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Abstract

Accurate and efficient analysis of multivariate spatio-temporal data is critical in
climatology, geology, and sociology applications. Existing models usually assume
simple inter-dependence among variables, space, and time, and are computation-
ally expensive. We propose a unified low rank tensor learning framework for mul-
tivariate spatio-temporal analysis, which can conveniently incorporate different
properties in spatio-temporal data, such as spatial clustering and shared structure
among variables. We demonstrate how the general framework can be applied to
cokriging and forecasting tasks, and develop an efficient greedy algorithm to solve
the resulting optimization problem with convergence guarantee. We conduct ex-
periments on both synthetic datasets and real application datasets to demonstrate
that our method is not only significantly faster than existing methods but also
achieves lower estimation error.

1 Introduction

Spatio-temporal data provide unique information regarding “where” and “when”, which is essential
to answer many important questions in scientific studies from geology, climatology to sociology. In
the context of big data, we are confronted with a series of new challenges when analyzing spatio-
temporal data because of the complex spatial and temporal dependencies involved.

A plethora of excellent work has been conducted to address the challenge and achieved successes to
a certain extent [8, 13]. Often times, geostatistical models use cross variogram and cross covariance
functions to describe the intrinsic dependency structure. However, the parametric form of cross
variogram and cross covariance functions impose strong assumptions on the spatial and temporal
correlation, which requires domain knowledge and manual work. Furthermore, parameter learning
of those statistical models is computationally expensive, making them infeasible for large-scale
applications.

Cokriging and forecasting are two central tasks in multivariate spatio-temporal analysis. Cokriging
utilizes the spatial correlations to predict the value of the variables for new locations. One widely
adopted method is multitask Gaussian process (MTGP) [4], which assumes a Gaussian process prior
over latent functions to directly induce correlations between tasks. However, for a cokriging task
with M variables of P locations for T time stamps, the time complexity of MTGP is O(M3P 3T )
[4]. For forecasting, popular methods in multivariate time series analysis include vector autoregres-
sive (VAR) models, autoregressive integrated moving average (ARIMA) models, and cointegration
models. An alternative method for spatio-temporal analysis is Bayesian hierarchical spatio-temporal
models with either separable and non-separable space-time covariance functions [6]. Rank reduced
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models have been proposed to capture the inter-dependency among variables [1]. However, very
few models can directly handle the correlations among variables, space and time simultaneously in
a scalable way. In this paper, we aim to address this problem by presenting a unified framework for
many spatio-temporal analysis tasks that are scalable for large-scale applications.

Tensor representation provides a convenient way to capture inter-dependencies along multiple di-
mensions. Therefore it is natural to represent the multivariate spatio-temporal data in tensor. Recent
advances in low rank learning have led to simple models that can capture the commonalities among
each mode of the tensor [15, 20]. Similar argument can be found in the literature of spatial data re-
covery [11], neuroimaging analysis [26], and multi-task learning [20]. Our work builds upon recent
advances in low rank tensor learning [15, 11, 26] and further considers the scenario where additional
side information of data is available. For example, in geo-spatial applications, apart from measure-
ments of multiple variables, geographical information is available to infer location adjacency; in
social network applications, friendship network structure is collected to obtain preference similarity.
To utilize the side information, we can construct a Laplacian regularizer from the similarity matrices,
which favors locally smooth solutions.

We develop a fast greedy algorithm for learning low rank tensors based on the greedy structure
learning framework [2, 24, 21]. Greedy low rank tensor learning is efficient, as it does not require
full singular value decomposition of large matrices as opposed to other alternating direction methods
[11]. We also provide a bound on the difference between the loss function at our greedy solution
and the one at the globally optimal solution. Finally, we present experiment results on simulation
datasets as well as application datasets in climate and social network analysis, which show that our
algorithm is faster and achieves higher prediction accuracy than state-of-art approaches in cokriging
and forecasting tasks.

