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Abstract

Topic models, such as Latent Dirichlet Allocation (LDA), posit that documents
are drawn from admixtures of distributions over words, known as topics. The
inference problem of recovering topics from such a collection of documents drawn
from admixtures, is NP-hard. Making a strong assumption called separability, [4]
gave the first provable algorithm for inference. For the widely used LDA model,
[6] gave a provable algorithm using clever tensor-methods. But [4, 6] do not learn
topic vectors with bounded l1 error (a natural measure for probability vectors).
Our aim is to develop a model which makes intuitive and empirically supported
assumptions and to design an algorithm with natural, simple components such as
SVD, which provably solves the inference problem for the model with bounded l1
error. A topic in LDA and other models is essentially characterized by a group of
co-occurring words. Motivated by this, we introduce topic specific Catchwords,
a group of words which occur with strictly greater frequency in a topic than any
other topic individually and are required to have high frequency together rather
than individually. A major contribution of the paper is to show that under this
more realistic assumption, which is empirically verified on real corpora, a singu-
lar value decomposition (SVD) based algorithm with a crucial pre-processing step
of thresholding, can provably recover the topics from a collection of documents
drawn from Dominant admixtures. Dominant admixtures are convex combination
of distributions in which one distribution has a significantly higher contribution
than the others. Apart from the simplicity of the algorithm, the sample complexity
has near optimal dependence on w0, the lowest probability that a topic is domi-
nant, and is better than [4]. Empirical evidence shows that on several real world
corpora, both Catchwords and Dominant admixture assumptions hold and the pro-
posed algorithm substantially outperforms the state of the art [5].

1 Introduction

Topic models [1] assume that each document in a text corpus is generated from an ad-mixture of
topics, where, each topic is a distribution over words in a Vocabulary. An admixture is a convex
combination of distributions. Words in the document are then picked in i.i.d. trials, each trial has a
multinomial distribution over words given by the weighted combination of topic distributions. The
problem of inference, recovering the topic distributions from such a collection of documents, is
provably NP-hard. Existing literature pursues techniques such as variational methods [2] or MCMC
procedures [3] for approximating the maximum likelihood estimates.

∗http://mllab.csa.iisc.ernet.in/tsvd
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Given the intractability of the problem one needs further assumptions on topics to derive polynomial
time algorithms which can provably recover topics. A possible (strong) assumption is that each
document has only one topic but the collection can have many topics. A document with only one
topic is sometimes referred as a pure topic document. [7] proved that a natural algorithm, based
on SVD, recovers topics when each document is pure and in addition, for each topic, there is a set
of words, called primary words, whose total frequency in that topic is close to 1. More recently,
[6] show using tensor methods that if the topic weights have Dirichlet distribution, we can learn
the topic matrix. Note that while this allows non-pure documents, the Dirichlet distribution gives
essentially uncorrelated topic weights.

In an interesting recent development [4, 5] gave the first provable algorithm which can recover topics
from a corpus of documents drawn from admixtures, assuming separability. Topics are said to be
separable if in every topic there exists at least one Anchor word. A word in a topic is said to be an
Anchor word for that topic if it has a high probability in that topic and zero probability in remaining
topics. The requirement of high probability in a topic for a single word is unrealistic.

Our Contributions: Topic distributions, such as those learnt in LDA, try to model the co-
occurrence of a group of words which describes a theme. Keeping this in mind we introduce the
notion of Catchwords. A group of words are called Catchwords of a topic, if each word occurs
strictly more frequently in the topic than other topics and together they have high frequency. This
is a much weaker assumption than separability. Furthermore we observe, empirically, that posterior
topic weights assigned by LDA to a document often have the property that one of the weights is
significantly higher than the rest. Motivated by this observation, which has not been exploited by
topic modeling literature, we suggest a new assumption. It is natural to assume that in a text corpus,
a document, even if it has multiple themes, will have an overarching dominant theme. In this paper
we focus on document collections drawn from dominant admixtures. A document collection is said
to be drawn from a dominant admixture if for every document, there is one topic whose weight is
significantly higher than the other topics and in addition, for every topic, there is a small fraction of
documents which are nearly purely on that topic. The main contribution of the paper is to show that
under these assumptions, our algorithm, which we call TSVD, indeed provably finds a good approx-
imation in total l1 error to the topic matrix. We prove a bound on the error of our approximation
which does not grow with dictionary size d, unlike [5] where the error grows linearly with d.

