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Abstract

The mirror descent algorithm (MDA) generalizes gradient descent by using a
Bregman divergence to replace squared Euclidean distance. In this paper, we
similarly generalize the alternating direction method of multipliers (ADMM) to
Bregman ADMM (BADMM), which allows the choice of different Bregman di-
vergences to exploit the structure of problems. BADMM provides a unified frame-
work for ADMM and its variants, including generalized ADMM, inexact ADMM
and Bethe ADMM. We establish the global convergence and the O(1/T) iteration
complexity for BADMM. In some cases, BADMM can be faster than ADMM by
a factor of O(n/Inn) where n is the dimensionality. In solving the linear pro-
gram of mass transportation problem, BADMM leads to massive parallelism and
can easily run on GPU. BADMM is several times faster than highly optimized
commercial software Gurobi.

1 Introduction

In recent years, the alternating direction method of multipliers (ADMM) [4]] has been successfully
used in a broad spectrum of applications, ranging from image processing [11} [14] to applied statis-
tics and machine learning [26} 25| [12]. ADMM considers the problem of minimizing composite
objective functions subject to an equality constraint:

er}(l}zrlezf(x) +g(z) st. Ax+Bz=c, ()
where f and g are convex functions, A € R™*™ B € R™*"2 ¢ € R™*!, x € X ¢ R"*! z ¢
Z € R*l and X € R™ and Z C R™ are nonempty closed convex sets. f and g can be
non-smooth functions, including indicator functions of convex sets. For further understanding of
ADMM, we refer the readers to the comprehensive review by [4] and references therein. Many
machine learning problems can be cast into the framework of minimizing a composite objective [22,
10], where f is a loss function such as hinge or logistic loss, and g is a regularizer, e.g., {1 norm, {5
norm, nuclear norm or total variation. The functions and constraints usually have different structures.
Therefore, it is useful and sometimes necessary to split and solve them separately, which is exactly
the forte of ADMM.

In each iteration, ADMM updates splitting variables separately and alternatively by solving the
partial augmented Lagrangian of (I)), where only the equality constraint is considered:

Ly(x,2.y) = [(x) + g(2) + {y, Ax + Bz — ) + £ || Ax + Ba — c[3, @

where y € R™ is dual variable, p > 0 is penalty parameter, and the quadratic penalty term is to
penalize the violation of the equality constraint. ADMM consists of the following three updates:

Xtp1 = argming ey f(x) + (y:, Ax + Bz; —c) + gHAX +Bz; — |3, 3
211 = argmiin 2 9(a) + (ve Axey1 + Ba— )+ 2l Axi - B o, @
Vit1 =Yt + p(Axip1 + Bziypr —c) . ©)



Since the computational complexity of the y update (3)) is trivial, the computational complexity of
ADMM is determined by the x and z updates (3)-(@) which amount to solving proximal minimiza-
tion problems using the quadratic penalty term. Inexact ADMM [26} 4] and generalized ADMM [§]]
have been proposed to solve the updates inexactly by linearizing the functions and adding additional
quadratic terms. Recently, online ADMM [25] and Bethe-ADMM [[12]] add an additional Bregman
divergence on the x update by keeping or linearizing the quadratic penalty term ||Ax + Bz — c||3.
As far as we know, all existing ADMMs use quadratic penalty terms.

A large amount of literature shows that replacing the quadratic term by Bregman divergence in
gradient-type methods can greatly boost their performance in solving constrained optimization
problem. First, the use of Bregman divergence could effectively exploit the structure of prob-
lems [6} 12, [10] , e.g., in computerized tomography [3]], clustering problems and exponential family
distributions [1]]. Second, in some cases, the gradient descent method with Kullback-Leibler (KL)
divergence can outperform the method with the quadratic term by a factor of O(v/nInn) where n
is the dimensionality of the problem [2} 3]]. Mirror descent algorithm (MDA) and composite objec-
tive mirror descent (COMID) [10] use Bregman divergence to replace the quadratic term in gradient
descent or proximal gradient [7]. Proximal point method with D-functions (PMD) [6, 5] and Breg-
man proximal minimization (BPM) [20] generalize proximal point method by using generalized
Bregman divegence to replace the quadratic term.