2 Tensor formulation for multivariate spatio-temporal analysis

The critical element in multivariate spatio-temporal analysis is an efficient way to incorporate the
spatial temporal correlations into modeling and automatically capture the shared structures across
variables, locations, and time. In this section, we present a unified low rank tensor learning frame-
work that can perform various types of spatio-temporal analysis. We will use two important appli-
cations, i.e., cokriging and forecasting, to motivate and describe the framework.

2.1 Cokriging

In geostatistics, cokriging is the task of interpolating the data of one variable for unknown locations
by taking advantage of the observations of variables from known locations. For example, by making
use of the correlations between precipitation and temperature, we can obtain more precise estimate
of temperature in unknown locations than univariate kriging. Formally, denote the complete data
for P locations over T time stamps with M variables as X ∈ RP×T×M . We only observe the
measurements for a subset of locations Ω ⊂ {1, . . . , P} and their side information such as longitude
and latitude. Given the measurements XΩ and the side information, the goal is to estimate a tensor
W ∈ RP×T×M that satisfies WΩ = XΩ. Here XΩ represents the outcome of applying the index
operator IΩ to X:,:,m for all variables m = 1, . . . ,M . The index operator IΩ is a diagonal matrix
whose entries are one for the locations included in Ω and zero otherwise.

Two key consistency principles have been identified for effective cokriging [9, Chapter 6.2]: (1)
Global consistency: the data on the same structure are likely to be similar. (2) Local consistency: the
data in close locations are likely to be similar. The former principle is akin to the cluster assumption
in semi-supervised learning [25]. We incorporate these principles in a concise and computationally
efficient low-rank tensor learning framework.

To achieve global consistency, we constrain the tensorW to be low rank. The low rank assumption
is based on the belief that high correlations exist within variables, locations and time, which leads to
natural clustering of the data. Existing literature have explored the low rank structure among these
three dimensions separately, e.g., multi-task learning [19] for variable correlation, fixed rank kriging
[7] for spatial correlations. Low rankness assumes that the observed data can be described with a
few latent factors. It enforces the commonalities along three dimensions without an explicit form
for the shared structures in each dimension.
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For local consistency, we construct a regularizer via the spatial Laplacian matrix. The Laplacian
matrix is defined as L = D − A, where A is a kernel matrix constructed by pairwise similarity
and diagonal matrix Di,i =

∑
j(Ai,j). Similar ideas have been explored in matrix completion

[16]. In cokriging literature, the local consistency is enforced via the spatial covariance matrix. The
Bayesian models often impose the Gaussian process prior on the observations with the covariance
matrix K = Kv ⊗Kx where Kv is the covariance between variables and Kx is that for locations.
The Laplacian regularization term corresponds to the relational Gaussian process [5] where the
covariance matrix is approximated by the spatial Laplacian.

In summary, we can perform cokriging and find the value of tensor W by solving the following
optimization problem:

Ŵ = argmin
W

{
‖WΩ −XΩ‖2F + µ

M∑
m=1

tr(W>:,:,mLW:,:,m)

}
s.t. rank(W) ≤ ρ, (1)

where the Frobenius norm of a tensor A is defined as ‖A‖F =
√∑

i,j,kA2
i,j,k and µ, ρ > 0

are the parameters that make tradeoff between the local and global consistency, respectively. The
low rank constraint finds the principal components of the tensor and reduces the complexity of
the model while the Laplacian regularizer clusters the data using the relational information among
the locations. By learning the right tradeoff between these two techniques, our method is able to
benefit from both. Due to the various definitions of tensor rank, we use rank as supposition for rank
complexity, which will be specified in later section.

