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Abstract

In this paper, we prove that every multivariate polynomial with even degree can
be decomposed into a sum of convex and concave polynomials. Motivated by
this property, we exploit the concave-convex procedure to perform inference on
continuous Markov random fields with polynomial potentials. In particular, we
show that the concave-convex decomposition of polynomials can be expressed as
a sum-of-squares optimization, which can be efficiently solved via semidefinite
programing. We demonstrate the effectiveness of our approach in the context
of 3D reconstruction, shape from shading and image denoising, and show that
our method significantly outperforms existing techniques in terms of efficiency as
well as quality of the retrieved solution.

1 Introduction

Graphical models are a convenient tool to illustrate the dependencies among a collection of random
variables with potentially complex interactions. Their widespread use across domains from com-
puter vision and natural language processing to computational biology underlines their applicability.
Many algorithms have been proposed to retrieve the minimum energy configuration, i.e., maximum
a-posteriori (MAP) inference, when the graphical model describes energies or distributions defined
on a discrete domain. Although this task is NP-hard in general, message passing algorithms [16] and
graph-cuts [4] can be used to retrieve the global optimum when dealing with tree-structured models
or binary Markov random fields composed out of sub-modular energy functions.

In contrast, graphical models with continuous random variables are much less well understood. A
notable exception is Gaussian belief propagation [31], which retrieves the optimum when the poten-
tials are Gaussian for arbitrary graphs under certain conditions of the underlying system. Inspired
by discrete graphical models, message-passing algorithms based on discrete approximations in the
form of particles [6, 17] or non-linear functions [27] have been developed for general potentials.
They are, however, computationally expensive and do not perform well when compared to dedi-
cated algorithms [20]. Fusion moves [11] are a possible alternative, but they rely on the generation
of good proposals, a task that is often difficult in practice. Other related work focuses on representing
relations on pairwise graphical models [24], or marginalization rather than MAP [13].

In this paper we study the case where the potentials are polynomial functions. This is a very general
family of models as many applications such as collaborative filtering [8], surface reconstruction [5]
and non-rigid registration [30] can be formulated in this way. Previous approaches rely on either
polynomial equation system solvers [20], semi-definite programming relaxations [9, 15] or approxi-
mate message-passing algorithms [17, 27]. Unfortunately, existing methods either cannot cope with
large-scale graphical models, and/or do not have global convergence guarantees.

In particular, we exploit the concave-convex procedure (CCCP) [33] to perform inference on con-
tinuous Markov random fields (MRFs) with polynomial potentials. Towards this goal, we first show
that an arbitrary multivariate polynomial function can be decomposed into a sum of a convex and
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a concave polynomial. Importantly, this decomposition can be expressed as a sum-of-squares opti-
mization [10] over polynomial Hessians, which is efficiently solvable via semidefinite programming.
Given the decomposition, our inference algorithm proceeds iteratively as follows: at each iteration
we linearize the concave part and solve the resulting subproblem efficiently to optimality. Our algo-
rithm inherits the global convergence property of CCCP [25].

We demonstrate the effectiveness of our approach in the context of 3D reconstruction, shape from
shading and image denoising. Our method proves superior in terms of both computational cost and
the energy of the solutions retrieved when compared to approaches such as dual decomposition [20],
fusion moves [11] and particle belief propagation [6].

2 Graphical Models with Continuous Variables and Polynomial Functions

In this section we first review inference algorithms for graphical models with continuous random
variables, as well as the concave-convex procedure. We then prove existence of a concave-convex
decomposition for polynomials and provide a construction. Based on this decomposition and con-
struction, we propose a novel inference algorithm for continuous MRFs with polynomial potentials.