For ADMM, although the convergence of ADMM is well understood, it is still unknown whether
the quadratic penalty term in ADMM can be replaced by Bregman divergence. The proof of global
convergence of ADMM can be found in [[13|4]. Recently, it has been shown that ADMM converges
at a rate of O(1/T) [23, [I7], where T is the number of iterations. For strongly convex functions,
the dual objective of an accelerated version of ADMM can converge at a rate of O(1/T?) [13].
Under suitable assumptions like strongly convex functions or a sufficiently small step size for the
dual variable update, ADMM can achieve a linear convergence rate [8,(19]. However, as pointed out
by [4], “There is currently no proof of convergence known for ADMM with nonquadratic penalty
terms.”

In this paper, we propose Bregman ADMM (BADMM) which uses Bregman divergences to replace
the quadratic penalty term in ADMM, answering the question raised in [4]. More specifically, the
quadratic penalty term in the x and z updates (3)-({@) will be replaced by a Bregman divergence in
BADMM. We also introduce a generalized version of BADMM where two additional Bregman di-
vergences are added to the x and z updates. The generalized BADMM (BADMM for short) provides
a unified framework for solving (I)), which allows one to choose suitable Bregman divergence so that
the x and z updates can be solved efficiently. BADMM includes ADMM and its variants as special
cases. In particular, BADMM replaces all quadratic terms in generalized ADMM [8] with Bregman
divergences. By choosing a proper Bregman divergence, we also show that inexact ADMM [26] and
Bethe ADMM [12] can be considered as special cases of BADMM. BADMM generalizes ADMM
similar to how MDA generalizes gradient descent and how PMD generalizes proximal methods. In
BADMM, the x and z updates can take the form of MDA or PMD. We establish the global conver-
gence and the O(1/T) iteration complexity for BADMM. In some cases, we show that BADMM can
outperform ADMM by a factor O(n/Inn). We evaluate the performance of BADMM in solving
the linear program problem of mass transportation [18]]. Since BADMM takes use of the structure
of the problem, it leads to closed-form solutions which amounts to elementwise operations and can
be done in parallel. BADMM is faster than ADMM and can even be orders of magnitude faster than
highly optimized commercial software Gurobi when implemented on GPU.

The rest of the paper is organized as follows. In Section 2, we propose Bregman ADMM and
discuss several special cases of BADMM. In Section 3, we establish the convergence of BADMM.
In Section 4, we consider illustrative applications of BADMM, and conclude in Section 5.

2 Bregman Alternating Direction Method of Multipliers

Let ¢ : 2 — R be a continuously differentiable and strictly convex function on the relative interior
of a convex set 2. Denote V¢(y) as the gradient of ¢ at y. We define Bregman divergence By, :
0 x ri(©2) — R, induced by ¢ as

By(x,y) = ¢(x) — ¢(y) — (Vo(y),x —y) .



Since ¢ is strictly convex, By (x,y) > 0 where the equality holds if and only if x = y. More details
about Bregman divergence can be found in [6, [1]. Note the definition of Bregman divergence has
been generalized for the nondifferentiable functions [20, |23]]. In this paper, our discussion uses the
definition of classical Bregman divergence. Two of the most commonly used examples are squared
Euclidean distance By (x,y) = #|/x — y||3 and KL divergence By (x,y) = >;; x; log o

Assuming By(c — Ax,Bz) is well defined, we replace the quadratic penalty term in the partial
augmented Lagrangian (2)) by a Bregman divergence as follows:

LO(x,2,y) = f(x) + g(z) + (y, Ax + Bz — ¢) + pBy(c — Ax,Bz). (6)

Unfortunately, we can not derive Bregman ADMM (BADMM) updates by simply solving
Lﬁ(x, z,y) alternatingly as ADMM does because Bregman divergences are not necessarily con-
vex in the second argument. More specifically, given (z;,y:), X;+1 can be obtained by solving
minyex L%(X,2z¢,y:), where the quadratic penalty term 1[|Ax + Bz, — c||3 for ADMM in H is
replaced with By (c — Ax, Bz,) in the x update of BADMM. However, given (x;41,y+), We cannot
obtain z;41 by solving min,c =z L?(Xt.}rl’ z,yy), since the term By(c — Ax;41, Bz) need not be
convex in z. The observation motivates a closer look at the role of the quadratic term in ADMM.