Empirical evidence shows that on semi-synthetic corpora constructed from several real world
datasets, as suggested by [5], TSVD substantially outperforms the state of the art [5]. In partic-
ular it is seen that compared to [5] TSVD gives 27% lower error in terms of l1 recovery on 90% of
the topics.

Problem Definition: d, k, s will denote respectively, the number of words in the dictionary, num-
ber of topics and number of documents. d, s are large, whereas, k is to be thought of as much
smaller. Let Sk = {x = (x1, x2, . . . , xk) : xl ≥ 0;

∑
l xl = 1}. For each topic, there is a fixed

vector in Sk giving the probability of each word in that topic. Let M be the d× k matrix with these
vectors as its columns.

Documents are picked in i.i.d. trials. To pick document j, one first picks a k-vector
W1j ,W2j , . . . ,Wkj of topic weights according to a fixed distribution on Sk. Let P·,j = MW·,j
be the weighted combination of the topic vectors. Then the m words of the document are picked in
i.i.d. trials; each trial picks a word according to the multinomial distribution with P·,j as the proba-
bilities. All that is given as data is the frequency of words in each document, namely, we are given
the d × s matrix A, where Aij = Number of occurrences of word i in Document j

m . Note that E(A|W) = P,
where, the expectation is taken entry-wise.

In this paper we consider the problem of finding M given A.

2 Previous Results

In this section we review literature related to designing provable algorithms for topic models. For an
overview of topic models we refer the reader to the excellent survey of [1]. Provable algorithms for
recovering topic models was started by [7]. Latent Semantic Indexing (LSI) [8] remains a successful
method for retrieving similar documents by using SVD. [7] showed that one can recover M from a
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collection of documents, with pure topics, by using SVD based procedure under the additional Pri-
mary Words assumption. [6] showed that in the admixture case, if one assumes Dirichlet distribution
for the topic weights, then, indeed, using tensor methods, one can learn M to l2 error provided some
added assumptions on numerical parameters like condition number are satisfied.

The first provably polynomial time algorithm for admixture corpus was given in [4, 5]. For a topic
l, a word i is an anchor word if: Mi,l ≥ p0 and Mi,l′ = 0 ∀l′ 6= l.

Theorem 2.1 [4] If every topic has an anchor word, there is a polynomial time algorithm that
returns an M̂ such that with high probability,

k∑
l=1

d∑
i=1

|M̂il −Mil| ≤ dε provided s ≥ Max
{
O

(
k6 log d

a4ε2p60γ
2m

)
, O

(
k4

γ2a2

)}
,

where, γ is the condition number of E(WWT ), a is the minimum expected weight of a topic and m
is the number of words in each document.

Note that the error grows linearly in the dictionary size d, which is often large. Note also the
dependence of s on parameters p0, which is, 1/p60 and on a, which is 1/a4. If, say, the word “run” is
an anchor word for the topic “baseball” and p0 = 0.1, then the requirement is that every 10 th word
in a document on this topic is “run”. This seems too strong to be realistic. It would be more realistic
to ask that a set of words like - “run”, “hit”, “score”, etc. together have frequency at least 0.1 which
is what our catchwords assumption does.

