Extended and Unscented Gaussian Processes

Daniel M. Steinberg Edwin V. Bonilla
NICTA The University of New South Wales
daniel.steinberg@nicta.com.au e.bonilla@unsw.edu.au
Abstract

We present two new methods for inference in Gaussian process (GP) models
with general nonlinear likelihoods. Inference is based on a variational frame-
work where a Gaussian posterior is assumed and the likelihood is linearized about
the variational posterior mean using either a Taylor series expansion or statistical
linearization. We show that the parameter updates obtained by these algorithms
are equivalent to the state update equations in the iterative extended and unscented
Kalman filters respectively, hence we refer to our algorithms as extended and un-
scented GPs. The unscented GP treats the likelihood as a ‘black-box’ by not
requiring its derivative for inference, so it also applies to non-differentiable like-
lihood models. We evaluate the performance of our algorithms on a number of
synthetic inversion problems and a binary classification dataset.

1 Introduction

Nonlinear inversion problems, where we wish to infer the latent inputs to a system given obser-
vations of its output and the system’s forward-model, have a long history in the natural sciences,
dynamical modeling and estimation. An example is the robot-arm inverse kinematics problem. We
wish to infer how to drive the robot’s joints (i.e. joint torques) in order to place the end-effector in a
particular position, given we can measure its position and know the forward kinematics of the arm.
Most of the existing algorithms either estimate the system inputs at a particular point in time like the
Levenberg-Marquardt algorithm [1], or in a recursive manner such as the extended and unscented
Kalman filters (EKF, UKF) [2].

In many inversion problems we have a continuous process; a smooth trajectory of a robot arm for
example. Non-parametric regression techniques like Gaussian processes [3] seem applicable, and
have been used in linear inversion problems [4]. Similarly, Gaussian processes have been used to
learn inverse kinematics and predict the motion of a dynamical system such as robot arms [3, 5]
and a human’s gait [6, 7, 8]. However, in [3, 5] the inputs (torques) to the system are observable
(not latent) and are used to train the GPs. Whereas [7, 8] are not concerned with inference over
the original latent inputs, but rather they want to find a low dimensional representation of high
dimensional outputs for prediction using Gaussian process latent variable models [6]. In this paper
we introduce inference algorithms for GPs that can infer and predict the original latent inputs to a
system, without having to be explicitly trained on them.

If we do not need to infer the latent inputs to a system it is desirable to still incorporate do-
main/system specific information into an algorithm in terms of a likelihood model specific to the
task at hand. For example, non-parametric classification or robust regression problems. In these
situations it is useful to have an inference procedure that does not require re-derivation for each
new likelihood model without having to resort to MCMC. An example of this is the variational
algorithm presented in [9] for factorizing likelihood models. In this model, the expectations aris-
ing from the use of arbitrary (non-conjugate) likelihoods are only one-dimensional, and so they
can be easily evaluated using sampling techniques or quadrature. We present two alternatives to
this algorithm that are also underpinned by variational principles but are based on linearizing the

nonlinear likelihood models about the posterior mean. These methods are straight-forwardly ap-
plicable to non-factorizing likelihoods and would retain computational efficiency, unlike [9] which
would require evaluation of multidimensional intractable integrals. One of our algorithms, based on
statistical linearization, does not even require derivatives of the likelihood model (like [9]) and so
non-differentiable likelihoods can be incorporated.

Initially we formulate our models in §2 for the finite Gaussian case because the linearization methods
are more general and comparable with existing algorithms. In fact we show we can derive the update
steps of the iterative EKF [10] and similar updates to the iterative UKF [11] using our variational
inference procedures. Then in § 3 we specifically derive a factorizing likelihood Gaussian process
model using our framework, which we use for experiments in §4.

2 Variational Inference in Nonlinear Gaussian Models with Linearization

Given some observable quantity y € RY, and a likelihood model for the system of interest, in many
situations it is desirable to reason about the latent input to the system, f € R”, that generated the
observations. Finding these inputs is an inversion problem and in a probabilistic setting it can be
cast as an application of Bayes’ rule. The following forms are assumed for the prior and likelihood:

p(f) = N(f|p,K) and p(y[f) = N(ylg(f) . X), (D

where g(-) : RP — R? is a nonlinear function or forward model. Unfortunately the marginal like-
lihood, p(y), is intractable as the nonlinear function makes the likelihood and prior non-conjugate.
This also makes the posterior p(f|y), which is the solution to the inverse problem, intractable to
evaluate. So, we choose to approximate the posterior with variational inference [12].