In standard ADMM, the quadratic augmentation term added to the Lagrangian is just a penalty term
to ensure the new updates do not violate the equality constraint significantly. Staying with these
goals, we propose the z update augmentation term of BADMM to be: By (Bz,c — Ax;1), instead
of the quadratic penalty term 3 ||Ax;41 + Bz — c||3 in . Then, we get the following updates for
BADMM:

Xy41 =argming,cy f(x) + (y+, Ax + Bz, — ¢) + pBy(c — Ax,Bz,) , (7
Z41 =argmin,c z ¢(z) + (yt, Axey1 + Bz — ¢) + pBy(Bz,c — Axyy1) (8)
Vir1 =Ye + p(Axep1 + Bz — ) . &)

Compared to ADMM (3))-(3), BADMM simply uses a Bregman divergence to replace the quadratic
penalty term in the x and z updates. It is worth noting that the same Bregman divergence By is used
in the x and z updates.

We consider a special case when A = —I, B =1, ¢ = 0. is reduced to
Xp41 = argming ey f(X) + (v, =X + 2¢) + pBo(x, 2¢) - (10)

If ¢ is a quadratic function, the constrained problem requires the projection onto the constraint
set X. However, in some cases, by choosing a proper Bregman divergence, can be solved
efficiently or has a closed-form solution. For example, assuming f is a linear function and X is
the unit simplex, choosing B to be KL divergence leads to the exponentiated gradient [2, [3, 21].
Interestingly, if the z update is also the exponentiated gradient, we have alternating exponentiated
gradients. In Section 4, we will show the mass transportation problem can be cast into this scenario.

While the updates (7)-(8) use the same Bregman divergences, efficiently solving the x and z updates
may not be feasible, especially when the structure of the original functions f, g, the function ¢ used
for augmentation, and the constraint sets X', Z are rather different. For example, if f(x) is a logistic
function in (T0), it will not have a closed-form solution even By is the KL divergence and X’ is the
unit simplex. To address such concerns, we propose a generalized version of BADMM.

2.1 Generalized BADMM

To allow the use of different Bregman divergences in the x and z updates (7)-(8) of BADMM, the
generalized BADMM simply introduces an additional Bregman divergence for each update. The
generalized BADMM has the following updates:

Xy4+1 =argmingcy f(x) + (y¢, Ax + Bz, — ¢) + pBy(c — Ax, Bz,) + px B, (x,%:) , (11)
Z¢ 1 =argmin, .z 9(z) + (y¢, Ax¢y1 + Bz — ¢) + pBy(Bz,c — Axy11) + p, By, (2,2:) , (12)
Vit1 =yt + 7(Axpyp1 + Bziy — ) . (13)

where p > 0,7 > 0, px > 0, p, > 0. Note that we allow the use of a different step size 7 in the dual
variable update [8} [19]. There are three Bregman divergences in the generalized BADMM. While



the Bregman divergence By is shared by the x and z updates, the x update has its own Bregman
divergence B, and the z update has its own Bregman divergence B, . The two additional Bregman
divergences in generalized BADMM are variable specific, and can be chosen to make sure that
the x;41,Z;41 updates are efficient. If all three Bregman divergences are quadratic functions, the
generalized BADMM reduces to the generalized ADMM [8]. We prove convergence of generalized
BADMM in Section 3, which yields the convergence of BADMM with p, = p, = 0.

In the following, we illustrate how to choose a proper Bregman divergence B, so that the x update
can be solved efficiently, e.g., a closed-form solution, noting that the same arguments apply to the
z-updates. Consider the first three terms in as s(x) + h(x), where s(x) denotes a simple term
and h(x) is the problematic term which needs to be linearized for an efficient x-update. We illustrate
the idea with several examples later in the section. Now, we have

X1 = Milygey S(X) + h(x) + pPx B, (X7 X¢) . (14)

where efficient updates are difficult due to the mismatch in structure between i and X'. The goal is
to ‘linearize’ the function h by using the fact that the Bregman divergence B}, (x,x;) captures all
the higher-order (beyond linear) terms in ~(x) so that:

h(x) — Bp(x,x:) = h(x:) + (x — x¢, Vh(x4)) (15)

is a linear function of x. Let v be another convex function such that one can efficiently solve
mingex $(x) + ¥ (x) + (x,b) for any constant b. Assuming px(x) = ¢(x) — pixh(x) is continu-
ously differentiable and strictly convex, we construct a Bregman divergence based proximal term to
the original problem so that:

argmin, c y $(x)+h(x)+px By, (x,x:) =argmin, c y $(x)+(Vh(X¢), x—X¢) +px By, (x,%¢),(16)

where the latter problem can be solved efficiently, by our assumption. To ensure ( is continuously
differentiable and strictly convex, we need the following condition:

Proposition 1 If h is smooth and has Lipschitz continuous gradients with constant v under a p-
norm, then oy is v/ px-strongly convex w.r.t. the p-norm.