2.2 Forecasting

Forecasting estimates the future value of multivariate time series given historical observations.
For ease of presentation, we use the classical VAR model with K lags and coefficient tensor
W ∈ RP×KP×M as an example. Using the matrix representation, the VAR(K) process defines
the following data generation process:

X:,t,m =W:,:,mXt,m + E:,t,m, for m = 1, . . . ,M and t = K + 1, . . . , T, (2)

where Xt,m = [X>:,t−1,m, . . . ,X>:,t−K,m]> denotes the concatenation ofK-lag historical data before
time t. The noise tensor E is a multivariate Gaussian with zero mean and unit variance .

Existing multivariate regression methods designed to capture the complex correlations, such as
Tucker decomposition [20], are computationally expensive. A scalable solution requires a simpler
model that also efficiently accounts for the shared structures in variables, space, and time. Similar
global and local consistency principles still hold in forecasting. For global consistency, we can use
low rank constraint to capture the commonalities of the variables as well as the spatial correlations
on the model parameter tensor, as in [8]. For local consistency, we enforce the predicted value
for close locations to be similar via spatial Laplacian regularization. Thus, we can formulate the
forecasting task as the following optimization problem over the model coefficient tensorW:

Ŵ = argmin
W

{
‖X̂ − X‖2F + µ

M∑
m=1

tr(X̂>:,:,mLX̂:,:,m)

}
s.t. rank(W) ≤ ρ, X̂:,t,m =W:,:,mXt,m

(3)

Though cokriging and forecasting are two different tasks, we can easily see that both formulations
follow the global and local consistency principles and can capture the inter-correlations from spatial-
temporal data.

2.3 Unified Framework

We now show that both cokriging and forecasting can be formulated into the same tensor learning
framework. Let us rewrite the loss function in Eq. (1) and Eq. (3) in the form of multitask regression
and complete the quadratic form for the loss function. The cokriging task can be reformulated as
follows:

Ŵ = argmin
W

{
M∑
m=1

‖W:,:,mH − (H>)−1XΩ,m‖2F

}
s.t. rank(W) ≤ ρ (4)
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where we define HH> = IΩ + µL.1 For the forecasting problem, HH> = IP + µL and we have:

Ŵ = argmin
W

{
M∑
m=1

T∑
t=K+1

‖HW:,:,mXt,m − (H−1)X:,t,m‖2F

}
s.t. rank(W) ≤ ρ, (5)

By slight change of notation (cf. Appendix D), we can easily see that the optimal solution of both
problems can be obtained by the following optimization problem with appropriate choice of tensors
Y and V:

Ŵ = argmin
W

{
M∑
m=1

‖W:,:,mY:,:,m − V:,:,m‖2F

}
s.t. rank(W) ≤ ρ. (6)

After unifying the objective function, we note that tensor rank has different notions such as CP
rank, Tucker rank and mode n-rank [15, 11]. In this paper, we choose the mode-n rank, which is
computationally more tractable [11, 23]. The mode-n rank of a tensorW is the rank of its mode-n
unfoldingW(n).2 In particular, for a tensorW with N mode, we have the following definition:

mode-n rank(W) =

N∑
n=1

rank(W(n)). (7)

A common practice to solve this formulation with mode n-rank constraint is to relax the rank con-
straint to a convex nuclear norm constraint [11, 23]. However, those methods are computationally
expensive since they need full singular value decomposition of large matrices. In the next section,
we present a fast greedy algorithm to tackle the problem.

3 Fast greedy low rank tensor learning

To solve the non-convex problem in Eq. (6) and find its optimal solution, we propose a greedy
learning algorithm by successively adding rank-1 estimation of the mode-n unfolding. The main
idea of the algorithm is to unfold the tensor into a matrix, seek for its rank-1 approximation and
then fold back into a tensor with same dimensionality. We describe this algorithm in three steps:
(i) First, we show that we can learn rank-1 matrix estimations efficiently by solving a generalized
eigenvalue problem, (ii) We use the rank-1 matrix estimation to greedily solve the original tensor
rank constrained problem, and (iii) We propose an enhancement via orthogonal projections after
each greedy step.

