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Abstract

The prediction of time-changing variances is an important task in the modeling of
financial data. Standard econometric models are often limited as they assume rigid
functional relationships for the evolution of the variance. Moreover, functional
parameters are usually learned by maximum likelihood, which can lead to over-
fitting. To address these problems we introduce GP-Vol, a novel non-parametric
model for time-changing variances based on Gaussian Processes. This new model
can capture highly flexible functional relationships for the variances. Furthermore,
we introduce a new online algorithm for fast inference in GP-Vol. This method
is much faster than current offline inference procedures and it avoids overfitting
problems by following a fully Bayesian approach. Experiments with financial data
show that GP-Vol performs significantly better than current standard alternatives.

1 Introduction

Time series of financial returns often exhibit heteroscedasticity, that is the standard deviation or
volatility of the returns is time-dependent. In particular, large returns (either positive or negative) are
often followed by returns that are also large in size. The result is that financial time series frequently
display periods of low and high volatility. This phenomenon is known as volatility clustering [1].
Several univariate models have been proposed in the literature for capturing this property. The best
known and most popular is the Generalised Autoregressive Conditional Heteroscedasticity model
(GARCH) [2]. An alternative to GARCH are stochastic volatility models [3]]. However, there is no
evidence that SV models have better predictive performance than GARCH [4, 5, 6]

GARCH has further inspired a host of variants and extensions. A review of many of these models
can be found in [7]. Most of these GARCH variants attempt to address one or both limitations of
GARCH: a) the assumption of a linear dependency between current and past volatilities, and b)
the assumption that positive and negative returns have symmetric effects on volatility. Asymmetric
effects are often observed, as large negative returns often send measures of volatility soaring, while
this effect is smaller for large positive returns [8, |9]. Finally, there are also extensions that use
additional data besides daily closing prices to improve volatility predictions [10].

Most solutions proposed in these variants of GARCH involve: a) introducing nonlinear functional
relationships for the evolution of volatility, and b) adding asymmetric effects in these functional
relationships. However, the GARCH variants do not fundamentally address the problem that the
specific functional relationship of the volatility is unknown. In addition, these variants can have a
high number of parameters, which may lead to overfitting when using maximum likelihood learning.

More recently, volatility modeling has received attention within the machine learning community,
with the development of copula processes [11] and heteroscedastic Gaussian processes [12]]. These



models leverage the flexibility of Gaussian Processes [13]] to model the unknown relationship be-
tween the variances. However, these models do not address the asymmetric effects of positive and
negative returns on volatility.

We introduce a new non-parametric volatility model, called the Gaussian Process Volatility Model
(GP-Vol). This new model is more flexible, as it is not limited by a fixed functional form. Instead, a
non-parametric prior distribution is placed on possible functions, and the functional relationship is
learned from the data. This allows GP-Vol to explicitly capture the asymmetric effects of positive
and negative returns on volatility. Our new volatility model is evaluated in a series of experiments
with real financial returns, and compared against popular econometric models, namely, GARCH,
EGARCH [14] and GJR-GARCH [15]. In these experiments, GP-Vol produces the best overall
predictions. In addition to this, we show that the functional relationship learned by GP-Vol often
exhibits the nonlinear and asymmetric features that previous models attempt to capture.

The second main contribution of the paper is the development of an online algorithm for learning
GP-Vol. GP-Vol is an instance of a Gaussian Process State Space Model (GP-SSM). Previous work
on GP-SSMs [16} [17, [18]] has mainly focused on developing approximation methods for filtering
and smoothing the hidden states in GP-SSM, without jointly learning the GP transition dynamics.
Only very recently have Frigola et al. [19] addressed the problem of learning both the hidden states
and the transition dynamics by using Particle Gibbs with Ancestor Sampling (PGAS) [20]]. In this
paper, we introduce a new online algorithm for performing inference on GP-SSMs. Our algorithm
has similar predictive performance as PGAS on financial data, but is much faster.