2.1 Graphical Models with Polynomial Potentials
The MRFs we consider represent distributions defined over a continuous domain X =

∏
i Xi, which

is a product-space assembled by continuous sub-spaces Xi ⊂ R. Let x ∈ X be the output config-
uration of interest, e.g., a 3D mesh or a denoised image. Note that each output configuration tuple
x = (x1, · · · , xn) subsumes a set of random variables. Graphical models describe the energy of
the system as a sum of local scoring functions, i.e., f(x) =

∑
r∈R fr(xr). Each local function

fr(xr) : Xr → R depends on a subset of variables xr = (xi)i∈r defined on a domain Xr ⊆ X ,
which is specified by the restriction often referred to as region r ⊆ {1, . . . , n}, i.e., Xr =

∏
i∈r Xi.

We refer toR as the set of all restrictions required to compute the energy of the system.

We tackle the problem of maximum a-posteriori (MAP) inference, i.e., we want to find the configu-
ration x∗ having the minimum energy. This is formally expressed as

x∗ = argmin
x

∑
r∈R

fr(xr). (1)

Solving this program for general functions is hard. In this paper we focus on energies composed of
polynomial functions. This is a fairly general case, as the energies employed in many applications
obey this assumption. Furthermore, for well-behaved continuous non-polynomial functions (e.g.,
k-th order differentiable) polynomial approximations could be used (e.g., via a Taylor expansion).
Let us define polynomials more formally:
Definition 1. A d-degree multivariate polynomial f(x) : Rn → R is a finite linear combination of
monomials, i.e.,

f(x) =
∑
m∈M

cmx
m1
1 xm2

2 · · ·xmn
n ,

where we let the coefficient cm ∈ R and the tuple m = (m1, . . . ,mn) ∈M ⊆ Nn with
∑n
i=1mi ≤

d ∀m ∈M. The setM subsumes all tuples relevant to define the function f .

We are interested in minimizing Eq. (1) where the potential functions fr are polynomials with arbi-
trary degree. This is a difficult problem as polynomial functions are in general non-convex. More-
over, for many applications of interest we have to deal with a large number of variables, e.g., more
than 60,000 when reconstructing shape from shading of a 256 × 256 image. Optimal solutions ex-
ist under certain conditions when the potentials are Gaussian [31], i.e., polynomials of degree 2.
Message passing algorithms have not been very successful for general polynomials due to the fact
that the messages are continuous functions. Discrete [6, 17] and non-parametric [27] approxima-
tions have been employed with limited success. Furthermore, polynomial system solvers [20], and
moment-based methods [9] cannot scale up to such a large number of variables. Dual-decomposition
provides a plausible approach for tackling large-scale problems by dividing the task into many small
sub-problems [20]. However, solving a large number of smaller systems is still a bottleneck, and
decoding the optimal solution from the sub-problems might be difficult. In contrast, we propose to
use the Concave-Convex Procedure (CCCP) [33], which we now briefly review.
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2.2 Inference via CCCP
CCCP is a majorization-minimization framework for optimizing non-convex functions that can be
written as the sum of a convex and a concave part, i.e., f(x) = fvex(x) + fcave(x). This frame-
work has recently been used to solve a wide variety of machine learning tasks, such as learning in
structured models with latent variables [32, 22], kernel methods with missing entries [23] and sparse
principle component analysis [26]. In CCCP, f is optimized by iteratively computing a linearization
of the concave part at the current iterate x(i) and solving the resulting convex problem

x(i+1) = argmin
x
fvex(x) + xT∇fcave(x(i)). (2)

This process is guaranteed to monotonically decrease the objective and it converges globally, i.e.,
for any point x (see Theorem 2 of [33] and Theorem 8 [25]). Moreover, Salakhutdinov et al. [19]
showed that the convergence rate of CCCP, which is between super-linear and linear, depends on
the curvature ratio between the convex and concave part. In order to take advantage of CCCP to
solve our problem, we need to decompose the energy function into a sum of convex and concave
parts. In the next section we show that this decomposition always exists. Furthermore, we provide a
procedure to perform this decomposition given general polynomials.