This condition has been widely used in gradient-type methods, including MDA and COMID. Note
that the convergence analysis of generalized ADMM in Section 4 holds for any additional Bregman
divergence based proximal terms, and does not rely on such specific choices. Using the above idea,
one can ‘linearize’ different parts of the x update to yield an efficient update.

We consider three special cases, respectively focusing on linearizing the function f(x), linearizing
the Bregman divergence based augmentation term By(c — Ax, Bz;), and linearizing both terms,
along with examples for each case.

Case 1: Linearization of smooth function f: Let h(x) = f(x) in (16), we have
X1 = argming c » (Vf(xe),x — x¢) + (yi, AX) + pBy(c — Ax,Bz,) + px By, (x,%x¢) . (17)

where V f(x;) is the gradient of f(x) at x;.

Example 1 Consider the following ADMM form for sparse logistic regression problem [16} |4]:
miny h(x) + A||z|1, st.x =12z, (18)
where h(x) is the logistic function. If we use ADMM to solve (18), the x update is as follows [4]:
X1 = argming h(x) + (y¢, X — Z¢) + gHX — 7|3, (19)

which is a ridge-regularized logistic regression problem and one needs an iterative algorithm like
L-BFGS to solve it. Instead, if we linearize h(x) at x; and set By, to be a quadratic function, then
X1 = argmin, (V h(Xt),x — X4) + (y¢, X — 2¢) + ng —z|3 + %‘Hx — x4, (20)

the x update has a simple closed-form solution.



Case 2: Linearization of the quadratic penalty term: In ADMM, B, (c — Ax,Bz,) = %HAX +

Bz, — c||3. Let h(x) = £||Ax + Bz, — c||3. Then VA(x;) = pAT(Ax; + Bz, — c), we have

X1 = argming e v f(x) + (y¢ + p(Ax; + Bz; — ¢), Ax) + px By (%, %¢) - (21)

The case mainly solves the problem due to the ||Ax||% term which makes x updates nonseparable,
whereas the linearized version can be solved with separable (parallel) updates. Several problems
have been benefited from the linearization of quadratic term [8]], e.g., when f is ¢; loss function [[16],
and projection onto the unit simplex or /7 ball [9]].

Case 3: Mirror Descent: In some settings, we want to linearize both the function f and the
quadratic augmentation term Bg(c — Ax,Bz;) = 1[[Ax + Bz, — c||3. Let h(x) = f(x) +
(yi,Ax) + £||Ax 4+ Bz; — c||3, we have

X1 = argming c » (VA(x,), X) + px By (X, X¢) - (22)

Note that is a MDA-type update. Further, one can do a similar exercise with a general Bregman
divergence based augmentation term B, (c — Ax, Bz, ), although there has to be a good motivation
for going to this route.

Example 2 [Bethe-ADMM [12]] Given an undirected graph G = (V, E), where V is the vertex
set and E is the edge set. Assume a random discrete variable X; associated with node i € V
can take K values. In a pairwise MREF, the joint distribution of a set of discrete random variables

X = {X1,---,X,} (n is the number of nodes in the graph) is defined in terms of nodes and
cliques [24]]. Consider solving the following graph-structured linear program (LP) :
min I(p) s.t. p € L(G), (23)
I

where () is a linear function of p and IL(G) is the so-called local polytope [24] determined by the
marginalization and normalization (MN) constraints for each node and edge in the graph G:

L(G)={n=0, Zmiui(m) =1 ,ijuij(xi,xj) = (i)}, (24)

where f1;, p1;; are pseudo-marginal distributions of node i and edge ij respectively. The LP in (23)
contains O(nK + |E|K?) variables and that order of constraints. In particular, (23)) serves as a LP
relaxation of MAP inference probem in a pairwise MRF if [(p) is defined as follows:

W) =D O(wpa(z) + > > 0 (wi, 2 pij (i, ;). 25)
where 0;, 0;; are the potential functions of node 7 and edge 7j respectively.