2 Review of GARCH and GARCH variants

The standard variance model for financial data is GARCH. GARCH assumes a Gaussian observation
model and a linear transition function for the variance: the time-varying variance o7 is linearly
dependent on p previous variance values and ¢ previous squared time series values, that is,
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where x; are the values of the return time series being modeled. This model is flexible and can
produce a variety of clustering behaviors of high and low volatility periods for different settings
of aq,...,aq and By, ..., 5,. However, it has several limitations. First, only linear relationships
between Jtz_p:t_l and o? are allowed. Second, past positive and negative returns have the same
effect on o7 due to the quadratic term z7_ ;- However, it is often observed that large negative returns
lead to larger rises in volatility than large positive returns [8} 9].

A more flexible and often cited GARCH extension is Exponential GARCH (EGARCH) [14]. The
equation for o7 is now:

log(a7) = ao + >20_) jg(we—j) + 27—, Bilog(a7 ), where g(x;) = 0z + Axe| . (2)

Asymmetry in the effects of positive and negative returns is introduced through the function g(z). If
the coefficient € is negative, negative returns will increase volatility, while the opposite will happen
if 0 is positive. Another GARCH extension that models asymmetric effects is GIR-GARCH [[15]]:
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where I;_j, = 0if x;,_; > 0 and I,_; = 1 otherwise. The asymmetric effect is now captured by
I; 1., which is nonzero if z;_; < 0.

3 Gaussian process state space models

GARCH, EGARCH and GJR-GARCH can be all represented as General State-Space or Hidden
Markov models (HMM) [21, 22]], with the unobserved dynamic variances being the hidden states.
Transition functions for the hidden states are fixed and assumed to be linear in these models. The
linear assumption limits the flexibility of these models.

More generally, a non-parametric approach can be taken where a Gaussian Process (GP) prior is
placed on the transition function, so that its functional form can be learned from data. This Gaussian
Process state space model (GP-SSM) is a generalization of HMM. GP-SSM and HMM differ in two
main ways. First, in HMM the transition function has a fixed functional form, while in GP-SSM
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Figure 1: Left, graphical model for GP-Vol. The transitions of the hidden states v, is represented by
the unknown function f. f takes as inputs the previous state v;_; and previous observation x;_j.
Middle, 90% posterior interval for a. Right, 90% posterior interval for b.

it is represented by a GP. Second, in GP-SSM the states do not have Markovian structure once the
transition function is marginalized out.

The flexibility of GP-SSMs comes at a cost: inference in GP-SSMs is computationally challenging.
Because of this, most of the previous work on GP-SSMs [16, [17, (18] has focused on filtering and
smoothing the hidden states in GP-SSM, without jointly learning the GP dynamics. Note that in
[18], the authors learn the dynamics, but using a separate dataset in which both input and target
values for the GP model are observed. A few papers considered learning both the GP dynamics and
the hidden states for special cases of GP-SSMs. For example, [23]] applied EM to obtain maximum
likelihood estimates for parametric systems that can be represented by GPs. A general method has
been recently proposed for joint inference on the hidden states and the GP dynamics using Particle
Gibbs with Ancestor Sampling (PGAS) [20! [19]. However, PGAS is a batch MCMC inference
method that is computationally very expensive.

4 Gaussian process volatility model

Our new Gaussian Process Volatility Model (GP-Vol) is an instance of GP-SSM:

z ~ N(0,07), vy == log(07) = f(ve—1,@e—1) + € e ~N(0,07). 4
Note that we model the logarithm of the variance, which has real support. Equation defines
a GP-SMM. We place a GP prior on the transition function f. Let z; = (v, a¢). Then f ~
GP(m, k) where m(z;) and k(z, z;) are the GP mean and covariance functions, respectively. The
mean function can encode prior knowledge of the system dynamics. The covariance function gives
the prior covariance between function values: k(z¢, z;) = Cov(f(zt), f(2;)) . Intuitively if z; and z;

are close to each other, the covariances between the corresponding function values should be large:
f(z¢) and f(z;) should be highly correlated.