3 Learning Topics from Dominant Admixtures

Informally, a document is said to be drawn from a Dominant Admixture if the document has one
dominant topic. Besides its simplicity, we show empirical evidence from real corpora to demonstrate
that topic dominance is a reasonable assumption. The Dominant Topic assumption is weaker than
the Pure Topic assumption. More importantly, SVD based procedures proposed by [7] will not
apply. Inspired by the Primary Words assumption we introduce the assumption that each topic has a
set of Catchwords which individually occur more frequently in that topic than others. This is again
a much weaker assumption than both Primary Words and Anchor Words assumptions and can be
verified experimentally. In this section we establish that by applying SVD on a matrix, obtained by
thresholding the word-document matrix, and subsequent k-means clustering can learn topics having
Catchwords from a Dominant Admixture corpus.

3.1 Assumptions: Catchwords and Dominant admixtures

Let α, β, ρ, δ, ε0 be non-negative reals satisfying: β + ρ ≤ (1− δ)α, α+ 2δ ≤ 0.5, δ ≤ 0.08

Dominant topic Assumption (a) For j = 1, 2, . . . , s, document j has a dominant topic l(j) such
that Wl(j),j ≥ α and Wl′j ≤ β, ∀l′ 6= l(j).

(b) For each topic l, there are at least ε0w0s documents in each of which topic l has weight at least
1− δ.

Catchwords Assumption: There are k disjoint sets of words - S1, S2, . . . , Sk such that with ε
defined in (5), ∀i ∈ Sl, ∀l′ 6= l, Mil′ ≤ ρMil,

∑
i∈Sl

Mil ≥ p0,

∀i ∈ Sl, mδ2αMil ≥ 8 ln

(
20

εw0

)
. (1)

Part (b) of the Dominant Topic Assumption is in a sense necessary for “identifiability” - namely for
the model to have a set of k document vectors so that every document vector is in the convex hull of
these vectors. The Catchwords assumption is natural to describe a theme as it tries to model a unique
group of words which is likely to co-occur when a theme is expressed. This assumption is close to
topics discovered by LDA like models, which try to model co-occurence of words. If α, δ ∈ Ω(1),
then, the assumption (1) says Mil ∈ Ω∗(1/m). In fact if Mil ∈ o(1/m), we do not expect to see
word i (in topic l), so it cannot be called a catchword at all.
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A slightly different (but equivalent) description of the model will be useful to keep in mind. What
is fixed (not stochastic) are the matrices M and the distribution of the weight matrix W. To pick
document j, we can first pick the dominant topic l in document j and condition the distribution of
W·,j on this being the dominant topic. One could instead also think of W·,j being picked from a
mixture of k distributions. Then, we let Pij =

∑k
l=1MilWlj and pick them words of the document

in i.i.d multinomial trials as before. We will assume that

Tl = {j : l is the dominant topic in document j} satisfies |Tl| = wls,

where, wl is the probability of topic l being dominant. This is only approximately valid, but the
error is small enough that we can disregard it.

For ζ ∈ {0, 1, 2, . . . ,m}, let pi(ζ, l) be the probability that j ∈ Tl and Aij = ζ/m and qi(ζ, l) the
corresponding “empirical probability”:

pi(ζ, l) =

∫
W·,j

(
m

ζ

)
P ζij(1− Pij)

m−ζProb(W·,j | j ∈ Tl) Prob(j ∈ Tl), where, P·,j = MW·,j .

(2)

qi(ζ, l) =
1

s
|{j ∈ Tl : Aij = ζ/m}| . (3)

Note that pi(ζ, l) is a real number, whereas, qi(ζ, l) is a random variable with E(qi(ζ, l)) = pi(ζ, l).
We need a technical assumption on the pi(ζ, l) (which is weaker than unimodality).

No-Local-Min Assumption: We assume that pi(ζ, l) does not have a local minimum, in the sense:

pi(ζ, l) > Min(pi(ζ − 1, l), pi(ζ + 1, l)) ∀ ζ ∈ {1, 2, . . . ,m− 1}. (4)

The justification for this assumption is two-fold. First, generally, Zipf’s law kind of behaviour where
the number of words plotted against relative frequencies declines as a power function has often been
observed. Such a plot is monotonically decreasing and indeed satisfies our assumption. But for
Catchwords, we do not expect this behaviour - indeed, we expect the curve to go up initially as the
relative frequency increases, then reach a maximum and then decline. This is a unimodal function
and also satisfies our assumption.