2.3 Existence of a Concave-Convex Decomposition of Polynomials
Theorem 1 in [33] shows that for all arbitrary continuous functions with bounded Hessian a decom-
position into convex and concave parts exists. However, Hessians of polynomial functions are not
bounded in Rn. Furthermore, [33] did not provide a construction for the decomposition. In this
section we show that for polynomials this decomposition always exists and we provide a construc-
tion. Note that since odd degree polynomials are unbounded from below, i.e., not proper, we only
focus on even degree polynomials in the following. Let us therefore consider the space spanned by
polynomial functions with an even degree d.
Proposition 1. The set of polynomial functions f(x) : Rn → R with even degree d, denoted Pnd , is

a topological vector space. Furthermore, its dimension dim(Pnd ) =
(
n+ d− 1

d

)
.

Proof. (Sketch) According to the definition of vector spaces, we know that the set of polynomial
functions forms a vector space over R. We can then show that addition and multiplication over the
polynomial ring Pnd is continuous. Finally, dim(Pnd ) is equivalent to computing a d-combination
with repetition from n elements [3].

Next we investigate the geometric properties of convex even degree polynomials.
Lemma 1. Let the set of convex polynomial functions c(x) : Rn → R with even degree d be Cnd .
This subset of Pnd is a convex cone.

Proof. Given two arbitrary convex polynomial functions f and g ∈ Cnd , let h = af+bg with positive
scalars a, b ∈ R+. ∀x,y ∈ Rn,∀λ ∈ [0, 1], we have:

h(λx+ (1− λ)y) = af(λx+ (1− λ)y) + bg(λx+ (1− λ)y)
≤ a(λf(x) + (1− λ)f(y)) + b(λh(x) + (1− λ)h(y))
= λh(x) + (1− λ)h(y).

Therefore, ∀f, g ∈ Cnd ,∀a, b ∈ R+, we have af + bg ∈ Cnd , i.e., Cnd is a convex cone.

We now show that the eigenvalues of the Hessian of f (hence the smallest one) continuously depend
on f ∈ Pnd .
Proposition 2. For any polynomial function f ∈ Pnd with d ≥ 2, the eigenvalues of its Hessian
eig(∇2f(x)) are continuous w.r.t. f in the polynomial space Pnd .

Proof. ∀f ∈ Pnd , given a basis {gi} of Pnd , we obtain the representation f =
∑
i cigi, linear in

the coefficients ci. It is easy to see that ∀f ∈ Pnd , the Hessian ∇2f(x) is a polynomial matrix,
linear in ci, i.e., ∇2f(x) =

∑
i ci∇2gi(x). Let M(c1, · · · , cn) = ∇2f(x) =

∑
i ci∇2gi(x) define

the Hessian as a function of the coefficients (c1, · · · , cn). The eigenvalues eig(M(c1, · · · , cn)) are
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equivalent to the root of the characteristic polynomial of M(c1, · · · , cn), i.e., the set of solutions for
det(M − λI) = 0. All the coefficients of the characteristic polynomial are polynomial expressions
w.r.t. the entries of M , hence they are also polynomial w.r.t. (c1, · · · , cn) since each entry of M is
linear on (c1, · · · , cn). Therefore, the coefficients of the characteristic polynomial are continuously
dependent on (c1, · · · , cn). Moreover, the root of a polynomial is continuously dependent on the
coefficients of the polynomial [28]. Based on these dependencies, eig(M(c1, · · · , cn)) are continu-
ously dependent on (c1, · · · , cn), and eig(M(c1, · · · , cn)) are continuous w.r.t. f in the polynomial
space Pnd .

The following proposition illustrates that the relative interior of the convex cone of even degree
polynomials is not empty.
Proposition 3. For an even degree function space Pnd , there exists a function f(x) ∈ Pnd , such that
∀x ∈ Rn, the Hessian is strictly positive definite, i.e., ∇2f(x) � 0. Hence the relative interior of
Cnd is not empty.

Proof. Let f(x) =
∑
i x

d
i +

∑
i x

2
i ∈ Pnd . It follows trivially that

∇2f(x) = diag
([
d(d− 1)xd−21 + 2, d(d− 1)xd−22 + 2, · · · , d(d− 1)xd−2n + 2

])
� 0 ∀x.

