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Abstract

In this paper, we present theoretical analysis of SON – a convex optimization
procedure for clustering using a sum-of-norms (SON) regularization recently pro-
posed in [8, 10, 11, 17]. In particular, we show if the samples are drawn from two
cubes, each being one cluster, then SON can provably identify the cluster mem-
bership provided that the distance between the two cubes is larger than a threshold
which (linearly) depends on the size of the cube and the ratio of numbers of sam-
ples in each cluster. To the best of our knowledge, this paper is the first to provide
a rigorous analysis to understand why and when SON works. We believe this may
provide important insights to develop novel convex optimization based algorithms
for clustering.

1 Introduction

Clustering is an important problem in unsupervised learning that deals with grouping observations
(data points) appropriately based on their similarities or distances [20]. Many clustering algo-
rithms have been proposed in literature, including K-means, spectral clustering, Gaussian mix-
ture models and hierarchical clustering, to solve problems with respect to a wide range of cluster
shapes. However, much research has pointed out that these methods all suffer from instabilities
[3, 20, 16, 15, 13, 19]. Taking K-means as an example, the formulation of K-means is NP-hard and
the typical way to solve it is the Lloyd’s method, which requires randomly initializing the clusters.
However, different initialization may lead to significantly different final cluster results.

1.1 A Convex Optimization Procedure for Clustering

Recently, Lindsten et al. [10, 11], Hocking et al. [8] and Pelckmans et al. [17] proposed the
following convex optimization procedure for clustering, which is termed as SON by Lindsten et al.
[11] (Also called Clusterpath by Hocking et al. [8]),

X̂ = arg min
X∈Rn×p

‖A−X‖2F + α
∑
i<j

‖Xi· −Xj·‖2. (1)

Here A is a given data matrix of dimension n × p where each row is a data point, α is a tunable
parameter to determine the number of clusters, ‖ · ‖F denotes the Frobenius norm and Xi· denotes
the ith row of X.
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The main idea of the algorithm is that if the i-th sample and the j-th sample belong to the same
cluster, then X̂i· and X̂j· should be equal. Intuitively, this is due to the fact that the second term is a
regularization term that enforces the rows of X̂ to be the same, and can be seen as a generalization
of the fused Lasso penalty [18]. In particular, this penalty seeks to fuse the rows of X̂. From another
point of view, the regularization term can be seen as an `1,2 norm, i.e., the sum of `2 norm. Such a
norm is known to encourage block sparse (in this case row-sparse) solutions [1]. Thus, it is expected
that for many (i, j) pairs, X̂i· − X̂j· = 0.

Mathematically, given c disjoint clusters {C1,C2, · · · ,Cc} with Ci ⊆ Rp for i = 1, 2, · · · , c, we
define the Cluster Membership Matrix of a given data matrix A as the following.

Definition 1. Given a data matrix A of dimension n × p, for j = 1, 2, · · · , c, set Ij = {i | Ai· ∈
Cj , 1 ≤ i ≤ n}. We say that a matrix X of dimension n× p is a Cluster Membership Matrix of A
if {

Xi· = Xj· if i ∈ Ik, j ∈ Ik and 1 ≤ k ≤ c
Xi· 6= Xj· if i ∈ Im, j ∈ Il, 1 ≤ m ≤ c, 1 ≤ l ≤ c and m 6= l.

Given a data matrix A, if the optimal solution X̂ of Problem (1) is a Cluster Membership Matrix
of A, then we can determine the cluster membership by simply grouping the identical rows of X̂
together. We say that SON successfully recovers the cluster membership of A in this case.

Notice that unlike previous approaches, SON does not suffer from the instability issue since it is a
strictly convex optimization problem and the solution is fixed once a data matrix A is given. More-
over, SON can easily be adapted to incorporate a priori knowledge of the clustering membership.
For example, if we have prior knowledge about which points are more likely to be in the same
cluster, we can appropriately weight the regularization term, i.e., change the regularization term to
α
∑
i<j γij‖Xi· −Xj·‖2 for some γij > 0.