Relative sizes of parameters: Before we close this section, a discussion on the values of the pa-
rameters is in order. Here, s is large. For asymptotic analysis, we can think of it as going to infinity.
1/w0 is also large and can be thought of as going to infinity. [In fact, if 1/w0 ∈ O(1), then, in-
tuitively, we see that there is no use of a corpus of more than constant size - since our model has
i.i.d. documents, intuitively, the number of samples we need should depend mainly on 1/w0]. m is
(much) smaller, but need not be constant.

c refers to a generic constant independent of m, s, 1/w0, ε, δ; its value may be different in different
contexts.

3.2 The TSVD Algorithm

Existing SVD based procedures for clustering on raw word-document matrices fail because the
spread of frequencies of a word within a topic is often more (at least not significantly less) than the
gap between the word’s frequencies in two different topics. Hypothetically, the frequency for the
word run, in the topic Sports, may range upwards of 0.01, say. But in other topics, it may range
from, say, 0 to 0.005. The success of the algorithm will lie on correctly identifying the dominant
topics such as sports by identifying that the word run has occurred with high frequency. In this
example, the gap (0.01-0.005) between Sports and other topics is less than the spread within Sports
(1.0-0.01), so a 2-clustering approach (based on SVD) will split the topic Sports into two. While
this is a toy example, note that if we threshold the frequencies at say 0.01, ideally, sports will be all
above and the rest all below the threshold, making the succeeding job of clustering easy.

There are several issues in extending beyond the toy case. Data is not one-dimensional. We will use
different thresholds for each word; word i will have a threshold ζi/m. Also, we have to compute
ζi/m. Ideally we would not like to split any Tl, namely, we would like that for each l and and each
i, either most j ∈ Tl have Aij > ζi/m or most j ∈ Tl have Aij ≤ ζi/m. We will show that
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our threshold procedure indeed achieves this. One other nuance: to avoid conditioning, we split
the data A into two parts A(1) and A(2), compute the thresholds using A(1) and actually do the
thresholding on A(2). We will assume that the intial A had 2s columns, so each part now has s
columns. Also, T1, T2, . . . , Tk partitions the columns of A(1) as well as those of A(2). The columns
of thresholded matrix B are then clustered, by a technique we call Project and Cluster, namely,
we project the columns of B to its k−dimensional SVD subspace and cluster in the projection.
The projection before clustering has recently been proven [9] (see also [10]) to yield good starting
cluster centers. The clustering so found is not yet satisfactory. We use the classic Lloyd’s k-means
algorithm proposed by [12]. As we will show, the partition produced after clustering, {R1, . . . , Rk}
of A(2) is close to the partition induced by the Dominant Topics, {T1, . . . , Tk}. Catchwords of topic
l are now (approximately) identified as the most frequently occurring words in documents in Rl.
Finally, we identify nearly pure documents in Tl (approximately) as the documents in which the
catchwords occur the most. Then we get an approximation to M·,l by averaging these nearly pure
documents. We now describe the precise algorithm.

3.3 Topic recovery using Thresholded SVD

Threshold SVD based K-means (TSVD)

ε = Min
(

1

900c20

αp0
k3m

,
ε0
√
αp0δ

640m
√
k
,

)
. (5)

1. Randomly partition the columns of A into two matrices A(1) and A(2) of s columns each.

2. Thresholding
(a) Compute Thresholds on A(1) For each i, let ζi be the highest value of ζ ∈
{0, 1, 2, . . . ,m} such that |{j : A

(1)
ij > ζ

m}| ≥
w0

2 s; |{j : A
(1)
ij = ζ

m}| ≤ 3εw0s.

(b) Do the thresholding on A(2): Bij =

{√
ζi if A(2)

ij > ζi/m and ζi ≥ 8 ln(20/εw0)

0 otherwise
.

