βu0w0
T + Ξ ∈ Rm×p be a matrix with ‖u0‖2 =

‖w0‖2 = 1. Let ŵ denote the right singular vector of M. If β > 2‖Ξ‖op, then

Loss(ŵ,w0) ≤
8‖Ξ‖2op
β2

. (18)

Theorem 4. Letting w = w(X) denote the top right singular vector of Mat(X), we have the
following, for some universal constant C = Ck > 0, and b ≡ (1/2)(dk/2e − 1).

If β ≥ 5 k1/2 nb then, with probability at least 1− n−2, we have

Loss
(
w, vec

(
v0
⊗bk/2c)) ≤ C kn2b

β2
. (19)

3.2 Asymmetric noise and recursive unfolding

A technical complication in analyzing the random matrix Matq(X) lies in the fact that its entries are
not independent, because the noise tensor Z is assumed to be symmetric. In the next theorem we
consider the case of non-symmetric noise and even k. This allows us to leverage upon known results
in random matrix theory [18, 8, 5] to obtain: (i) Asymptotically sharp estimates on the critical
signal-to-noise ratio; (ii) A lower bound on the loss below the critical signal-to-noise ratio. Namely,
we consider observations

X̃ = βv0
⊗k +

1√
n

G . (20)

where G ∈ ⊗kRn is a standard Gaussian tensor (i.e. a tensor with i.i.d. standard normal entries).

Let w = w(X̃) ∈ Rnk/2

denote the top right singular vector of Mat(X). For k ≥ 4 even, and define
b ≡ (k − 2)/4, as above. By [18, Theorem 4], or [5, Theorem 2.3], we have the following almost
sure limits

β ≤ (1− ε)nb ⇒ lim
n→∞

〈w(X̃), vec(v0
⊗(k/2))〉 = 0 , (21)

β ≥ (1 + ε)nb ⇒ lim inf
n→∞

∣∣〈w(X̃), vec(v0
⊗(k/2))〉

∣∣ ≥√ ε

1 + ε
. (22)

In other words w(X̃) is a good estimate of v0
⊗(k/2) if and only if β is larger than nb.

We can use w(X̃) ∈ R2b+1 to estimate v0 as follows. Construct the unfolding Mat1(w) ∈ Rn×n2b

(slight abuse of notation) of w by letting, for i ∈ [n], and j ∈ [n2b],

Mat1(w)i,j = wi+(j−1)n , (23)

we then let v̂ to be the left principal vector of Mat1(X). We refer to this algorithm as to recursive
unfolding.
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Theorem 5. Let X̃ be distributed according to the non-symmetric model (20) with k ≥ 4 even,
define b ≡ (k − 2)/4. and let v̂ be the estimate obtained by two-steps recursive matricization.

If β ≥ (1 + ε)nb then, almost surely
lim
n→∞

Loss(v̂,v0) = 0 . (24)

We conjecture that the weaker condition β & n(k−2)/4 is indeed sufficient also for our original
symmetric noise model, both for k even and for k odd.

4 Power Iteration

Iterating over (multi-) linear maps induced by a (tensor) matrix is a standard method for finding
leading eigenpairs, see [14] and references therein for tensor-related results. In this section we will
consider a simple power iteration, and then its possible uses in conjunction with tensor unfolding.
Finally, we will compare our analysis with results available in the literature.

4.1 Naive power iteration

The simplest iterative approach is defined by the following recursion

v0 =
y

‖y‖2
, and vt+1 =

X{vt}
‖X{vt}‖2

. Power Iteration

The following result establishes convergence criteria for this iteration, first for generic noise Z and
then for standard normal noise (using Lemma 2.1).
Theorem 6. Assume

β ≥ 2 e(k − 1) ‖Z‖op , (25)

〈y,v0〉
‖y‖2

≥
[
(k − 1)‖Z‖op

β

]1/(k−1)
. (26)

Then for all t ≥ t0(k), the power iteration estimator satisfies Loss(vt,v0) ≤ 2e‖Z‖op/β. If Z is a
standard normal noise tensor, then conditions (25), (26) are satisfied with high probability provided

β ≥ 2ek µk = 6
√
k3 log k

(
1 + ok(1)

)
, (27)

〈y,v0〉
‖y‖2

≥
[
kµk
β

]1/(k−1)
= β−1/(k−1)

(
1 + ok(1)

)
. (28)

In Section 6 we discuss two aspects of this result: (i) The requirement of a positive correlation
between initialization and ground truth ; (ii) Possible scenarios under which the assumptions of
Theorem 6 are satisfied.

5 Asymptotics via Approximate Message Passing

Approximate message passing (AMP) algorithms [7, 4] proved successful in several high-
dimensional estimation problems including compressed sensing, low rank matrix reconstruction,
and phase retrieval [9, 13, 20, 21]. An appealing feature of this class of algorithms is that their high-
dimensional limit can be characterized exactly through a technique known as ‘state evolution.’ Here
we develop an AMP algorithm for tensor data, and its state evolution analysis focusing on the fixed
β, n→∞ limit. Proofs follows the approach of [4] and will be presented in a journal publication.

In a nutshell, our AMP for Tensor PCA can be viewed as a sophisticated version of the power
iteration method of the last section. With the notation f(x) = x/‖x‖2, we define the AMP iteration
over vectors vt ∈ Rn by v0 = y, f(v−1) = 0, and{

vt+1 = X{f(vt)} − bt f(v
t−1) ,

bt = (k − 1)
(
〈f(vt), f(vt−1)〉

)k−2
.