The graphical model for GP-Vol is given in Figure[I] The explicit dependence of transition function
values on the previous return x;_1 enables GP-Vol to model the asymmetric effects of positive and
negative returns on the variance evolution. GP-Vol can be extended to depend on p previous log
variances and g past returns like in GARCH(p,q). In this case, the transition would be of the form
Ut = f(vt—lv Vt—25 -1y Ut—pa Tt—15Lt—2 ey xt—q) + €t.

S Bayesian inference in GP-Vol

In the standard GP regression setting, the inputs and targets are fully observed and f can be learned
using exact Bayesian inference [13]. However, this is not the case in GP-Vol, where the unknown
{v:} form part of the inputs and all the targets. Let 6 denote the model hyper-parameters and let
f =[f(v1),..., f(vr)]. Directly learning the joint posterior of the unknown variables f, v1. and
0 is a challenging task. Fortunately, the posterior p(v¢|0, x1.+), where f has been marginalized out,
can be approximated with particles [24]. We first describe a standard sequential Monte Carlo (SMC)
particle filter to learn this posterior.

Let {v!,_ 1}, be particles representing chains of states up to ¢ — 1 with corresponding normalized
weights W/_,. The posterior p(v1.;1|0,z1.¢+—1) is then approximated by

PV1:-110, T1:0-1) = Yoy Wi 10y, (via—1) - &)



The corresponding posterior for vy.; can be approximated by propagating these particles forward.
For this, we propose new states from the GP-Vol transition model and then we importance-weight

them according to the GP-Vol observation model. Specifically, we resample particles v{:t% from
(3) according to their weights W} _,, and propagate the samples forward. Then, for each of the

particles propagated forward, we propose vg from p(v;|0, U{:t—la %1.t—1), which is the GP predictive
distribution. The proposed particles are then importance-weighted according to the observation
model, that is, W} o p(¢]0,v]) = N (2|0, exp{v] }).

The above setup assumes that 6 is known. To learn these hyper-parameters, we can also encode them
in particles and filter them together with the hidden states. However, since 6 is constant across time,
naively filtering such particles without regeneration will fail due to particle impoverishment, where
a few or even one particle receives all the weight. To solve this problem, the Regularized Auxiliary
Particle Filter (RAPF) regenerates parameter particles by performing kernel smoothing operations
[25]. This introduces artificial dynamics and estimation bias. Nevertheless, RAPF has been shown
to produce state-of-the-art inference in multivariate parametric financial models [6].

RAPF was designed for HMMs, but GP-Vol is non-Markovian once f is marginalized out. Therefore,
we design a new version of RAPF for non-Markovian systems and refer to it as the Regularized
Auxiliary Particle Chain Filter (RAPCF), see Algorithm [I] There are two main parts in RAPCFE.
First, there is the Auxiliary Particle Filter (APF) part in lines 5, 6 and 7 of the pseudocode [26].
This part selects particles associated with high expected likelihood, as given by the new expected
state in (7) and the corresponding resampling weight in (8). This bias towards particles with high
expected likelihood is eliminated when the final importance weights are computed in (9). The most
promising particles are propagated forward in lines 8 and 9. The main difference between RAPF and
RAPCF is in the effect that previous states v%., ; have in the propagation of particles. In RAPCF
all the previous states determine the probabilities of the particles being propagated, as the model is
non-Markovian, while in RAPF these probabilities are only determined by the last state v{_;. The
second part of RAPCF avoids particle impoverishment in 8. For this, new particles are generated
in line 10 by sampling from a Gaussian kernel. The over-dispersion introduced by these artificial
dynamics is eliminated in (6) by shrinking the particles towards their empirical average. We fix the
shrinking parameter A to be 0.95. In practice, we found little difference in predictions when we
varied A from 0.99 to 0.95.