Optimal rank-1 Matrix Learning The following lemma enables us to find such optimal rank-1
estimation of the matrices.
Lemma 1. Consider the following rank constrained problem:

Â1 = argmin
A:rank(A)=1

{
‖Y −AX‖2F

}
, (8)

where Y ∈ Rq×n, X ∈ Rp×n, and A ∈ Rq×p. The optimal solution of Â1 can be written as
Â1 = ûv̂>, ‖v̂‖2 = 1 where v̂ is the dominant eigenvector of the following generalized eigenvalue
problem:

(XY >Y X>)v = λ(XX>)v (9)
and û can be computed as

û =
1

v̂>XX>v̂
Y X>v̂. (10)

Proof is deferred to Appendix A. Eq. (9) is a generalized eigenvalue problem whose dominant
eigenvector can be found efficiently [12]. If XX> is full rank, as assumed in Theorem 2, the
problem is simplified to a regular eigenvalue problem whose dominant eigenvector can be efficiently
computed.

1We can use Cholesky decomposition to obtain H . In the rare cases that IΩ + µL is not full rank, εIP is
added where ε is a very small positive value.

2The mode-n unfolding of a tensor is the matrix resulting from treating n as the first mode of the matrix,
and cyclically concatenating other modes. Tensor refolding is the reverse direction operation [15].
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Algorithm 1 Greedy Low-rank Tensor Learning
1: Input: transformed data Y,V of M variables, stopping criteria η
2: Output: N mode tensorW
3: InitializeW ← 0
4: repeat
5: for n = 1 to N do
6: Bn ← argmin

B: rank(B)=1

L(refold(W(n) +B);Y,V)

7: ∆n ← L(W;Y,V)− L(refold(W(n) +Bn);Y,V)
8: end for
9: n∗ ← argmax

n
{∆n}

10: if ∆n∗ > η then
11: W ←W + refold(Bn∗ , n

∗)
12: end if
13: W ← argminrow(A(1))⊆row(W(1))

col(A(1))⊆col(W(1))

L(A;Y,V) # Optional Orthogonal Projection Step.

14: until ∆n∗ < η

Greedy Low n-rank Tensor Learning The optimal rank-1 matrix learning serves as a basic ele-
ment in our greedy algorithm. Using Lemma 1, we can solve the problem in Eq. (6) in the Forward
Greedy Selection framework as follows: at each iteration of the greedy algorithm, it searches for the
mode that gives the largest decrease in the objective function. It does so by unfolding the tensor in
that mode and finding the best rank-1 estimation of the unfolded tensor. After finding the optimal
mode, it adds the rank-1 estimate in that mode to the current estimation of the tensor. Algorithm
1 shows the details of this approach, where L(W;Y,V) =

∑M
m=1 ‖W:,:,mY:,:,m − V:,:,m‖2F . Note

that we can find the optimal rank-1 solution in only one of the modes, but it is enough to guarantee
the convergence of our greedy algorithm.

Theorem 2 bounds the difference between the loss function evaluated at each iteration of the greedy
algorithm and the one at the globally optimal solution.

Theorem 2. Suppose in Eq. (6) the matrices Y>:,:,mY:,:,m for m = 1, . . . ,M are positive definite.
The solution of Algo. 1 at its kth iteration step satisfies the following inequality:

L(Wk;Y,V)− L(W∗;Y,V) ≤
(‖Y‖2‖W∗(1)‖∗)

2

(k + 1)
, (11)

whereW∗ is the global minimizer of the problem in Eq. (6) and ‖Y‖2 is the largest singular value
of a block diagonal matrix created by placing the matrices Y(:, :,m) on its diagonal blocks.