3. SVD Find the best rank k approximation B(k) to B.

4. Identify Dominant Topics
(a) Project and Cluster Find (approximately) optimal k-means clustering of the columns

of B(k).
(b) Lloyd’s Algorithm Using the clustering found in Step 4(a) as the starting clustering,

apply Lloyd’s k-means algorithm to the columns of B (B, not B(k)).
(c) Let R1, R2, . . . , Rk be the k−partition of [s] corresponding to the clustering after

Lloyd’s. //*Will prove that Rl ≈ Tl*//

5. Identify Catchwords

(a) For each i, l, compute g(i, l) = the (bε0w0s/2c)th highest element of {A(2)
ij : j ∈ Rl}.

(b) Let Jl =
{
i : g(i, l) > Max

(
4

mδ2 ln(20/εw0),Maxl′ 6=lγ g(i, l′)
)}
, where, γ =

1−2δ
(1+δ)(β+ρ) .

6. Find Topic Vectors Find the bε0w0s/2c highest
∑
i∈Jl A

(2)
ij among all j ∈ [s] and return

the average of these A·,j as our approximation M̂·,l to M·,l.

Theorem 3.1 Main Theorem Under the Dominant Topic, Catchwords and No-Local-Min assump-
tions, the algorithm succeeds with high probability in finding an M̂ so that∑

i,l

|Mil − M̂il| ∈ O(kδ), provided 1s ∈ Ω∗
(

1

w0

(
k6m2

α2p20
+

m2k

ε20δ
2αp0

+
d

ε0δ2

))
.

1The superscript ∗ hides a logarithmic factor in dsk/δfail, where, δfail > 0 is the desired upper bound on the
probability of failure.

5



A note on the sample complexity is in order. Notably, the dependence of s on w0 is best possible
(namely s ∈ Ω∗(1/w0)) within logarithmic factors, since, if we had fewer than 1/w0 documents, a
topic which is dominant with probability only w0 may have none of the documents in the collection.
The dependence of s on d needs to be at least d/ε0w0δ

2: to see this, note that we only assume
that there are r = O(ε0w0s) nearly pure documents on each topic. Assuming we can find this
set (the algorithm approximately does), their average has standard deviation of about

√
Mil/

√
r in

coordinate i. If topic vector M·,l has O(d) entries, each of size O(1/d), to get an approximation
of M·,l to l1 error δ, we need the per coordinate error 1/

√
dr to be at most δ/d which implies

s ≥ d/ε0w0δ
2. Note that to get comparable error in [4], we need a quadratic dependence on d.

There is a long sequence of Lemmas to prove the theorem. To improve the readability of the paper
we relegate the proofs to supplementary material [14]. The essence of the proof lies in proving
that the clustering step correctly identifies the partition induced by the dominant topics. For this,
we take advantage of a recent development on the k−means algorithm from [9] [see also [10]],
where, it is shown that under a condition called the Proximity Condition, Lloyd’s k means algorithm
starting with the centers provided by the SVD-based algorithm, correctly identifies almost all the
documents’ dominant topics. We prove that indeed the Proximity Condition holds. This calls for
machinery from Random Matrix theory (in particular bounds on singular values). We prove that the
singular values of the thresholded word-document matrix are nicely bounded. Once the dominant
topic of each document is identified, we are able to find the Catchwords for each topic. Now, we
rely upon part (b.) of the Dominant Topic assumption : that is there is a small fraction of nearly Pure
Topic-documents for each topic. The Catchwords help isolate the nearly pure-topic documents and
hence find the topic vectors. The proofs are complicated by the fact that each step of the algorithm
induces conditioning on the data – for example, after clustering, the document vectors in one cluster
are not independent anymore.