RAPCF has limitations similar to those of RAPF. First, it introduces bias as sampling from the
kernel adds artificial dynamics. Second, RAPCF only filters forward and does not smooth backward.
Consequently, there will be impoverishment in distant ancestors v;_y, since these states are not
regenerated. When this occurs, GP-Vol will consider the collapsed ancestor states as inputs with
little uncertainty and the predictive variance near these inputs will be underestimated. These issues
can be addressed by adopting a batch MCMC approach. In particular, Particle Markov Chain Monte
Carlo (PMCMC) procedures [24] established a framework for learning the states and the parameters
in general state space models. Additionally, [20] developed a PMCMC algorithm called Particle
Gibbs with ancestor sampling (PGAS) for learning non-Markovian state space models. PGAS was
applied by [19] to learn GP-SSMs. These batch MCMC methods are computationally much more
expensive than RAPCF. Furthermore, our experiments show that in the GP-Vol model, RAPCF and
PGAS have similar empirical performance, while RAPCF is orders of magnitude faster than PGAS.
This indicates that the aforementioned issues have limited impact in practice.

6 Experiments

We performed three sets of experiments. First, we tested on synthetic data whether we can jointly
learn the hidden states and transition dynamics in GP-Vol using RAPCF. Second, we compared
the performance of GP-Vol against standard econometric models GARCH, EGARCH and GJR-
GARCH on fifty real financial time series. Finally, we compared RAPCF with the batch MCMC
method PGAS in terms of accuracy and execution time. The code for RAPCF in GP-Vol is publicly
available at http://jmhl.org.

6.1 Experiments with synthetic data

We generated ten synthetic datasets of length 7' = 100 according to ). The transition function f is
sampled from a GP prior specified with a linear mean function and a squared exponential covariance
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Algorithm 1 RAPCF
1: Input: data x1.7, number of particles N, shrinkage parameter 0 < \ < 1, prior p(6).
2: Sample N parameter particles from the prior: {6}};—1.. n ~ p(0).
3: Set initial importance weights, W} = 1/N.
4: fort =1to T do ~
5 Shrink parameter particles towards their empirical mean 8;_; = vazl W} ,6:_, by setting

0; = \0;_, + (1 - M0, 1. (©6)
6:  Compute the new expected states:
/’l’; :E(U”azvvi:t—laxl:t—l)' (7
7:  Compute importance weights proportional to the likelihood of the new expected states:
gt o< Wi_yp(at|pi, 07) - (8)

8:  Resample N auxiliary indices {j} according to weights {g:}. .
. Propagate the corresponding chains of hidden states forward, that is, {v]., ;};cs.
10:  Add jitter: 0{ ~N (0{ ,(1— )\Q)Vp—l), where V;_ is the empirical covariance of 6;_1.
11:  Propose new states v] ~ p(v|07,v].,_1,Z1:4—1).
12:  Compute importance weights adjusting for the modified proposal:
Wtj ocp(xﬂvi,@f)/p(xtmi,@{), €))
13: end for ] ) )
14: Output: particles for chains of states v] ., particles for parameters 8; and particle weights W} .

function. The linear mean function is E(v;) = m(vi—1,2¢t—1) = avi—1 + bxi—1. The squared
exponential covariance function is k(y, z) = yexp(—0.5|y — z|?/I?) where [ is the length-scale
parameter and -y is the amplitude parameter.

We used RAPCEF to learn the hidden states v1.7 and the hyper-parameters @ = (a,b, o, 7, 1) using
non-informative diffuse priors for 6. In these experiments, RAPCF successfully recovered the state
and the hyper-parameter values. For the sake of brevity, we only include two typical plots of the 90%
posterior intervals for hyper-parameters a and b in the middle and right of Figures|l| The intervals
are estimated from the filtered particles for a and b at each time step ¢. In both plots, the posterior
intervals eventually concentrate around the true parameter values, shown as dotted blue lines.