For a grid graph (e.g., image) of size 1000 x 1000, contains millions of variables and constraints,
posing a challenge to LP solvers. An efficient way is to decompose the graph into trees such that

i Tl‘f' r) S.t r € TT) = Ms, 26
min ZTC (Br) st p 7 (26)

where T, denotes the MN constraints (24) in the tree 7. p, is a vector of pseudo-marginals of nodes
and edges in the tree 7. m is a global variable which contains all trees and m, corresponds to the
tree 7 in the global variable. ¢ is the weight for sharing variables. The augmented Lagrangian is

Ly(pr m,Ar) =3 erle(pir) + e ptr = mr) + Slar —me 3. @7)

which leads to the following update for p:*! in ADMM:

- p
it = argming, ererle(pe) + (AT, ) + 5 [l — m I3 (28)

(28) is difficult to solve due to the MN constraints in the tree. Let h(g,) be the objective of .

Linearizing h(p,) and adding a Bregman divergence in , we have:

pitt = argming, cp (Vh(pL), pr) + px By (e, pl)

= argminuTET, <Vh/([1/$_) - vaw(l‘i)a p’7'> + deJ(Hq—) )

If 1)(p, ) is the negative Bethe entropy of g, the update of ™! becomes the Bethe entropy prob-
lem [24]] and can be solved exactly using the sum-product algorithm in linear time for any tree.



3 Convergence Analysis of BADMM

We need the following assumption in establishing the convergence of BADMM:
Assumption 1 (a) f : R"'—RU{+o00} and g : R"2—RU{+00} are closed, proper and convex.
(b) An optimal solution exists.

(c¢) The Bregman divergence By is defined on an a-strongly convex function ¢ with respect to a
p-norm || - |2, i.e., By(u,v) > $|u— V|2, where e > 0.

Assume that {x*, z*, y*} satisfies the KKT conditions of the Lagrangian of (1) (o = 0 in ), ie.,
~ATy* ¢ 9f(x*),-BTy* € 9g(z*) ,Ax* + Bz —c =0, (29)

and x* € X', z* € Z. Note X and Z are always satisfied in and (12). Let f/(x¢41) € Of (X¢41)

and ¢'(z41) € 09(z41). For x* € X,z* € Z, the optimality conditions of (11) and are

(' (1) F AT {ye 4+ p(=V (e~ Axp41) + V(B2 )} px (Vi (Xe1) = Vipx (%0)), X1 —x*) <0,

<9l(Zt+1)+BT{Yt +p(Véd(Bziy1)—Vo(c—Axi11)} +0a(Va(zi41) —Vu(2t)), 2041 — 27) <0
If AXt+1 + BZtJrl = c, then Yi+1 = Yi- Further, if BSOx (Xt+1, Xt) =0, sz (Zt+1, Zt) = 0, then
the KKT conditions in will be satisfied. Therefore, we have the following sufficient conditions
for the KKT conditions:

B, (X¢41,%¢) =0, B, (Z¢41,2¢) =0, (302)
AXt+1 + BZt —c=0 5 AXt+1 + BZt+1 —c=0. (30b)

For the exact BADMM, px = p, = 0 in (T1) and (12), the optimality conditions are (30b), which is
equivalent to the optimality conditions of ADMM [4],i.e., Bz;1—Bz; =0, Ax;11+Bz;y1—c =
0. Define the residuals of optimality conditions at (t+1) as:

R(t+1)= %Bsox(xtﬂ,Xt)Jr%zBsaz(ZtHth)+B¢(C*Axt+1ath)+’Y||AXt+1+BZt+1*C||§ ;3D
where v > 0. If R(t + 1) = 0, the optimality conditions (30a) and (30b) are satisfied. It is sufficient

to show the convergence of BADMM by showing R(t+1) converges to zero. The following theorem
establishes the global convergence for BADMM.

Theorem 1 Let the sequence {x;,z,y:} be generated by BADMM (11)-(13), {x*,z*,y*} sar-
isfy (@) and x* € X,z* € Z. Let the Assumption |I| hold and 7 < («aoc — 27)p, where

o= min{l,m%_l} and 0 < v < 7. Then R(t + 1) converges to zero and {X,2s,y:} con-
verges to a KKT point {x*,z*,y*}.