4 Experimental Results

We compare the thresholded SVD based k-means (TSVD2) algorithm 3.3 with the algorithms of
[5], Recover-KL and Recover-L2, using the code made available by the authors3. We observed
the results of Recover-KL to be better than Recover-L2, and report here the results of Recover-KL
(abbreviated R-KL), full set of results can be found in supplementary section 5. We first provide
empirical support for the algorithm assumptions in Section 3.1, namely the dominant topic and the
catchwords assumption. Then we show on 4 different semi-synthetic data that TSVD provides as
good or better recovery of topics than the Recover algorithms. Finally on real-life datasets, we show
that the algorithm performs as well as [5] in terms of perplexity and topic coherence.

Implementation Details: TSVD parameters (w0, ε, ε0, γ) are not known in advance for real cor-
pus. We tested empirically for multiple settings and the following values gave the best performance.
Thresholding parameters used were: w0 = 1

k , ε = 1
6 . For finding the catchwords, γ = 1.1, ε0 = 1

3

in step 5. For finding the topic vectors (step 6), taking the top 50% (ε0w0 = 1
k ) gave empirically

better results. The same values were used on all the datasets tested. The new algorithm is sensitive
to the initialization of the first k-means step in the projected SVD space. To remedy this, we run 10
independent random initializations of the algorithm with K-Means++ [13] and report the best result.

Datasets: We use four real word datasets in the experiments. As pre-processing steps we removed
standard stop-words, selected the vocabulary size by term-frequency and removed documents with
less than 20 words. Datasets used are: (1) NIPS4: Consists of 1,500 NIPS full papers, vocabulary
of 2,000 words and mean document length 1023. (2) NYT4: Consists of a random subset of 30,000
documents from the New York Times dataset, vocabulary of 5,000 words and mean document length
238. (3) Pubmed4: Consists of a random subset of 30,000 documents from the Pubmed abstracts
dataset, vocabulary of 5,030 words and mean document length 58. (4) 20NewsGroup5 (20NG):
Consist of 13,389 documents, vocabulary of 7,118 words and mean document length 160.

2Resources available at: http://mllab.csa.iisc.ernet.in/tsvd
3http://www.cs.nyu.edu/˜halpern/files/anchor-word-recovery.zip
4http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
5http://qwone.com/˜jason/20Newsgroups
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Corpus s k
% s with Dominant % s with Pure % Topics CW Mean

Topics (α = 0.4) Topics (δ = 0.05) with CW Frequency
NIPS 1500 50 56.6% 2.3% 96% 0.05
NYT 30000 50 63.7% 8.5% 98% 0.07

Pubmed 30000 50 62.2% 5.1% 78% 0.05
20NG 13389 20 74.1% 39.5% 85% 0.06

Table 1: Algorithm Assumptions. For dominant topic assumption, fraction of documents with satisfy
the assumption for (α, β) = (0.4, 0.3) are shown. % documents with almost pure topics (δ = 0.05,
i.e. 95% pure) are also shown. Last two columns show results for catchwords (CW) assumption.

4.1 Algorithm Assumptions

To check the dominant topic and catchwords assumptions, we first run 1000 iterations of Gibbs
sampling on the real corpus and learn the posterior document-topic distribution ({W.,j}) for each
document in the corpus (by averaging over 10 saved-states separated by 50 iterations after the 500
burn-in iterations). We will use this posterior document-topic distribution as the document generat-
ing distribution to check the two assumptions.

Dominant topic assumption: Table 1 shows the fraction of the documents in each corpus which
satisfy this assumption with α = 0.4 (minimum probability of dominant topic) and β = 0.3 (maxi-
mum probability of non-dominant topics). The fraction of documents which have almost pure topics
with highest topic weight at least 0.95 (δ = 0.05) is also shown. The results indicate that the domi-
nant topic assumption is well justified (on average 64% documents satisfy the assumption) and there
is also a substantial fraction of documents satisfying almost pure topic assumption.