6.2 Experiments with real data

We compared the predictive performances of GP-Vol, GARCH, EGARCH and GJR-GARCH on real
financial datasets. We used GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1,1) models since
these variants have the least number of parameters and are consequently less affected by overfitting
problems. We considered fifty datasets, consisting of thirty daily Equity and twenty daily foreign
exchange (FX) time series. For the Equity series, we used daily closing prices. For FX, which
operate 24h a day, with no official daily closing prices, we cross-checked different pricing sources
and took the consensus price up to 4 decimal places at 10am New York, which is the time with
most market liquidity. Each of the resulting time series contains a total of 7' = 780 observations
from January 2008 to January 2011. The price data p;.; was pre-processed to eliminate prices
corresponding to times when markets were closed or not liquid. After this, prices were converted
into logarithmic returns, z; = log(p:/p:—1). Finally, the resulting returns were standardized to have
zero mean and unit standard deviation.

During the experiments, each method receives an initial time series of length 100. The different
models are trained on that data and then a one-step forward prediction is made. The performance of
each model is measured in terms of the predictive log-likelihood on the first return out of the training
set. Then the training set is augmented with the new observation and the training and prediction steps
are repeated. The whole process is repeated sequentially until no further data is received.

GARCH, EGARCH and GJR-GARCH were implemented using numerical optimization routines
provided by Kevin Sheppard [ﬂ A relatively long initial time series of length 100 was needed to
to train these models. Using shorter initial data resulted in wild jumps in the maximum likelihood

'http:///www.kevinsheppard.com/wiki/UCSD_GARCH/
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Figure 2: Comparison between GP-Vol, GARCH, EGARCH and GJR-GARCH via a Nemenyi test.
The figure shows the average rank across datasets of each method (horizontal axis). The methods
whose average ranks differ more than a critical distance (segment labeled CD) show significant
differences in performance at this confidence level. When the performances of two methods are
statistically different, their corresponding average ranks appear disconnected in the figure.

estimates of the model parameters. These large fluctuations produced very poor one-step forward
predictions. By contrast, GP-Vol is less susceptible to overfitting since it approximates the posterior
distribution using RAPCF instead of finding point estimates of the model parameters. We placed
broad non-informative priors on 8 = (a,b,0,,7,l) and used N = 200 particles and shrinkage
parameter A = .95 in RAPCF.