The detailed proof is given in Appendix B. The key idea of the proof is that the amount of decrease
in the loss function by each step in the selected mode is not smaller than the amount of decrease if we
had selected the first mode. The theorem shows that we can obtain the same rate of convergence for
learning low rank tensors as achieved in [22] for learning low rank matrices. The greedy algorithm
in Algorithm 1 is also connected to mixture regularization in [23]: the mixture approach decomposes
the solution into a set of low rank structures while the greedy algorithm successively learns a set of
rank one components.

Greedy Algorithm with Orthogonal Projections It is well-known that the forward greedy algo-
rithm may make steps in sub-optimal directions because of noise. A common solution to alleviate the
effect of noise is to make orthogonal projections after each greedy step [2, 21]. Thus, we enhance the
forward greedy algorithm by projecting the solution into the space spanned by the singular vectors
of its mode-1 unfolding. The greedy algorithm with orthogonal projections performs an extra step in
line 13 of Algorithm 1: It finds the top k singular vectors of the solution: [U, S, V ]← svd(W(1), k)
where k is the iteration number. Then it finds the best solution in the space spanned by U and V by
solving Ŝ ← minS L(USV >,Y,V) which has a closed form solution. Finally, it reconstructs the
solution: W ← refold(UŜV >, 1). Note that the projection only needs to find top k singular vectors
which can be computed efficiently for small values of k.
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Figure 1: Tensor estimation performance comparison on the synthetic dataset over 10 random runs.
(a) parameter Estimation RMSE with training time series length, (b) Mixture Rank Complexity with
training time series length, (c) running time for one single round with respect to number of variables.

4 Experiments

We evaluate the efficacy of our algorithms on synthetic datasets and real-world application datasets.

4.1 Low rank tensor learning on synthetic data

For empirical evaluation, we compare our method with multitask learning (MTL) algorithms, which
also utilize the commonalities between different prediction tasks for better performance. We use the
following baselines: (1) Trace norm regularized MTL (Trace), which seeks the low rank structure
only on the task dimension; (2) Multilinear MTL [20], which adapts the convex relaxation of low
rank tensor learning solved with Alternating Direction Methods of Multiplier (ADMM) [10] and
Tucker decomposition to describe the low rankness in multiple dimensions; (3) MTL-L1 , MTL-L21

[19], and MTL-LDirty [14], which investigate joint sparsity of the tasks with Lp norm regularization.
For MTL-L1 , MTL-L21 [19] and MTL-LDirty, we use MALSAR Version 1.1 [27].

We construct a model coefficient tensor W of size 20 × 20 × 10 with CP rank equals to 1.
Then, we generate the observations Y and V according to multivariate regression model V:,:,m =
W:,:,mY:,:,m+E:,:,m form = 1, . . . ,M , where E is tensor with zero mean Gaussian noise elements.
We split the synthesized data into training and testing time series and vary the length of the training
time series from 10 to 200. For each training length setting, we repeat the experiments for 10 times
and select the model parameters via 5-fold cross validation. We measure the prediction performance
via two criteria: parameter estimation accuracy and rank complexity. For accuracy, we calculate the
RMSE of the estimation versus the true model coefficient tensor. For rank complexity, we calculate
the mixture rank complexity [23] as MRC = 1

n

∑N
n=1 rank(W(n)).

The results are shown in Figure 1(a) and 1(b). We omit the Tucker decomposition as the results are
not comparable. We can clearly see that the proposed greedy algorithm with orthogonal projections
achieves the most accurate tensor estimation. In terms of rank complexity, we make two observa-
tions: (i) Given that the tensor CP rank is 1, greedy algorithm with orthogonal projections produces
the estimate with the lowest rank complexity. This can be attributed to the fact that the orthogonal
projections eliminate the redundant rank-1 components that fall in the same spanned space. (ii) The
rank complexity of the forward greedy algorithm increases as we enlarge the sample size. We be-
lieve that when there is a limited number of observations, most of the new rank-1 elements added
to the estimate are not accurate and the cross-validation steps prevent them from being added to the
model. However, as the sample size grows, the rank-1 estimates become more accurate and they are
preserved during the cross-validation.