Catchwords assumption: We first find a k-clustering of the documents {T1, . . . , Tk} by assigning
all documents which have highest posterior probability for the same topic into one cluster. Then
we use step 5 of TSVD (Algorithm 3.3) to find the set of catchwords for each topic-cluster, i.e.
{S1, . . . , Sk}, with the parameters: ε0w0 = 1

3k , γ = 2.3 (taking into account constraints in Section
3.1, α = 0.4, β = 0.3, δ = 0.05, ρ = 0.07). Table 1 reports the fraction of topics with non-empty
set of catchwords and the average per topic frequency of the catchwords6. Results indicate that
most topics on real data contain catchwords (Table 1, second-last column). Moreover, the average
per-topic frequency of the group of catchwords for that topic is also quite high (Table 1, last column).

4.2 Empirical Results

Semi-synthetic Data: Following [5], we generate semi-synthetic corpora from LDA model trained
by MCMC, to ensure that the synthetic corpora retain the characteristics of real data. Gibbs sam-
pling7 is run for 1000 iterations on all the four datasets and the final word-topic distribution is used
to generate varying number of synthetic documents with document-topic distribution drawn from a
symmetric Dirichlet with hyper-parameter 0.01. For NIPS, NYT and Pubmed we use k = 50 topics,
for 20NewsGroup k = 20, and mean document lengths of 1000, 300, 100 and 200 respectively. Note
that the synthetic data is not guaranteed to satisfy dominant topic assumption for every document
(on average about 80% documents satisfy the assumption for value of (α, β) tested in Section 4.1).

Topic Recovery on Semi-synthetic Data: We learn the word-topic distribution (M̂ ) for the semi-
synthetic corpora using TSVD and the Recover algorithms of [5]. Given these learned topic dis-
tributions and the original data-generating distribution (M ), we align the topics of M and M̂ by
bipartite matching and evaluate the l1 distance between each pair of topics. We report the average
of l1 error across topics (called l1 reconstruction-error [5]) in Table 2 for TSVD and Recover-KL
(R-KL). TSVD has smaller error on most datasets than the R-KL algorithm. We observed perfor-
mance of TSVD to be always better than Recover-L2 (see supplement Table 1 for full results). Best
performance is observed on NIPS which has largest mean document length, indicating that larger
m leads to better recovery. Results on 20NG are slightly worse than R-KL for smaller sample size,
but performance improves for larger number of documents. While the error-values in Table 2 are

6
(

1
k

∑k
l=1

1
|Tl|
∑

i∈Sl

∑
j∈Tl

Aij

)
7Dirichlet hyperparameters used: document-topic = 0.03 and topic-word = 1
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Figure 1: Histogram of l1 error across
topics (40,000 documents). TSVD(blue,
solid border) gets smaller error on most
topics than R-KL(green, dashed border).

Corpus Documents R-KL TSVD

NIPS
40,000 0.308 0.115 (62.7%)
50,000 0.308 0.145 (52.9%)
60,000 0.311 0.131 (57.9%)

Pubmed
40,000 0.332 0.288 (13.3%)
50,000 0.326 0.280 (14.1%)
60,000 0.328 0.284 (13.4%)

20NG
40,000 0.120 0.124 (-3.3%)
50,000 0.114 0.113 (0.9%)
60,000 0.110 0.106 (3.6%)

NYT
40,000 0.208 0.195 (6.3%)
50,000 0.206 0.185 (10.2%)
60,000 0.200 0.194 (3.0%)

Table 2: l1 reconstruction error on various semi-synthetic
datasets. Brackets in the last column give percent improve-
ment over R-KL (best performing Recover algorithm).
Full results in supplementary.

averaged values across topics, Figure 1 shows that TSVD algorithm achieves much better topic re-
covery for majority of the topics (>90%) on most datasets (overall average improvement of 27%,
full results in supplement Figure 1).

Topic Recovery on Real Data: To evaluate perplexity [2] on real data, the held-out sets con-
sist of 350 documents for NIPS, 10000 documents for NYT and Pubmed, and 6780 documents for
20NewsGroup. TSVD achieved perplexity measure of 835 (NIPS), 1307 (Pubmed), 1555 (NYT),
2390 (20NG) while Recover-KL achieved 754 (NIPS), 1188 (Pubmed), 1579 (NYT), 2431 (20NG)
(refer to supplement Table 2 for complete results). TSVD gives comparable perplexity with Recover-
KL, results being slightly better on NYT and 20NewsGroup which are larger datasets with moder-
ately high mean document lengths. We also find comparable results on Topic Coherence [11] (see
Table 2 in supplementary for topic coherence results and Table 3 for list of top words of topics).