Remark 1 (a) If0 < p <2, theno = 1 and 7 < (o — 27y)p. The case that 0 < p < 2 includes two
widely used Bregman divergences, i.e., Euclidean distance and KL divergence. For KL divergence
in the unit simplex, we have « = 1,p = 1 in the Assumption(c), ie, KL(u,v) > L|lu—v]|3 2.

(b) Since we often set By, to be a quadratic function (p = 2), the three special cases in Section 2.1
could choose step size T = (a — 2y)p.

(c)If p > 2, o will be small, leading to a small step size T which may be not be necessary in practice.
It would be interesting to see whether a large step size can be used for any p > 0.

The following theorem establishes a O(1/T) iteration complexity for the objective and residual of
constraints in an ergodic sense.

Theorem 2 Let the sequences {x, 2,y } be generated by BADMM ([ 1)-(13). Set 7 < (ao —27)p,
where o = min{l,m%_l} and 0 < v < %2, Let Xp = % Zthl X, Zr = = Zthl z; and yo = 0.
Forany x* € X,z* € Z and (x*,2*,y*) satisfying KKT conditions , we have

F(&r) + 9(ar) — (/) + 9(z) < L
D(w*, wy)

T

where D1 = pBy(Bz*,Bzg) + px B, (X*,X0) + pzBy,(2*,20) and D(w*,wq) = zi—pHy* —
Yoll3 + By(Bz*, Bzo) + 2 By, (x*,%0)+ 22 By, (2", 20).

(32)

||AiT + BZT - C”g S (33)



We consider one special case of BADMM where B = I and &, Z are the unit simplex. Let By
be the KL divergence. For z* € Z C R™*! choosing zg = e/n2, we have By(z*,z¢) =

Sz In ZZO =Y zfInzf +1nny < Inny . Similarly, if px > 0, by choosing xo = e/n1,

By, (x*,%0) < Inny. Settingw = 1,0 = land y = § in Theoremyields the following result:

Corollary 1 Let the sequences {x;,z:,y:} be generated by Bregman ADMM ,, and
Yo = 0. Assume B = 1, and X and Z is the unit simplex. Let By, B,_, B, be KL divergence.

Let X7 = %Zle Xy, ZT = %Zle zi. Set 7 = 2. Forany x* € X,z* € Z and (x*,2*,y")
satisfying KKT conditions (29), we have

fxr) +9g(zr) = (f(x7) + 9(2"))

%p”y*iy()”% +4Inny + 4%1117114»
T )

< plnne 4+ pxInng + p, Inng
= T b)
4

(34)

Pz Inn
o 2

|A%r + Bz —cl|3 < (35)

Remark 2 (a) [2l] shows that MDA yields a smilar O(Inn) bound where n is dimensionality of
the problem. If the diminishing step size of MDA is propotional to \/1lnn, the bound is O(V/1nn).
Therefore, MDA is faster than the gradient descent method by a factor O((n/1Inn)'/?).

(b) In ADMM, By(z*,z0) = 3z* — 20|53 = 5| 320, 25 —zioll3 < 5350, 2] — zioll3 < n.
Therefore, BADMM is faster than ADMM by a factor O(n/Inn) in an ergodic sense.
4 Experimental Results
In this section, we use BADMM to solve the mass transportation problem [18]:
min (C,X) st. Xe=a,X’e=b,X>0. (36)

where (C, X) denotes Tr(CTX), C € R™*" is a cost matrix, X € R™*" a € R™*! b € R™*1,
e is a column vector of ones. The mass transportation problem (36) is a linear program and thus can
be solved by the simplex method.

We now show that (36) can be solved by ADMM and BADMM. We first introduce a variable Z to
split the constraints into two simplex such that Ax = {X|X > 0,Xe = a} and A, = {Z|Z >
0,Z%e =b}. can be rewritten in the following ADMM form:

min (C,X) st Xe€Ax,ZecA,,X=2Z. (37)

can be solved by ADMM which requires the Euclidean projection onto the simplex Ay and
A, although the projection can be done efficiently [9]. We use BADMM to solve (37):

X" = argming 5 (C, X) + (Y', X) + pKL(X, Z") , (38)
2" = argmingea (Y', ~Z) + pKL(Z, X" | (39)
Yt+1 _ Yt + p(Xt—i-l _ Zt+1) . (40)

Both (38) and (39) have closed-form solutions, i.e.,

Cij+Y Y/
il Z}; exp(——-42) - X exp(=2)
Xt = = S, L = b, 1)
Zj:lZijeXp(_ > ) Zi:lXij exp(#)

which are exponentiated graident updates and can be done in O(mn). Besides the sum operation
(O(Inn) or O(Inm)), (41) amounts to elementwise operation and thus can be done in parallel.
According to Corollary |1, BADMM can be faster than ADMM by a factor of O(n/Inn).