2.1 Variational Approximation

Using variational inference procedures we can put a lower bound on the log-marginal likelihood
using Jensen’s inequality,

ogn(y) > [a(f) 1ogp(y('f(>f§”(”

with equality iff KL[¢(f) || p(f]y)] = 0, and where ¢(f) is an approximation to the true posterior,
p(fly). This lower bound is often referred to as ‘free energy’, and can be re-written as follows

F = (logp(y[f)),e — KL[g() [p(£)], 3)

where () ¢ is an expectation with respect to the variational posterior, g(f). We assume the posterior
takes a Gaussian form, ¢(f) = M (f|m, C), so we can evaluate the expectation and KL term in (3),

Diog2n +1og (2l + (- a0) By -a®) [@

df, 2

o p(y 1))y = —
KL{o(£) | ()] = 5

where the expectation involving g(-) may be intractable. One method of dealing with these expec-
tations is presented in [9] by assuming that the likelihood factorizes across observations. Here we
provide two alternatives based on linearizing ¢(-) about the posterior mean, m.

[tr(K'lC) +(w—m) K'(u—m)—log|C|+log|K| — D} .)

2.2 Parameter Updates

To find the optimal posterior mean, m, we need to find the derivative,

STJ; _ _%% <(u) K () +(y—g(f) = (y - 9<f))>qf’ ©

where all terms in F independent of m have been dropped, and we have placed the quadratic and
trace terms from the KL component in Equation (5) back into the expectation. We can represent this
as an augmented Gaussian,

OF 10

L9 <(z —h(f) S (z - h(f))>

om ~ 29m @

)
qf

where

R .

Now we can see solving for m is essentially a nonlinear least squares problem, but about the
expected posterior value of f. Even without the expectation, there is no closed form solution to
OF /0m = 0. However, we can use an iterative Newton method to find m. It begins with an initial
guess, my, then proceeds with the iterations,

my 1 =my, — a (Vi VinF) ' VinF, 9)

for some step length, a € (0, 1]. Though evaluating V,,, F is still intractable because of the nonlinear
term within the expectation in Equation (7). If we linearize g(f), we can evaluate the expectation,

g(f) =~ Af + b, (10)
for some linearization matrix A € R?*P and an intercept term b € R¢. Using this we get,
Vi F~A'S' (y—Am-b)+K'!' (p—m) and V,VaF~-K!—-ATZTA. (11
Substituting (11) into (9) and using the Woodbury identity we can derive the iterations,
my1 = (1 —a)myg +ap+ aHy (y — by — Agp), (12)
where Hj, is usually referred to as a “Kalman gain” term,
H, = KA} (S + AKA}) ", (13)

and we have assumed that the linearization Ay and intercept, by, are in some way dependent on the
iteration. We can find the posterior covariance by setting 0F /0C = 0 where,

oF 10 T o1 19
%__5%<(z—h(f)) S (z—h(f))>qf+§%10g|c|~ (14

Again we do not have an analytic solution, so we once more apply the approximation (10) to get,
C=[K'+ATS'A]" = (I, - HA)K, (15)

where we have once more made use of the Woodbury identity and also the converged values of A
and H. At this point it is also worth noting the relationship between Equations (15) and (11).

2.3 Taylor Series Linearization

Now we need to find expressions for the linearization terms A and b. One method is to use a first
order Taylor Series expansion to linearize g(-) about the last calculation of the posterior mean, my,

g(f) zg(Inlc)"_Jm;C (f_mk)v (16)

where Jy,, is the Jacobian Jg(my)/0m;. By linearizing the function in this way we end up with a
Gauss-Newton optimization procedure for finding m. Equating coefficients with (10),

A=J,,, b = g(my) — Jm, mg, (17)
and then substituting these values into Equations (12) — (15) we get,
my1 = (1 —a)mg + ap + oHg (y — g(my) + I, (Mg — p)), (18)
Hy = KI), (54 Jm KIT,)7, (19)
C=(1Ip -HJ,)K. (20)

Here J,,, and H without the % subscript are constructed about the converged posterior, m.