The main contribution of this paper is to provide theoretic analysis of SON, in particular to derive
sufficient conditions when SON successfully recovers the clustering membership. We show that
if there are two clusters, each of which is a cube, then SON succeeds provided that the distance
between the cubes is larger than a threshold value that depends on the cube size and the ratio of
number of samples drawn in each cluster. Thus, the intuitive argument about why SON works is
made rigorous and mathematically solid. To the best of our knowledge, this is the first attempt to
theoretically quantify why and when SON succeeds.

Related Work: we briefly review the related works on SON. Hocking et al. [8] proposed SON,
arguing that it can be seen as a generalization of hierarchical clustering, and presented via numerical
simulations several situations in which SON works while K-means and average linkage hierarchical
clustering fail. They also developed R package called “clusterpath” which can be used to solve
Problem (1). Independently, Lindsten et al. [10, 11] derived SON as a convex relaxation of K-
means clustering. In the algorithmic aspect, Chi et al. [6] developed two methods to solve Problem
(1), namely, Alternating Direction Method of Multipliers (ADMM) and alternating minimization
algorithm (AMA). Marchetti et al. [14] generalized SON to the high-dimensional and noisy cases.
Yet, in all these works, no attempt has been made to study rigorously why and when SON succeeds.

Notation: in this paper, matrices are denoted by upper case boldface letters (e.g. A, B), sets are
denoted by blackboard bold characters (e.g. R, I, C) and operators are denoted by Fraktur characters
(e.g. D, M). Given a matrix A, we use Ai· to denote its ith row, and A·j to denote its jth column.
Its (i, j)th entry is denoted by Ai,j . Two norms are used: we use ‖ · ‖F to denote the Frobenius
norm and ‖ · ‖2 to denote the l2 norm of a vector. The space spanned by the rows of A is denoted
by Row(A). Moreover, given a matrix A of dimension n × p and a function f : Rp 7→ Rq , we use
the notation f(A) to denote the matrix whose ith row is f(Ai·).

2 Main Result

In this section we present our main theoretic result – a provable guarantee when SON succeeds in
identifying cluster membership.
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2.1 Preliminaries

We first define some operators that will be frequently used in the remainder of the paper.
Definition 2. Given any two matrices E of dimension n1 × p and F of dimension n2 × p, define
the difference operator D1 on E, D2 on the two matrices E, F and D on the matrix constructed by
concatenating E and F vertically as

D1(E) =



E1· −E2·
E1· −E3·

...
E1· −En1·
E2· −E3·

...
E2· −En1·

...
E(n1−1)· −En1·


,D2(E,F) =



E1· − F1·
E1· − F2·

...
E1· − Fn2·
E2· − F1·

...
E2· − Fn2·

...
En1· − Fn2·


and D(

(
E

F

)
) =

(
D1(E)
D1(F)

D2(E,F)

)
.

In words, the operator D1 calculates the difference between every two rows of a matrix and lists the
results in the order indicated in the definition. Similarly, given two matrices E and F, the operator
D2(E,F) calculates the difference of any two rows between E and F, one from E and the other from
F. We also define the following average operation which calculates the mean of the row vectors.
Definition 3. Given any matrix E of dimension n× p, define the average operator on E as

M(E) =
1

n
(

n∑
i=1

Ei·).

Definition 4. A matrix E is called column centered if M(E) = 0.

2.2 Theoretical Guarantees

Our main result essentially says that when there are two clusters, each of which is a cube, and
they are reasonably separated away from each other, then SON successfully recovers the cluster
membership. We now make this formal. For i = 1, 2, suppose Ci ⊆ Rp is a cube with center
(µi1, µi2, · · · , µip) and edge length si = 2(σi1, σi2, · · · , σip) , i.e.,

Ci = [µi1 − σi1, µi1 + σi1]× · · · × [µip − σip, µip + σip].

Definition 5. The distance d1,2 between cubes C1 and C2 is

d1,2 , inf{‖x− y‖2 | x ∈ C1,y ∈ C2}.

Definition 6. The weighted size w1,2 with respect to C1, C2, n1 and n2 is defined as

w1,2 = max

{(
2n2(n1 − 1)

n21
+ 1

)
‖s1‖2,

(
2n1(n2 − 1)

n22
+ 1

)
‖s2‖2

}
.