To showcase the scalability of our algorithm, we vary the number of variables and generate a series
of tensorW ∈ R20×20×M for M from 10 to 100 and record the running time (in seconds) for three
tensor learning algorithms, i.e, forward greedy, greedy with orthogonal projections and ADMM. We
measure the run time on a machine with a 6-core 12-thread Intel Xenon 2.67GHz processor and
12GB memory. The results are shown in Figure 1(c). The running time of ADMM increase rapidly
with the data size while the greedy algorithm stays steady, which confirms the speedup advantage
of the greedy algorithm.
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Table 1: Cokriging RMSE of 6 methods averaged over 10 runs. In each run, 10% of the locations
are assumed missing.

DATASET ADMM FORWARD ORTHOGONAL SIMPLE ORDINARY MTGP
USHCN 0.8051 0.7594 0.7210 0.8760 0.7803 1.0007
CCDS 0.8292 0.5555 0.4532 0.7634 0.7312 1.0296
YELP 0.7730 0.6993 0.6958 NA NA NA

FOURSQUARE 0.1373 0.1338 0.1334 NA NA NA

4.2 Spatio-temporal analysis on real world data

We conduct cokriging and forecasting experiments on four real-world datasets:

USHCN The U.S. Historical Climatology Network Monthly (USHCN)3 dataset consists of
monthly climatological data of 108 stations spanning from year 1915 to 2000. It has three cli-
mate variables: (1) daily maximum, (2) minimum temperature averaged over month, and (3) total
monthly precipitation.

CCDS The Comprehensive Climate Dataset (CCDS)4 is a collection of climate records of North
America from [18]. The dataset was collected and pre-processed by five federal agencies. It contains
monthly observations of 17 variables such as Carbon dioxide and temperature spanning from 1990 to
2001. The observations were interpolated on a 2.5×2.5 degree grid, with 125 observation locations.

Yelp The Yelp dataset5 contains the user rating records for 22 categories of businesses on Yelp
over ten years. The processed dataset includes the rating values (1-5) binned into 500 time intervals
and the corresponding social graph for 137 active users. The dataset is used for the spatio-temporal
recommendation task to predict the missing user ratings across all business categories.

Foursquare The Foursquare dataset [17] contains the users’ check-in records in Pittsburgh area
from Feb 24 to May 23, 2012, categorized by different venue types such as Art & Entertainment,
College & University, and Food. The dataset records the number of check-ins by 121 users in each
of the 15 category of venues over 1200 time intervals, as well as their friendship network.

4.2.1 Cokriging

We compare the cokriging performance of our proposed method with the classical cokriging ap-
proaches including simple kriging and ordinary cokriging with nonbias condition [13] which are
applied to each variables separately. We further compare with multitask Gaussian process (MTGP)
[4] which also considers the correlation among variables. We also adapt ADMM for solving the
nuclear norm relaxed formulation of the cokriging formulation as a baseline (see Appendix C for
more details). For USHCN and CCDS, we construct a Laplacian matrix by calculating the pairwise
Haversine distance of locations. For Foursquare and Yelp, we construct the graph Laplacian from
the user friendship network.

For each dataset, we first normalize it by removing the trend and diving by the standard deviation.
Then we randomly pick 10% of locations (or users for Foursquare) and eliminate the measurements
of all variables over the whole time span. Then, we produce the estimates for all variables of each
timestamp. We repeat the procedure for 10 times and report the average prediction RMSE for all
timestamps and 10 random sets of missing locations. We use the MATLAB Kriging Toolbox6 for
the classical cokriging algorithms and the MTGP code provided by [4].