Remark 1 A single step of the iterated extended Kalman filter [10, 11] corresponds to an update
in our variational framework when using the Taylor series linearization of the non-linear forward
model g(-) around the posterior mean.

Having derived the updates in our variational framework, the proof of this is trivial by making o = 1,
and using Equations (18) — (20) as the iterative updates.

2.4 Statistical Linearization

Another method for linearizing g(-) is statistical linearization (see e.g. [13]), which finds a least
squares best fit to g(-) about a point. The advantage of this method is that it does not require deriva-
tives dg(f)/0f. To obtain the fit, multiple observations of the forward model output for different
input points are required. Hence, the key question is where to evaluate our forward model so as to
obtain representative samples to carry out the linearization. One method of obtaining these points is
the unscented transform [2], which defines 2D + 1 ‘sigma’ points,

Mo =m, 21

A@:m+GMD+@C)1mi:1mD, 22)

(3

Ah:m—OKD+MC) for i=D+1...2D, (23)

Vi =g(M), (24)

for a free parameter «. Here (1/-); refers to columns of the matrix square root, we follow [2] and use
the Cholesky decomposition. Unlike the usual unscented transform, which uses the prior to create
the sigma points, here we have used the posterior because of the expectation in Equation (7). Using
these points we can define the following statistics,

2D 2D
y=Y wi, Tym=> wi(Vi—y)(M;i—m)", (25)

=0 =0

K 1
_ i =——— for i=1...2D. 2
wo Drn w; 2D+ r) or 1 (26)

According to [2] various settings of x can capture information about the higher order moments of
the distribution of y; or setting x = 0.5 yields uniform weights. To find the linearization coefficients
statistical linearization solves the following objective,

2D
argminz Vi — (AM; +Db)|3. 27
Ab 5
This is simply linear least-squares and has the solution [13]:
A =T,,C", b=y - Am. (28)
Substituting b back into Equation (12), we obtain,
myi1 = (1—a)myg +ap+oH, (y —yr + Ag (mg — p)) . (29)

Here Hy, Ay and ¥ have been evaluated using the statistics from the kth iteration. This implies
that the posterior covariance, Cy,, is now estimated at every iteration of (29) since we use it to form
A and by. Hy, and Cy, have the same form as Equations (13) and (15) respectively.

Remark 2 A single step of the iterated unscented sigma-point Kalman filter (iSPKF, [11]) can be
seen as an ad hoc approximation to an update in our statistically linearized variational framework.

Equations (29) and (15) are equivalent to the equations for a single update of the iterated sigma-point
Kalman filter iSPKF) for a = 1, except for the term y, appearing in Equation (29) as opposed to
g(my). The main difference is that we have derived our updates from variational principles. These
updates are also more similar to the regular recursive unscented Kalman filter [2], and statistically
linearized recursive least squares [13].

2.5 Optimizing the Posterior

Because of the expectations involving an arbitrary function in Equation (4), no analytical solution
exists for the lower bound on the marginal likelihood, 7. We can use our approximation (10) again,

1
F = -3 Dlog 27 +log |=| — log |C| + log |K| 4 (1 — m)" K™ (1 — m)

+(y—Am—b)' = (y—Am—b)|. (30)

Here the trace term from Equation (5) has cancelled with a trace term from the expected likelihood,
tr(AT E'lAC) =D — tr(K'1C), once we have linearized ¢(-) and substituted (15). Unfortunately
this approximation is no longer a lower bound on the log marginal likelihood in general. In practice
we only calculate this approximation F if we need to optimize some model hyperparameters, like
for a Gaussian process as described in § 3. When optimizing m, the only terms of F dependent on
m in the Taylor series linearization case are,

1 1

—5 (= g(m)" = (y —g(m)) - 5 (p—m) K (4 —m). 31)

This is also the maximum a-posteriori objective. A global convergence proof exists for this objec-
tive when optimized by a Gauss-Newton procedure, like our Taylor series linearization algorithm,
under some conditions on the Jacobians, see [14, p255]. No such guarantees exist for statistical
linearization, though monitoring (31) works well in practice (see the experiment in §4.1).