Theorem 1. Given a column centered data matrix A of dimension n × p, where each row is ar-
bitrarily picked from either cube C1 or cube C2 and there are totally ni rows chosen from Ci for
i = 1, 2, if w1,2 < d1,2, then by choosing the parameter α ∈ R such that w1,2 <

n
2α < d1,2, we

have the following:

1. SON can correctly determine the cluster membership of A;

2. Rearrange the rows of A such that

A =

(
A1

A2

)
and Ai =


Ai

1·
Ai

2·
...

Ai
ni·

 , (2)
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where for i = 1, 2 and j = 1, 2, · · · , ni, Ai
j· = (Ai

j,1,A
i
j,2, · · · ,Ai

j,p) ∈ Ci. Then, the
optimal solution X̂ of Problem (1) is given by

X̂i· =


n2

n1+n2

(
1− nα

2‖M(D2(A1,A2))‖2

)
M
(
D2(A1,A2)

)
, if Ai· ∈ C1;

− n1

n1+n2

(
1− nα

2‖M(D2(A1,A2))‖2

)
M
(
D2(A1,A2)

)
, if Ai· ∈ C2.

The theorem essentially states that we need d1,2 to be large and w1,2 to be small for correct deter-
mination of the cluster membership of A. This is indeed intuitive. Notice that d1,2 is the distance
between the cubes and w1,2 is a constant that depends on the size of the cube as well as the ratio
between the samples in each cube. Obviously, if the cubes are too close with each other, i.e., d1,2 is
small, or if the sizes of the clusters are too big compared to their distance, it is difficult to determine
the cluster membership correctly. Moreover, when n1 � n2 or n1 � n2, w1,2 is large, and the
theorem states that it is difficult to determine the cluster membership. This is also well expected,
since in this case one cluster will be overwhelmed by the other, and hence determining where the
data points are chosen from becomes problematic.

The assumption in Theorem 1 that the data matrix A is column centered can be easily relaxed, using
the following proposition which states that the result of SON is invariant to any isometry operation.
Definition 7. An isometry of Rn is a function f : Rn → Rn that preserves the distance between
vectors, i.e.,

‖f(u)− f(w)‖2 = ‖u−w‖2,∀ u,w ∈ Rn.
Proposition 1. (Isometry Invariance) Given a data matrix A of dimension n× p where each row
is chosen from some cluster Ci, i = 1, 2, · · · , c, and f(·) an isometry of Rp, we have

X̂ = arg min
X∈Rn×p

‖A−X‖2F + α
∑
i<j

‖Xi· −Xj·‖2

⇐⇒f(X̂) = arg min
X∈Rn×p

‖f(A)−X‖2F + α
∑
i<j

‖Xi· −Xj·‖2.

This further implies that if SON successfully determines the cluster membership of A, then it also
successfully determines the cluster membership of f(A).

3 Kernelization

SON can be easily kernelized as we show in this section. In the kernel clustering setup, instead
of clustering {Ai·} such that points within a cluster are closer in the original space, we want to
cluster {Ai·} such that points within a cluster are closer in the feature space. Mathematically, this
means we map Ai· to a Hilbert space H (the feature space) by the feature mapping function φ(·)
and perform clustering on {φ(Ai·)}.
Notice that we can write Problem (1) in terms of the inner product 〈Ai·,Aj·〉 , 〈Ai·,Xj·〉 and
〈Xi·,Xj·〉. Thus, for SON in the feature space, we only need to replace all these inner products
by 〈φ(Ai·), φ(Aj·)〉 , 〈φ(Ai·),Xj·〉 and 〈Xi·,Xj·〉. Thus, SON in the feature space can be formu-
lated as

X̂ = arg min
X∈Rn×q

n∑
i=1

(〈φ(Ai·), φ(Ai·)〉 − 2 〈φ(Ai·),Xi·〉+ 〈Xi·,Xi·〉)

+α
∑
i<j

√
〈Xi·,Xi·〉 − 2 〈Xi·,Xj·〉+ 〈Xj·,Xj·〉.