We compare BADMM with ADMM and a commercial LP solver Gurobi on the mass transportation
problem with m = n and a = b = e. C is randomly generated from the uniform distribution.
We run the experiments 5 times and the average is reported. We choose the ‘best’parameter for
BADMM (p = 0.001) and ADMM (p = 0.001). The stopping condition is either when the number
of iterations exceeds 2000 or when the primal-dual residual is less than 1074,

BADMM vs ADMM: Figure |1| compares BADMM and ADMM with different dimensions n =
{1000, 2000, 4000} running on a single CPU. Figure plots the primal and dual residual against
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Figure 1: Comparison BADMM and ADMM. BADMM converges faster than ADMM. (a): the
primal and dual residual agaist the runtime. (b): the primal and dual residual over iterations. (c):

The convergence of objective value against the runtime.

Table 1: Comparison of BADMM (GPU) with Gurobi in solving mass transportation problem

number of variables Gurobi (Laptop) Gurobi (Server) BADMM (GPU)
mxmn time (s) | objective | time (s) | objective | time (s) | objective
(219)% > 1 million 4.22 1.69 2.66 1.69 0.54 1.69
(5 x 219)2 > 25 million | 377.14 1.61 92.89 1.61 22.15 1.61
(10 x 219)2 > 0.1 billion - - 1235.34 1.65 117.75 1.65
(15 x 219)2 > 0.2 billion - - - - 303.54 1.63

the runtime when n = 1000, and Figure [I(b)|plots the convergence of primal and dual residual over
iteration when n. = 2000. BADMM converges faster than ADMM. Figure|l(c)|plots the convergence
of objective value against the runtime when n = 4000. BADMM converges faster than ADMM even
when the initial point is further from the optimum.

BADMM vs Gurobi: Gurobi (http://www.gurobi.con/) is a highly optimized commercial software
where linear programming solvers have been efficiently implemented. We run Gurobi on two set-
tings: a Mac laptop with 8G memory and a server with 86G memory, respectively. For comparison,
BADMM is run in parallel on a Tesla M2070 GPU with 5G memory and 448 cores{ﬂ We experi-
ment with large scale problems and use m = n = {1,5,10,15} x 2!°, Table 1 shows the runtime
and the objective values of BADMM and Gurobi, where a ‘-’ indicates the algorithm did not termi-
nate. In spite of Gurobi being one of the most optimized LP solvers, BADMM running in parallel
is several times faster than Gurobi. In fact, for larger values of n, Gurobi did not terminate even
on the 86G server, whereas BADMM was efficient even with just 5G memory! The memory con-
sumption of Gurobi increases rapidly with the increase of n, especially at the scales we consider.
When n = 5 x 2!, the memory required by Gurobi surpassed the memory in the laptop, leading
to the rapid increase of time. A similar situation was also observed in the server with 86G when
n = 10 x 210, In contrast, the memory required by BADMM is O(n?)—even when n = 15 x 210
(more than 0.2 billion parameters), BADMM can still run on a single GPU with only 5G memory.
The results clearly illustrate the promise of BADMM. With more careful implementation and code
optimization, BADMM has the potential to solve large scale problems efficiently in parallel with
small memory foot-print.

5 Conclusions

In this paper, we generalized the alternating direction method of multipliers (ADMM) to Bregman
ADMM, similar to how mirror descent generalizes gradient descent. BADMM defines a unified
framework for ADMM, generalized ADMM, inexact ADMM and Bethe ADMM. The global con-
vergence and the O(1/T) iteration complexity of BADMM are also established. In some cases,
BADMM is faster than ADMM by a factor of O(n/Inn). BADMM is also faster than highly opti-
mized commercial software in solving the linear program of mass transportation problem.
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