A line search could be used to select an optimal value for the step length, o in Equation (12).
However, we find that setting & = 1, and then successively multiplying o by some number in (0, 1)
until the MAP objective (31) decreases, or some maximum number of iterations is exceeded is fast
and works well in practice. If the maximum number of iterations is exceeded we call this a ‘diverge’
condition, and terminate the search for m (and return the last good value). This only tends to happen
for statistical linearization, but does not tend to impact the algorithms performance since we always
make sure to improve (approximate) .

3 Variational Inference in Gaussian Process Models with Linearization

We now present two inference methods for Gaussian Process (GP) models [3] with arbitrary nonlin-
ear likelihoods using the framework presented previously. Both Gaussian process models have the
following likelihood and prior,

y ~N(g(f),0’Iy), f~N(0,K). (32)

Herey € RY are the N noisy observed values of the transformed latent function, g(f), and f € RN
is the latent function we are interested in inferring. K € RV* is the kernel matrix, where each
element k;; = k(x;,x;) is the result of applying a kernel function to each input, x € R”, in a pair-
wise manner. It is also important to note that the likelihood noise model is isotropic with a variance
of o2, Thisisnota necessary condition, and we can use a correlated noise likelihood model, however
the factorized likelihood case is still useful and provides some computational benefits.

As before, we make the approximation that the posterior is Gaussian, ¢(f|m, C) = A (f|m, C)
where m € RY is the mean posterior latent function, and C € RN*N s the posterior covari-
ance. Since the likelihood is isotropic and factorizes over the IV observations we have the following
expectation under our variational inference framework:

(105 p(y))ye = 5 lo 2m2—1§j<< — g(fa)?)
gP(Yf))ge = — log 202 2 = 9(Fn))") -

As a consequence, the linearization is one-dimensional, that is g(f,,) ~ a, f, + b,. Using this we
can derive the approximate gradients,

1
VmF~ SA(y-Am—-b)—K'm, VyuVmF=x-K'—AATA, (33)
g

where A = diag([as, . ..,an]) and A = diag([0?,...,0?]). Because of the factorizing likelihood

we obtain C! = K' + AA'A, that is, the inverse posterior covariance is just the prior inverse
covariance, but with a modified diagonal. This means if we were to use this inverse parameterization
of the Gaussian, which is also used in [9], we would only have to infer 2N parameters (instead of
N + N(N + 1)/2). We can obtain the iterative steps for m straightforwardly:

myi1 = (1 —a)mg + aHg (y —bg), where Hp =KAp (A+ AkKAk)'1 , (34)
and also an expression for posterior covariance,

C=(Iy - HA)K. (35)

The values for a,, and b,, for the linearization methods are,

dg(m, Og(m,
Taylor : a,= M, by = g(my) — an, (36)
amn 8’rnn
Fm, n —
Statistical : a,, = Ty’, bn = Yn — QM. 37
Cpp is the nth diagonal element of C, and I';,,, , and ¥, are scalar versions of Equations (21) —
(26). The sigma points for each observation, n, are M,, = {mn, My + /(1 + &) Crpy my, —

V(1 +k) Cm}. We refer to the Taylor series linearized GP as the extended GP (EGP), and the
statistically linearized GP as the unscented GP (UGP).

3.1 Prediction

The predictive distribution of a latent value, f*, given a query point, x*, requires the marginalization
J p(f*|f) q(f|m, C) df, where p(f*|f) is a regular predictive GP. This gives f* ~ N (m*,C*), and,

m* — k*TK'lm, O* — k** _ k*TK-l [IN _ CK-l] k*7 (38)
where k** = k(x*,x*) and k* = [k(x1,x*),..., k(xx,x*)]". We can also find the predicted
observations, §* by evaluating the one-dimensional integral,

5= Wy = [9N Oy (39)

for which we use quadrature. Alternatively, if we were to use the UGP we can use another applica-
tion of the unscented transform to approximate the predictive distribution y* ~ A (g*, 05*) where,

2 2
g=Y wiM;, ol =Y wi (V7). (40)
i=0 i=0
This works well in practice, see Figure | for a demonstration.