(3)

We have the following representation theorem about the optimal solution of (3).
Theorem 2. (Representation Theorem) Each row of the optimal solution of Problem (3) can be
written as a linear combination of rows of A, i.e.,

X̂i· =

n∑
j=1

aijφ(Aj·).
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Thus, to solve SON in the feature space reduces to finding the optimal weight {aij}. Define the
kernel function as K(x,y) = 〈φ(x), φ(y)〉. Then Problem (3) is equivalent to

min
{aij}

n∑
i=1

(
K(Ai·,Ai·)− 2

n∑
k=1

aikK(Ai·,Ak·) +

n∑
k=1

n∑
l=1

aikailK(Ak·,Al·)

)

+α
∑
i<j

√√√√ n∑
k=1

n∑
l=1

K(Ak·,Al·)(aikail − 2aikajl + ajkajl),

(4)

which is a second order cone program since the kernel is positive semi-definite. Notice that this
implies that solving SON in the feature space only requires knowing the kernel function rather than
the feature mapping φ(·).

4 Proof

We sketch the proof of Theorem 1 here. The detailed proof is given in the supplementary material.

4.1 Preliminaries

We first introduce some notations useful in the proof. We use In to denote an identity matrix of
dimension n × n and use 1m×nto denote a matrix of dimension m × n with all entries being 1.
Similarly, we use 0m×n to denote a matrix of dimension m× n with all entries being 0.

We now define some special matrices. Let Hn denote a matrix of dimension (n − 1) × n which
is constructed by concatenating 1(n−1)×1 and −In−1 horizontally, i.e., Hn = (1(n−1)×1 −
In−1). For i = 1, 2, · · · , n − 2, we first concatenate matrices Hn−i and 0(n−1−i)×i hor-
izontally to form a matrix (0(n−1−i)×i Hn−i). Then, we construct Rn by concatenating
{Hn, (0(n−2)×1 Hn−1), · · · , (01×(n−2) H2)} vertically, i.e.,

Rn ,


Hn

0(n−2)×1 Hn−1
0(n−3)×2 Hn−2

...
01×(n−2) H2

 .

We concatenate m copies of −In vertically to form a new matrix and denote it by Wmn×n. Let
Gm,n,i denote an m × n dimensional matrix where the entries of the ith column all equal 1 and
all the other entries equal 0, i.e., Gm,n,i , (0m×(i−1) 1m×1 0m×(n−i)). Then, we concatenate
{Gm,n,1,Gm,n,2, · · · ,Gm,n,n} vertically and denote it by Smn×n, i.e.,

Wmn×n ,


−In
−In

...
−In

 , Smn×n ,


Gm,n,1

Gm,n,2

...
Gm,n,n

 .

Finally, set Ω , Rn1−1 I(n1−1
2 ) 0(n1−1

2 )×(n2
2 ) 0(n1−1

2 )×n2
0(n1−1

2 )×(n1−1)n2

0(n2
2 )×(n1−1) 0(n2

2 )×(n1−1
2 ) I(n2

2 ) Rn2
0(n2

2 )×(n1−1)n2

S(n1−1)n2×(n1−1) 0(n1−1)n2×(n1−1
2 ) 0(n1−1)n2×(n2

2 ) W(n1−1)n2×n2
I(n1−1)n2

 .

4.2 Proof sketch of Theorem 1

The proof of Theorem 1 is based on the idea of “lifting”. That is, we project Problem (1) into a
higher dimensional space (in particular, from n rows to n(n − 1)/2 rows), which then allows us to
separate the regularization term into the sum of l2 norm of each row. Although this brings additional
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linear constraints to the formulation, it facilitates the analysis. In the following, we divide the proof
into 3 steps and explain the main idea of each step.

Step 1: In this step, we derive an equivalent form of Problem (1) and give optimality conditions.
For convenience, set B(1,2) = D2(A1,A2), B1 = D1(A1), B2 = D1(A2) and V = {y ∈
R(n

2) | Ωy = 0}. The following lemmas show that we can lift the original problem into an equivalent
problem that is easier to analyze.

Lemma 1. If the data matrix A is column centered, then the optimal solution X̂ of problem (1) is
also column centered. Further more, set B = D(A) and Ŷ = D(X̂), we have

‖A− X̂‖2F =

n(n−1)
2∑
i=1

1

n
‖Bi· − Ŷi·‖22.