Dataset GARCH EGARCH GJR  GP-Vol

AUDUSD -1.303 —-1.514 —1.305 —1.297

BRLUSD -1.203 —1.227 —1.201 —1.180

CADUSD —1.402 —1.409 —1.402 —1.386

CHFUSD —-1.375 —1.404 —1.404 —1.359

CZKUSD —1.422 —1.473 —1.422 —1.456 Dataset GARCH EGARCH GJR  GP-Vol Dataset GARCH EGARCH GJR GP-Vol
EURUSD —-1.418 —-2.120 —1.426 —1.403 A —1.304 —1.449 —1.281 —1.282 AFL —-1.057 —-1.126 —1.061 —0.997
GBPUSD —-1.382 —3.511 —1.386 —1.385 AA —1.228 —-1.280 —1.230 —1.218 AGN  —-1.270 -1.338 —1.261 —1.274
IDRUSD —-1.223 —-1.244 —1.209 —1.039 AAPL -1.234 —-1.358 —1.219 —1.212 AIG —-1.151 —1.256 —1.195 —1.069
JPYUSD —1.350 —2.704 —1.355 —1.347 ABC —1.341 -1.976 —1.344 —1.337 AIV —1.111 -1.147 —-1.1285 —-1.133
KRWUSD -1.189 -1.168 —1.209 —1.154 ABT —1.295 -1.527 —1.3003 —1.302 AlZ —1.423 -1.816 —1.469 -1.362
MXNUSD —-1.220 -3.438 —1.278 —1.167 ACE —1.084 —2.025 —1.106 —1.073 AKAM —-1.230 -1.312 —1.229 —1.246
MYRUSD —-1.394 —1.412 —-1.395 —1.392 ADBE -1.335 -1.501 —1.386 —1.302 AKS  -1.030 -1.034 —-1.052 -1.015
NOKUSD —-1.416 -1.567 —1.419 —1.416 ADI  —1.373 -1.759 —1.352 —1.356 ALL  -1.339 -3.108 —1.316 —1.327
NZDUSD -1.369 -3.036 —1.379 —1.389 ADM —1.228 —1.884 —1.223 —1.223 ALTR —1.286 —1.443 —1.277 —1.282
PLNUSD -1.395 —1.385 -1.382 —1.393 ADP —-1.229 -1.720 —1.205 —1.211 AMAT -1.319 -1.465 —-1.332 -1.310
SEKUSD —-1.403 —3.705 -1.402 —1.407 ADSK -1.345 -1.604 —1.340 —1.316 AMD —-1.342 -1.348 —-1.332 —1.243
SGDUSD —-1.382 —2.844 —1.398 —1.393 AEE —1.292 —-1.282 —1.263 —1.166 AMGN -1.191 —-1.542 —1.1772 —1.189
TRYUSD -1.224 —-1.461 —1.238 —1.236 AEP —1.151 -1.177 —1.146 —1.142 AMP  —1.386 —1.444 -1.365 -1.317
TWDUSD —1.384 —1.377 —1.388 —1.294 AES —-1.237 -1.319 —1.234 -1.197 AMT —-1.206 -1.820 —1.3658 —1.210
ZARUSD —-1.318 —1.344 —1.301 —1.304 AET —1.285 —1.302 —1.269 —1.246 AMZN —1.206 —1.567 —1.3537 —1.342

Table 1: FX series. Table 2: Equity series 1-15. Table 3: Equity series 16-30.

We show the average predictive log-likelihood of GP-Vol, GARCH, EGARCH and GJR-GARCH in
tables|I] 2]and 3] for the FX series, the first 15 Equity series and the last 15 Equity series, respectively.
The results of the best performing method in each dataset have been highlighted in bold. These tables
show that GP-Vol obtains the highest predictive log-likelihood in 29 of the 50 analyzed datasets. We
perform a statistical test to determine whether differences among GP-Vol, GARCH, EGARCH and
GJR-GARCH are significant. These methods are compared against each other using the multiple
comparison approach described by [27]. In this comparison framework, all the methods are ranked
according to their performance on different tasks. Statistical tests are then applied to determine
whether the differences among the average ranks of the methods are significant. In our case, each of
the 50 datasets analyzed represents a different task. A Friedman rank sum test rejects the hypothesis
that all methods have equivalent performance at o = 0.05 with p-value less than 10~1°. Pairwise
comparisons between all the methods with a Nemenyi test at a 95% confidence level are summarized
in Figure[2| The Nemenyi test shows that GP-Vol is significantly better than the other methods.

The other main advantage of GP-Vol over existing models is that it can learn the functional relation-
ship f between the new log variance v; and the previous log variance v;_; and previous return x;_i.
We plot a typical log variance surface in the left of Figure[3] This surface is generated by plotting the
mean predicted outputs v; against a grid of inputs for v,_; and x;_. For this, we use the functional
dynamics learned with RAPCF on the AUDUSD time series. AUDUSD stands for the amount of
US dollars that an Australian dollar can buy. The grid of inputs is designed to contain a range of
values experienced by AUDUSD from 2008 to 2011, which is the period covered by the data. The
surface is colored according to the standard deviation of the posterior predictive distribution for the
log variance. Large standard deviations correspond to uncertain predictions, and are redder.
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Figure 3: Left, surface generated by plotting the mean predicted outputs v; against a grid of inputs
for v;—1 and z;_1. Middle, predicted v; £ 2 s.d. for inputs (0, z;—1). Right, predicted v; + 2 s.d.
for inputs (0, 2¢—1).