Table 1 shows the results for the cokriging task. The greedy algorithm with orthogonal projections is
significantly more accurate in all three datasets. The baseline cokriging methods can only handle the
two dimensional longitude and latitude information, thus are not applicable to the Foursquare and
Yelp dataset with additional friendship information. The superior performance of the greedy algo-
rithm can be attributed to two of its properties: (1) It can obtain low rank models and achieve global
consistency; (2) It usually has lower estimation bias compared to nuclear norm relaxed methods.

3http://www.ncdc.noaa.gov/oa/climate/research/ushcn
4http://www-bcf.usc.edu/˜liu32/data/NA-1990-2002-Monthly.csv
5http://www.yelp.com/dataset_challenge
6http://globec.whoi.edu/software/kriging/V3/english.html
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Table 2: Forecasting RMSE for VAR process with 3 lags, trained with 90% of the time series.

DATASET TUCKER ADMM FORWARD ORTHO ORTHONL TRACE MTLl1 MTLl21 MTLdirty

USHCN 0.8975 0.9227 0.9171 0.9069 0.9175 0.9273 0.9528 0.9543 0.9735
CCDS 0.9438 0.8448 0.8810 0.8325 0.8555 0.8632 0.9105 0.9171 1.0950
FSQ 0.1492 0.1407 0.1241 0.1223 0.1234 0.1245 0.1495 0.1495 0.1504

Table 3: Running time (in seconds) for cokriging and forecasting.
COKRIGING FORECASTING

DATASET USHCN CCDS YELP FSQ USHCN CCDS FSQ
ORTHO 93.03 16.98 78.47 91.51 75.47 21.38 37.70
ADMM 791.25 320.77 2928.37 720.40 235.73 45.62 33.83

4.2.2 Forecasting

We present the empirical evaluation on the forecasting task by comparing with multitask regression
algorithms. We split the data along the temporal dimension into 90% training set and 10% testing
set. We choose VAR(3) model and during the training phase, we use 5-fold cross-validation.

As shown in Table 2, the greedy algorithm with orthogonal projections again achieves the best pre-
diction accuracy. Different from the cokriging task, forecasting does not necessarily need the cor-
relations of locations for prediction. One might raise the question as to whether the Laplacian reg-
ularizer helps. Therefore, we report the results for our formulation without Laplacian (ORTHONL)
for comparison. For efficiency, we report the running time (in seconds) in Table 3 for both tasks of
cokriging and forecasting. Compared with ADMM, which is a competitive baseline also capturing
the commonalities among variables, space, and time, our greedy algorithm is much faster for most
datasets.

Figure 2: Map of most predictive regions
analyzed by the greedy algorithm using 17
variables of the CCDS dataset. Red color
means high predictiveness whereas blue de-
notes low predictiveness.

As a qualitative study, we plot the map of most pre-
dictive regions analyzed by the greedy algorithm us-
ing CCDS dataset in Fig. 2. Based on the concept
of how informative the past values of the climate
measurements in a specific location are in predict-
ing future values of other time series, we define the
aggregate strength of predictiveness of each region
as w(t) =

∑P
p=1

∑M
m=1 |Wp,t,m|. We can see that

two regions are identified as the most predictive re-
gions: (1) The southwest region, which reflects the
impact of the Pacific ocean and (2) The southeast re-
gion, which frequently experiences relative sea level
rise, hurricanes, and storm surge in Gulf of Mexico.
Another interesting region lies in the center of Col-
orado, where the Rocky mountain valleys act as a
funnel for the winds from the west, providing locally
divergent wind patterns.

5 Conclusion
In this paper, we study the problem of multivariate spatio-temporal data analysis with an emphasis
on two tasks: cokriging and forecasting. We formulate the problem into a general low rank tensor
learning framework which captures both the global consistency and the local consistency principle.
We develop a fast and accurate greedy solver with theoretical guarantees for its convergence. We
validate the correctness and efficiency of our proposed method on both the synthetic dataset and real-
application datasets. For future work, we are interested in investigating different forms of shared
structure and extending the framework to capture non-linear correlations in the data.
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