Lemma 2. Given a column centered data matrix A, set B = D(A) and S = {Z ∈
R(n

2)×p | ΩZ·j = 0, 1 ≤ j ≤ p}. Then, X̂ is the optimal solution to Problem (1) iff

D(X̂) = arg min
Y∈S

n(n−1)
2∑
i=1

(
1

n
‖Bi· −Yi·‖22 + α ‖Yi·‖2). (5)

Thus, we can determine whether X̂ is the membership matrix of A by solving Problem (5). Com-
pared to Problem (1), Problem (5) is more amenable to analyze as it is the sum of separable equa-
tions. That is, for i = 1, 2, · · · , n(n−1)2 , we can minimize each 1

n‖Bi· −Yi·‖22 + α ‖Yi·‖2 individ-
ually with the additional constraint ΩY = 0. Following standard convex analysis (Page 303 of [2]),
Ŷ and Λ̂ are an optimal primal and dual solution pair of Problem (5) if and only if

Ŷ·j ∈ V, (Λ̂·j)T ∈ V⊥, j = 1, 2, · · · , p, (6)

and

Ŷi· ∈ arg min
y∈Rp

(
1

n
‖Bi· − y‖22 + α‖y‖2 − yΛ̂T

i·), i = 1, 2, · · · ,
(
n

2

)
. (7)

Step 2: In this step, we construct Λ̂. Since A is constructed by concatenating matrices A1 and
A2 vertically, we also expect X̂ to be concatenated by two matrices vertically. Due to the fact that
Ŷ = D(X̂), for 1 ≤ l ≤ p, we write Ŷ and Λ̂ as the following

Λ̂·l =

 Λ̂1
·l

Λ̂2
·l

Λ̂
(1,2)
·l

 and Ŷ·l =

 Ŷ1
·l

Ŷ2
·l

Ŷ
(1,2)
·l


where Λ̂i

·l, Ŷi
·l ∈ R(ni

2 ) for i = 1, 2 and Λ̂
(1,2)
·l , Ŷ

(1,2)
·l ∈ Rn1n2 , which are determined below.

By the structure of Ω, after some algebraic operations, it can be shown that (Λ̂·l)
T ∈ V⊥ is equiva-

lent to the following equalities that hold,

RT
n1

Λ̂1
·l = −STn1n2×n1

Λ̂
(1,2)
·l , RT

n2
Λ̂2
·l = −WT

n1n2×n2
Λ̂

(1,2)
·l . (8)

We now construct Λ̂(1,2). Set

Λ̂
(1,2)
m· =

2

n

(
M
(
B(1,2)

)
−B

(1,2)
m·

)
, 1 ≤ m ≤ n1n2. (9)

Since Λ̂(1,2) is now fixed, we can bound the right hand sides of the two equalities in (8). In order to
bound the entries of Λ̂1

·l and Λ̂2
·l, we need the following lemma.

Lemma 3. Given cn ∈ Rn, i.e., cn = (c1, c2, · · · , cn)T , such that
n∑
i=1

ci = 0 and ∃b ∈ R, |ci| ≤ b,

then ∃x ∈ R
n(n−1)

2 , such that ‖x‖∞ ≤ 2
nb and RT

nx = cn.
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Figure 1: Theoretical bounds and empirical performance. This figure illustrates the case in which
n1, n2 are constants and ‖s‖2 is increasing.

Then, because we can bound the right hand sides of the two equalities of (8), by using Lemma 3, we
can show that there exist Λ̂1

·l, Λ̂
2
·l satisfying (8) such that the following holds

‖Λ̂1
·l‖∞ ≤

2

n
(n2)

(n1 − 1)

n21
(4σ1l) and ‖Λ̂2

·l‖∞ ≤
2

n
(n1)

(n2 − 1)

n22
(4σ2l). (10)

To summarize this step, we have constructed Λ̂ of dimension
(
n
2

)
× p such thatΛ̂1

·l, Λ̂
2
·l satisfies (10), 1 ≤ l ≤ p,

Λ̂
(1,2)
m· =

2

n

(
M
(
B(1,2)

)
−B

(1,2)
m·

)
, 1 ≤ m ≤ n1n2.

Step 3: Finally, we construct Ŷ. Set
Ŷ1
·l = Ŷ2

·l = 0, 1 ≤ l ≤ p,

Ŷ
(1,2)
m· =

(
1− nα

2‖M
(
B(1,2)

)
‖2

)(
M
(
B(1,2)

))
, 1 ≤ m ≤ n1n2.