3.2 Learning the Linearized GPs

Learning the extended and unscented GPs consists of an inner and outer loop. Much like the Laplace
approximation for binary Gaussian Process classifiers [3], the inner loop is for learning the posterior
mean, m, and the outer loop is to optimize the likelihood parameters (e.g. the variance o2) and ker-
nel hyperparameters, k(-,-|@). The dominant computational cost in learning the parameters is the
inversion in Equation (34), and so the computational complexity of the EGP and UGP is about the
same as for the Laplace GP approximation. To learn the kernel hyperparameters and o> we use nu-
merical techniques to find the gradients, .F /08, for both the algorithms, where F is approximated,

1 1
F ~ ~5 Nlog 2mo? —log|C| +log |K| + m' K m + — (y—Am - b) (y — Am — b)|.
o

(4D
Specifically we use derivative-free optimization methods (e.g. BOBYQA) from the NLopt li-
brary [15], which we find fast and effective. This also has the advantage of not requiring knowledge
of Og(f)/0f or higher order derivatives for any implicit gradient dependencies between f and 6.

4 Experiments

4.1 Toy Inversion Problems

In this experiment we generate ‘latent’ function data from f ~ A/(0, K) where a Matérn g kernel
function is used with amplitude o,,502 = 0.8, length scale /,,50 = 0.6 and x € R are uniformly
spaced between [—27, 2] to build K. Observations used to test and train the GPs are then generated
asy = g(f) + € where € ~ N(O, 0.22). 1000 points are generated in this way, and we use 5-fold
cross validation to train (200 points) and test (800 points) the GPs. We use standardized mean

Table 1: The negative log predictive density (NLPD) and the standardized mean squared error
(SMSE) on test data for various differentiable forward models. Lower values are better for both
measures. The predicted f* and y* are the same for g(f) = £, so we do not report y* in this case.

. NLPD f* SMSE f* SMSE y*
g(f) | Algorithm mean std. mean std. mean std.

f UGP -0.90046 0.06743 0.01219 0.00171 - -

EGP -0.89908 0.06608 0.01224 0.00178 - -

[9] -0.27590 0.06884 0.01249 0.00159 - -

GP -0.90278 0.06988 0.01211 0.00160 - -
24241 UGP -0.23622 1.72609 0.01534 0.00202 0.02184 0.00525
EGP -0.22325 1.76231 0.01518 0.00203 0.02184 0.00528
[9] -0.14559 0.04026 0.06733 0.01421 0.02686 0.00266
exp(f) UGP -0.75475 0.32376 0.13860 0.04833 0.03865 0.00403
EGP -0.75706 0.32051 0.13971 0.04842 0.03872 0.00411
[9] -0.08176 0.10986 0.17614 0.04845 0.05956 0.01070
sin(f) UGP -0.59710 0.22861 0.03305 0.00840 0.11513 0.00521
EGP -0.59705 0.21611 0.03480 0.00791 0.11478 0.00532
[9] -0.04363 0.03883 0.05913 0.01079 0.11890 0.00652
tanh(2f) UGP 0.01101 0.60256 0.15703 0.06077 0.08767 0.00292
EGP 0.57403 1.25248 0.18739 0.07869 0.08874 0.00394
[9] 0.15743 0.14663 0.16049 0.04563 0.09434 0.00425

s 5.0 -10.0 e
s o JUPTE
i3 = . = r
c . b i g K
2 00T N 'q‘ @ -15.0 K
g 1 8 '
& ¢
° 50] /.
[— True process, f,,, 2200 -
= .]
= - Training data {x,,y,} o
@ -10.0) . <
2 --- Estimated process, m =
g — Predictions, (y%),- -25.00+"
] /
6.0 4.0 20 0.0 2.0 2.0 6.0 0.0 1.0 2.0 3.0 2.0 5.0 6.0 7.0 8.0
inputs (x) iteration
(@) g(f) = 2 x sign(f) + £3 (b) MAP trace from learning m