AMP

Our main conclusion is that the behavior of AMP is qualitatively similar to the one of power itera-
tion. However, we can establish stronger results in two respects:
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1. We can prove that, unless side information is provided about the signal v0, the AMP esti-
mates remain essentially orthogonal to v0, for any fixed number of iterations. This corre-
sponds to a converse to Theorem 6.

2. Since state evolution is asymptotically exact, we can prove sharp phase transition results
with explicit characterization of their locations.

We assume that the additional information takes the form of a noisy observation y = γ v0 + z,
where z ∼ N(0, In/n). Our next results summarize the state evolution analysis.
Proposition 5.1. Let k ≥ 2 be a fixed integer. Let {v0(n)}n≥1 be a sequence of unit norm vectors
v0(n) ∈ Sn−1. Let also {X(n)}n≥1 denote a sequence of tensors X(n) ∈ ⊗kRn generated follow-
ing Spiked Tensor Model. Finally, let vt denote the t-th iterate produced by AMP, and consider its
orthogonal decomposition

vt = vt‖ + vt⊥ , (29)

where vt‖ is proportional to v0, and vt⊥ is perpendicular. Then vt⊥ is uniformly random, conditional
on its norm. Further, almost surely

lim
n→∞

〈vt,v0〉 = lim
n→∞

〈vt‖,v0〉 = τt , (30)

lim
n→∞

‖vt⊥‖2 = 1 , (31)

where τt is given recursively by letting τ0 = γ and, for t ≥ 0 (we refer to this as to state evolution):

τ2t+1 = β2

(
τ2t

1 + τ2t

)k−1
. (32)

The following result characterizes the minimum required additional information γ to allow AMP
to escape from those undesired local optima. We will say that {vt}t converges almost surely to a
desired local optimum if,

lim
t→∞

lim
n→∞

Loss(vt/‖vt‖2,v0) ≤
4

β2
.

Theorem 7. Consider the Tensor PCA problem with k ≥ 3 and

β > ωk ≡
√
(k − 1)k−1/(k − 2)k−2 ∼

√
ek .

Then AMP converges almost surely to a desired local optimum if and only if γ >
√
1/εk(β)− 1

where εk(β) is the largest solution of (1− ε)(k−2)ε = β−2,

In the special case k = 3, and β > 2, assuming γ > β(1/2 −
√
1/4− 1/β2), AMP tends to a

desired local optimum. Numerically β > 2.69 is enough for AMP to achieve 〈v0, v̂〉 ≥ 0.9 if
γ > 0.45.

As a final remark, we note that the methods of [16] can be used to show that, under the assumptions
of Theorem 7, for β > βk a sufficiently large constant, AMP asymptotically solves the optimization
problem Tensor PCA. Formally, we have, almost surely,

lim
t→∞

lim
n→∞

∣∣∣〈X, (vt)⊗k〉 − ‖X‖op∣∣∣ = 0. (33)

6 Numerical experiments

6.1 Comparison of different algorithms

Our empirical results are reported in the appendix. The main findings are consistent with the theory
developed above:

• Tensor power iteration (with random initialization) performs poorly with respect to other
approaches that use some form of tensor unfolding. The gap widens as the dimension n
increases.
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Figure 1: Simultaneous PCA at β = 3. Absolute correlation of the estimated principal component
with the truth |〈v̂,v0〉|, simultaneous PCA (black) compared with matrix (green) and tensor PCA
(blue).

• All algorithms based on initial unfolding (comprising PSD-constrained PCA and recursive
unfolding) have essentially the same threshold. Above that threshold, those that process the
singular vector (either by recursive unfolding or by tensor power iteration) have superior
performances over simpler one-step algorithms.

Our heuristic arguments suggest that tensor power iteration with random initialization will work for
β & n1/2, while unfolding only requires β & n1/4 (our theorems guarantee this for, respectively,
β & n and β & n1/2). We plot the average correlation |〈v̂,v0〉| versus (respectively) β/n1/2 and
β/n1/4. The curve superposition confirms that our prediction captures the correct behavior already
for n of the order of 50.

6.2 The value of side information

Our next experiment concerns a simultaneous matrix and tensor PCA task: we are given a tensor
X ∈ ⊗3Rn of Spiked Tensor Model with k = 3 and the signal to noise ratio β = 3 is fixed. In
addition, we observe M = λv0v0

T + N where N ∈ Rn×n is a symmetric noise matrix with upper
diagonal elements i < j iid Ni,j ∼ N(0, 1/n) and the value of λ ∈ [0, 2] varies. This experiment
mimics a rank-1 version of topic modeling method presented in [1] where M is a matrix representing
pairwise co-occurences and X triples.

The analysis in previous sections suggests to use the leading eigenvector of M as the initial point
of AMP algorithm for tensor PCA on X. We performed the experiments on 100 randomly gener-
ated instances with n = 50, 200, 500 and report in Figure 1 the mean values of |〈v0, v̂(X)〉| with
confidence intervals.

Random matrix theory predicts limn→∞〈v̂1(M),v0〉 =
√
1− λ−2 [8]. Thus we can set γ =√

1− λ−2 and apply the theory of the previous section. In particular, Proposition 5.1 implies

lim
n→∞

〈v̂(X),v0〉 = β
(
1/2 +

√
1/4− 1/β2

)
if γ > β

(
1/2−

√
1/4− 1/β2

)
and limn→∞〈v̂(X),v0〉 = 0 otherwise Simultaneous PCA appears vastly superior to simple PCA.
Our theory captures this difference quantitatively already for n = 500.
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