Choosingw1,2 <
n
2α < d1,2, according to Λ̂ and Ŷ constructed, it is easy to checked that conditions

(6) and (7) are satisfied. So Λ̂ and Ŷ are an optimal primal and dual solution pair of Problem (5).

5 Experiments

We now report some numerical experimental results. The empirical performance of SON has been
reported in numerous works [8, 10, 11]. It has been shown that SON outperforms traditional cluster-
ing methods like K-means in many situations. As such, we do not reproduce such results. Instead,
we conduct experiments to validate our theoretic results.

Recall that Theorem 1 states that when samples are drawn from two cubes, SON guarantees to
successfully recover the cluster membership if the distance between cubes is larger than a threshold
which is linear to the cube size ‖si‖ and the ratio between n1 and n2. To validate this, we randomly
draw a data matrix A where each row belongs to one of the two cubes, and find numerically the
largest distance d̄1,2 between the cubes where the cluster membership is not correctly recovered.
Clearly, d̄1,2 provides an empirical estimator of the minimal distance needed to successfully recover
the cluster membership. We compare the theoretic bound w1,2 with the empirical performance d̄1,2
to validate our theorem. The specific procedures of the experiments are as follows.

1. Choose two cubes C1 and C2 from space Rp with size s1 = 2(σ11, σ12, · · · , σ1p) and
s2 = 2(σ21, σ22, · · · , σ2p), and the distance between C1 and C2 is d.

2. Choose arbitrarily n1 points from C1 and n2 points from C2 and form the data matrix Ad

of dimension n× p. Repeat and sample m data matrices {Ad
1,A

d
2, · · · ,Ad

m}.
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Figure 2: Theoretical bounds and empirical performance. This figure illustrates the case in which
‖s1‖2,‖s2‖2 are constants and the ratio n2

n1
is increasing.

3. Repeat for different d. Set

d̄1,2 = max{d|∃1 ≤ j ≤ m s.t. SON fails to determine the cluster membership of Ad
j}.

4. Repeat for different cube sizes ‖s1‖2 and ‖s2‖2.
5. Repeat for different sample numbers n1 and n2.

In the experiments, we focus on the samples chosen from R2, i.e., p = 2, and use synthetic data to
obtain the empirical performance. The results are shown in Figure 1 and 2. Figure 1 presents the
situation where n1 and n2 are fixed and the cube sizes are increasing. In particular, the two cubes are
both of size l × l, i.e., both with edge length (l, l). Thus we have ‖s‖2 =

√
2l. Clearly, we can see

that the empirical performance and the theoretical bounds are both linearly increasing with respect
to ‖s‖2, which implies that our theoretical results correctly predict how the performance of SON
depends on ‖s‖2. Figure 2 presents the situation in which ‖s‖1 and ‖s‖2 are fixed, while the ratio
n2

n1
is changing. Again, we observe that both the empirical performance and the theoretical bounds

are linearly increasing with respect to n2

n1
, which implies that our theoretical bounds w1,2 predict the

correct relation between the performance of SON and n2

n1
.

6 Conclusion

In this paper, we provided theoretical analysis for the recently presented convex optimization pro-
cedure for clustering, which we term as SON. We showed that if all samples are drawn from two
clusters, each being a cube, then SON is guaranteed to successfully recover the cluster membership
provided that the distance between the two cubes is greater than the “weighted size” – a term that
linearly depends on the cube size and the ratio between the numbers of the samples in each cluster.
Such linear dependence is also observed in our numerical experiment, which demonstrates (at least
qualitatively) the validity of our results.

The main thrust of this paper is to explore using techniques from high-dimensional statistics, in
particular regularization methods that extract low-dimensional structures such as sparsity or low-
rankness, to tackle clustering problems. These techniques have recently been successfully applied to
graph clustering and subspace clustering [4, 7, 12, 5, 9], but not so much to distance-based clustering
tasks with the only exception of SON, to the best of our knowledge. This paper is the first attempt
to provide a rigorous analysis to derive sufficient conditions when SON succeeds. We believe this
not only helps to understand why SON works in practice as shown in previous works [8, 10, 11], but
also provides important insights to develop novel algorithms based on high-dimensional statistics
tools for clustering tasks.
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