Figure 1: Learning the UGP with a non-differentiable forward model in (a), and a corresponding
trace from the MAP objective function used to learn m is shown in (b). The optimization shown ter-
minated because of a ‘divergence’ condition, though the objective function value has still improved.

squared error (SMSE) to test the predictions with the held out data in both the latent and observed
spaces. We also use average negative log predictive density (NLPD) on the latent test data, which

is calculated as — = >, log N'(f|mi, C;:). All GP methods use Matérn 2 covariance functions

with the hyperparameters and o2 initialized at 1.0 and lower-bounded at 0.1 (and 0.01 for o2).

Table 1 shows results for multiple differentiable forward models, g(-). We test the EGP and UGP
against the model in [9] — which uses 10,000 samples to evaluate the one dimensional expectations.
Although this number of samples may seem excessive for these simple problems, our goal here is
to have a competitive baseline algorithm. We also test against normal GP regression for a linear
forward model, g(f) = f. In Figure 1 we show the results of the UGP using a forward model
for which no derivative exists at the zero crossing points, as well as an objective function trace for
learning the posterior mean. We use quadrature for the predictions in observation space in Table 1
and the unscented transform, Equation (40), for the predictions in Figure 1. Interestingly, there is
almost no difference in performance between the EGP and UGP, even though the EGP has access to
the derivatives of the forward models and the UGP does not. Both the UGP and EGP consistently
outperformed [9] in terms of NLPD and SMSE, apart from the tanh experiment for inversion. In
this experiment, the UGP had the best performance but the EGP was outperformed by [9].

Table 2: Classification performance on the USPS handwritten-digits dataset for numbers ‘3’ and 5°.
Lower values of the negative log probability (NLP) and error rate indicate better performance. The
learned signal variance (0528) and length scale () are also shown for consistency with [3, §3.7.3].

Algorithm | NLPy* Errorrate (%) log(ow) log(ls)

GP — Laplace | 0.11528 2.9754 2.5855 2.5823

GP-EP | 0.07522 2.4580 52209 25315

GP-VB | 0.10891 3.3635 0.9045 2.0664
SVM (RBF) | 0.08055 2.3286 - -
Logistic Reg. | 0.11995 3.6223 - -

UGP | 0.07290 1.9405 1.5743 1.5262

EGP | 0.08051 2.1992 29134 1.7872

4.2 Binary Handwritten Digit Classification

For this experiment we evaluate the EGP and UGP on a classification task. We are just interested
in a probabilistic prediction of class labels, and not the values of the latent function. We use the
USPS handwritten digits dataset with the task of distinguishing between ‘3’ and ‘5’ — this is the
same experiment from [3, §3.7.3]. A logistic sigmoid is used as the forward model, g(-), in our
algorithms. We test against Laplace, expectation propagation and variational Bayes logistic GP
classifiers (from the GPML Matlab toolbox [3]), a support vector machine (SVM) with a radial
basis kernel function (and probabilistic outputs [16]), and logistic regression (both from the scikit-
learn python library [17]). A squared exponential kernel with amplitude o, and length scale [is
used for the GPs in this experiment. We initialize these hyperparameters at 1.0, and put a lower
bound of 0.1 on them. We initialize o and place a lower bound at 10~'# for the EGP and UGP (the
optimized values are near or at this value). The hyperparameters for the SVM are learned using grid
search with three-fold cross validation.

The results are summarized in Table 2, where we report the average Bernoulli negative log-
probability (NLP), the error rate and the learned hyperparameter values for the GPs. Surprisingly,
the UGP outperforms the other classifiers on this dataset, despite the other classifiers being specifi-
cally formulated for this task.

5 Conclusion and Discussion

We have presented a variational inference framework with linearization for Gaussian models with
nonlinear likelihood functions, which we show can be used to derive updates for the extended and
unscented Kalman filter algorithms, the iEKF and the iSPKF. We then generalize these results and
develop two inference algorithms for Gaussian processes, the EGP and UGP. The UGP does not
use derivatives of the nonlinear forward model, yet performs as well as the EGP for inversion and
classification problems.