The plot in the left of Figure [3]shows several patterns. First, there is an asymmetric effect of positive
and negative previous returns x;_1. This can be seen in the skewness and lack of symmetry of the
contour lines with respect to the v,_; axis. Second, the relationship between v,_; and v, is slightly
non-linear because the distance between consecutive contour lines along the v;_; axis changes as we
move across those lines, especially when x;_1 is large. In addition, the relationship between x;_1
and v, is nonlinear, but some sort of skewed quadratic function. These two patterns confirm the
asymmetric effect and the nonlinear transition function that EGARCH and GJR-GARCH attempt
to model. Third, there is a dip in predicted log variance for v;_; < —2 and —1 < x;_1 < 2.5.
Intuitively this makes sense, as it corresponds to a calm market environment with low volatility.
However, as x;_1 becomes more extreme the market becomes more turbulent and v; increases.

To further understand the transition function f we study cross sections of the log variance surface.
First, v; is predicted for a grid of v;—; and x;—; = 0 in the middle plot of Figure El Next, v; is
predicted for various x;_; and v4—; = 0 in the right plot of Figure[3] The confidence bands in the
figures correspond to the mean prediction £2 standard deviations. These cross sections confirm the
nonlinearity of the transition function and the asymmetric effect of positive and negative returns on
the log variance. The transition function is slightly non-linear as a function of v,_; as the band in
the middle plot of Figure [3] passes through (—2, —2) and (0,0), but not (2,2). Surprisingly, we
observe in the right plot of Figure [3]that large positive z;_; produces larger v; when v,_1 = 0 since
the band is slightly higher at x;_; = 6 than at z;_; = —6. However, globally, the highest predicted
vy occurs when v;_1 > 5 and x;_1 < —5, as shown in the surface plot.

6.3 Comparison between RAPCF and PGAS

We now analyze the potential shortcomings of RAPCF that were discussed in Section[5} For this,
we compare RAPCF against PGAS on the twenty FX time series from the previous section in terms
of predictive log-likelihood and execution times. The RAPCF setup is the same as in Section [6.2]
For PGAS, which is a batch method, the algorithm is run on initial training data z;.r,, with L = 100,
and a one-step forward prediction is made. The predictive log-likelihood is evaluated on the next
observation out of the training set. Then the training set is augmented with the new observation
and the batch training and prediction steps are repeated. The process is repeated sequentially until
no further data is received. For these experiments we used shorter time series with 7" = 120 since
PGAS is computationally very expensive. Note that we cannot simply learn the GP-SSM dynamics
on a small set of training data and then predict on a large test dataset, as it was done in [[19]]. These
authors were able to predict forward as they were using synthetic data with known “hidden” states.

We analyze different settings of RAPCF and PGAS. In RAPCF we use N = 200 particles since that
number was used to compare against GARCH, EGARCH and GJR-GARCH in the previous section.
PGAS has two parameters: a) N, the number of particles and b) M, the number of iterations.
Three combinations of these settings were used. The resulting average predictive log-likelihoods for
RAPCF and PGAS are shown in Table[] On each dataset, the results of the best performing method



have been highlighted in bold. The average rank of each method across the analyzed datasets is
shown in Table E} From these tables, there is no evidence that PGAS outperforms RAPCF on these
financial datasets, since there is no clear predictive edge of any PGAS setting over RAPCFE.

RAPCF PGAS.1 PGAS.2 PGAS.3
N=200 N=10 N=25 N=10

Dataset M =100 M =100 M =200

AUDUSD -1.1205 —1.0571 —1.0699 —1.0936 Method Configuration Rank
BRLUSD -1.0102 —1.0043 —0.9959 —0.9759 RAPCE N =200 2.025
CADUSD —1.4174 —1.4778 —1.4514 —1.4077 PGAS.I N =10, M =100 2.750
CHFUSD —1.8431 —1.8536 —1.8453 —1.8478 PGAS2 N =25 M =100 2.550
CZKUSD —1.2263 —1.2357 —1.2424 —1.2093 PGAS3 N =10, M =200 2.675