Summary: We evaluated the proposed algorithm, TSVD, rigorously on multiple datasets with re-
spect to the state of the art [5] (Recover-KL and Recover-L2), following the evaluation methodology
of [5]. In Table 2 we show that the l1 reconstruction error for the new algorithm is small and on
average 19.6% better than the best results of the Recover algorithms [5]. In Figure 1, we show that
TSVD achieves significantly better recover on majority of the topics. We also demonstrate that on
real datasets the algorithm achieves comparable perplexity and topic coherence to Recover algo-
rithms. Moreover, we show on multiple real world datasets that the algorithm assumptions are well
justified in practice.

Conclusion

Real world corpora often exhibits the property that in every document there is one topic dominantly
present. A standard SVD based procedure will not be able to detect these topics, however TSVD,
a thresholded SVD based procedure, as suggested in this paper, discovers these topics. While SVD
is time-consuming, there have been a host of recent sampling-based approaches which make SVD
easier to apply to massive corpora which may be distributed among many servers. We believe that
apart from topic recovery, thresholded SVD can be applied even more broadly to similar problems,
such as matrix factorization, and will be the basis for future research.

Acknowledgements TB was supported by a Department of Science and Technology (DST) grant.

References
[1] Blei, D. Introduction to probabilistic topic models. Communications of the ACM, pp. 77–84,

2012.

8



[2] Blei, D., Ng, A., and Jordan, M. Latent Dirichlet allocation. Journal of Machine Learning Re-
search, pp. 3:993–1022, 2003. Preliminary version in Neural Information Processing Systems
2001.

[3] Griffiths, T. L. and Steyvers, M. Finding scientific topics. Proceedings of the National Academy
of Sciences, 101:5228–5235, 2004.

[4] Arora, S., Ge, R., and Moitra, A. Learning topic models – going beyond SVD. In Foundations
of Computer Science, 2012b.

[5] Arora, S., Ge, R., Halpern, Y., Mimno, D., Moitra, A., Sontag, D., Wu, Y., and Zhu M. A
practical algorithm for topic modeling with provable guarantees. In Internation Conference on
Machine Learning, 2013

[6] Anandkumar, A., Foster, D., Hsu, D., Kakade, S., and Liu, Y. A Spectral Algorithm for Latent
Dirichlet Allocation In Neural Information Processing Systems, 2012.

[7] Papadimitriou, C., Raghavan, P., Tamaki H., and Vempala S. Latent semantic indexing: a prob-
abilistic analysis. Journal of Computer and System Sciences, pp. 217–235, 2000. Preliminary
version in PODS 1998.

[8] Deerwester, S., Dumais, S., Landauer, T., Furnas, G., and Harshman, R. Indexing by latent
semantic analysis. Journal of the American Society for Information Science, pp. 391–407,
1990.

[9] Kumar, A., and Kannan, R. Clustering with spectral norm and the k-means algorithm. In
Foundations of Computer Science, 2010

[10] Awashti, P., and Sheffet, O. Improved spectral-norm bounds for clustering. In Proceedings of
Approx/Random, 2012.

[11] Mimno, D., Wallach, H., Talley, E., Leenders, M. and McCallum, A. Optimizing semantic
coherence in topic models. In Empirical Methods in Natural Language Processing, pp. 262–
272, 2011.

[12] Lloyd, Stuart P. Least squares quantization in PCM, IEEE Transactions on Information Theory
28 (2): 129137,1982.

[13] Arthur, D., and Vassilvitskii, S. K-means++: The advantages of careful seeding. In Proceed-
ings of ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035, 2007

[14] Supplementary material

9