Our method is similar to the Warped GP (WGP) [18], however, we wish to infer the full posterior
over the latent function f. The goal of the WGP is to infer a transformation of a non-Gaussian
process observation to a space where a GP can be constructed. That is, the WGP is concerned with
inferring an inverse function g~*(-) so the transformed (latent) function is well modeled by a GP.

As future work we would like to create multi-task EGPs and UGPs. This would extend their appli-
cability to inversion problems where the forward models have multiple inputs and outputs, such as
inverse kinematics for dynamical systems.

Acknowledgments

This research was supported by the Science Industry Endowment Fund (RP 04-174) Big Data Knowledge
Discovery project. We thank F. Ramos, L. McCalman, S. O’Callaghan, A. Reid and T. Nguyen for their helpful
feedback. NICTA is funded by the Australian Government through the Department of Communications and
the Australian Research Council through the ICT Centre of Excellence Program.

References

[1] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” Journal
of the Society for Industrial & Applied Mathematics, vol. 11, no. 2, pp. 431-441, 1963.

[2] S. Julier and J. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the
IEEE, vol. 92, no. 3, pp. 401-422, Mar 2004.

[3] C.E.Rasmussen and C. K. I. Williams, Gaussian processes for machine learning. The MIT
Press, Cambridge, Massachusetts, 2006.

[4] A.Reid, S. O’Callaghan, E. V. Bonilla, L. McCalman, T. Rawling, and F. Ramos, “Bayesian

joint inversions for the exploration of Earth resources,” in Proceedings of the Twenty-Third
international joint conference on Artificial Intelligence. AAAI Press, 2013, pp. 2877-2884.

[5] K. M. A. Chai, C. K. I. Williams, S. Klanke, and S. Vijayakumar, “Multi-task Gaussian process
learning of robot inverse dynamics,” in Advances in Neural Information Processing Systems
(NIPS). Curran Associates, Inc., 2009, pp. 265-272.

[6] N.D. Lawrence, “Gaussian process latent variable models for visualisation of high dimensional
data.” in Advances in Neural Information Processing Systems (NIPS), vol. 2, 2003, p. 5.

[7] J.M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dynamical models,” in Advances
in Neural Information Processing Systems (NIPS), vol. 18, 2005, p. 3.

[8] ——, “Gaussian process dynamical models for human motion,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 30, no. 2, pp. 283-298, 2008.

[9] M. Opper and C. Archambeau, “The variational Gaussian approximation revisited,” Neural
computation, vol. 21, no. 3, pp. 786-792, 20009.

[10] B. M. Bell and E. W. Cathey, “The iterated Kalman filter update as a Gauss-newton method,”
IEEE Transactions on Automatic Control, vol. 38, no. 2, pp. 294-297, 1993.

[11] G. Sibley, G. Sukhatme, and L. Matthies, “The iterated sigma point kalman filter with applica-
tions to long range stereo.” in Robotics: Science and Systems, vol. §, no. 1, 2006, pp. 235-244.

[12] M. L. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction to variational
methods for graphical models,” Machine Learning, vol. 37, no. 2, pp. 183-233, 1999.

[13] M. Geist and O. Pietquin, “Statistically linearized recursive least squares,” in Machine Learn-

ing for Signal Processing (MLSP), 2010 IEEE International Workshop on. 1EEE, 2010, pp.
272-276.

[14] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York: Springer, 2006.

[15] S. G. Johnson, “The nlopt nonlinear-optimization package.” [Online]. Available: http:
//ab-initio.mit.edu/wiki/index.php/Citing_NLopt

[16] J. Platt et al., “Probabilistic outputs for support vector machines and comparisons to regu-
larized likelihood methods,” Advances in large margin classifiers, vol. 10, no. 3, pp. 61-74,
1999.

[17] F.Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learn-
ing Research, vol. 12, pp. 2825-2830, 2011.

[18] E. Snelson, C. E. Rasmussen, and Z. Ghahramani, “Warped Gaussian processes,” in NIPS,
2003.

http://ab-initio.mit.edu/wiki/index.php/Citing_NLopt
http://ab-initio.mit.edu/wiki/index.php/Citing_NLopt