EURUSD —1.3837 —1.4586 —1.3717 —1.4064
GBPUSD —1.1863 —1.2106 —1.1790 —1.1729
IDRUSD  —0.5446 —0.5220 —0.5388 —0.5463 Table 5: Average ranks.
JPYUSD —2.0766 —1.9286 —2.1585 —2.1658
KRWUSD —1.0566 —1.1212 —1.2032 —1.2066
MXNUSD —0.2417 —0.2731 —0.2271 —0.2538

MYRUSD —1.4615 —1.5464 —1.4745 —1.4724 Method Configuration Avg. Time
NOKUSD -1.3095 —1.3443 —1.3048 —1.3169 RAPCF N =200 6
NZDUSD —1.2254 —1.2101 —1.2366 —1.2373 PGAS.1 N =10, M =100 732
PLNUSD —0.8972 —0.8704 —0.8708 —0.8704 PGAS2 N =25 M =100 1832
SEKUSD —-1.0085 —1.0085 —1.0505 —1.0360 PGAS.3 N =10, M =200 1465

SGDUSD -1.6229 —1.9141 —1.7566 —1.7837

TRYUSD -1.8336 —1.8509 —1.8352 —1.8553

TWDUSD —1.7093 —1.7178 —1.8315 —1.7257 Table 6: Avg. running time.
ZARUSD -1.3236 —1.3326 —1.3440 —1.3286

Table 4: Results for RAPCF vs. PGAS.

As mentioned above, there is little difference between the predictive accuracies of RAPCF and
PGAS. However, PGAS is computationally much more expensive. We show average execution times
in minutes for RAPCF and PGAS in Table [6] Note that RAPCF is up to two orders of magnitude
faster than PGAS. The cost of this latter method could be reduced by using fewer particles N or
fewer iterations M, but this would also reduce its predictive accuracy. Even after doing so, PGAS
would still be more costly than RAPCF. RAPCEF is also competitive with GARCH, EGARCH and
GJR, whose average training times are in this case 2.6, 3.5 and 3.1 minutes, respectively. A naive
implementation of RAPCF has cost O(NT*), since at each time step ¢ there is a O(T3) cost from
the inversion of the GP covariance matrix. On the other hand, the cost of applying PGAS naively is
O(NM T5), since for each batch of data 1. there isa O(N M T4) cost. These costs can be reduced
to be O(NT?) and O(NMT*) for RAPCF and PGAS respectively by doing rank one updates of
the inverse of the GP covariance matrix at each time step. The costs can be further reduced by a
factor of T2 by using sparse GPs [28].

7 Summary and discussion

We have introduced a novel Gaussian Process Volatility model (GP-Vol) for time-varying variances
in financial time series. GP-Vol is an instance of a Gaussian Process State-Space model (GP-SSM)
which is highly flexible and can model nonlinear functional relationships and asymmetric effects of
positive and negative returns on time-varying variances. In addition, we have presented an online
inference method based on particle filtering for GP-Vol called the Regularized Auxiliary Particle
Chain Filter (RAPCF). RAPCEF is up to two orders of magnitude faster than existing batch Particle
Gibbs methods. Results for GP-Vol on 50 financial time series show significant improvements in
predictive performance over existing models such as GARCH, EGARCH and GJR-GARCH. Finally,
the nonlinear transition functions learned by GP-Vol can be easily analyzed to understand the effect
of past volatility and past returns on future volatility.

For future work, GP-Vol can be extended to learn the functional relationship between a financial
instrument’s volatility, its price and other market factors, such as interest rates. The functional
relationship thus learned can be useful in the pricing of volatility derivatives on the instrument.
Additionally, the computational efficiency of RAPCF makes it an attractive choice for inference in
other GP-SSMs different from GP-Vol. For example, RAPCF could be more generally applied to
learn the hidden states and the dynamics in complex control systems.
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