Given the above two propositions it follows that the dimensionality of Cnd and Pnd is identical.
Lemma 2. The dimension of the polynomial vector space is equal to the dimension of the convex
even degree polynomial cone having the same degree d and the same number of variables n, i.e.,
dim(Cnd ) = dim(Pnd ).

Proof. According to Proposition 3, there exists a function f ∈ Pnd , with strictly positive definite
Hessian, i.e., ∀x ∈ Rn, eig(∇2f(x)) > 0. Consider a polynomial basis {gi} of Pnd . Consider
the vector of eigenvalues E(ĉi) = eig(∇2(f(x) + ĉigi)). According to Proposition 2, E(ĉi) is
continuous w.r.t. ĉi, and E(0) is an all-positive vector. According to the definition of continuity,
there exists an ε > 0, such that E(ĉi) > 0, ∀ĉi ∈ {c : |c| < ε}. Hence, there exists a nonzero
constant ĉi such that the polynomial f + ĉigi is also strictly convex. We can construct such a strictly
convex polynomial ∀gi. Therefore the polynomial set f + ĉigi is linearly independent and hence a
basis of Cnd . This concludes the proof.

Lemma 3. The linear span of the basis of Cnd is Pnd
Proof. Suppose Pnd is N -dimensional. According to Lemma 2, Cnd is also N -dimensional. Denote
{g1, g2, · · · gN} a basis of Cnd . Assume there exists h ∈ Pnd such that h cannot be linearly represented
by {g1, g2, · · · gN}. We have {g1, g2, · · · , gN , h} areN+1 linear independent vectors in Pnd , which
is in contradiction with Pnd being N -dimensional.

Theorem 1. ∀f ∈ Pnd , there exist convex polynomials h, g ∈ Cnd such that f = h− g.

Proof. Let the basis of Cnd be {g1, g2, · · · , gN}. According to Lemma 3, there exist coefficients
c1, · · · , cN , such that f = c1g1 + c2g2 + · · · + cNgN . We can partition the coefficients into
two sets, according to their sign, i.e., f =

∑
ci≥0 cigi +

∑
cj<0 cjgj . Let h =

∑
ci≥0 cigi and

g = −
∑
cj<0 cjgj . We have f = h− g, while both h and g are convex polynomials.

According to Theorem 1 there exists a concave-convex decomposition given any polynomial, where
both the convex and concave parts are also polynomials with degree no greater than the original

polynomial. As long as we can find
(
n+ d− 1

d

)
linearly independent convex polynomial basis

functions for any arbitrary polynomial function f ∈ Pnd , we obtain a valid decomposition by looking
at the sign of the coefficients. It is however worth noting that the concave-convex decomposition
is not unique. In fact, there is an infinite number of decompositions, trivially seen by adding and
subtracting an arbitrary convex polynomial to an existing decomposition.

Finding a convex basis is however not an easy task, mainly due to the difficulties on checking
convexity and the exponentially increasing dimension. Recently, Ahmadi et al. [1] proved that even
deciding on the convexity of quartic polynomials is NP-hard.
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Algorithm 1 CCCP Inference on Continuous MRFs with Polynomial Potentials
Input: Initial estimation x0

∀r find fr(xr) = fr,vex(xr) + fr,cave(xr) via Eq. (4) or via a polynomial basis (Theorem 1)
repeat

solve x(i+1) = argminx
∑
r fr,vex(xr) + xT∇x(

∑
r∈R fr,cave(x

(i)
r )) with L-BFGS.

until convergence
Output: x∗

2.4 Constructing a Concave-Convex Decomposition of Polynomials
In this section we derive an algorithm to construct the concave-convex decomposition of arbitrary
polynomials. Our algorithm first constructs the convex basis of the polynomial vector space Pnd
before extracting a convex polynomial containing the target polynomial via a sum-of-squares (SOS)
program. More formally, given a non-convex polynomial f(x) we are interested in constructing
a convex function h(x) = f(x) +

∑
i cigi(x), with gi(x), i = {1, . . . ,m}, the set of all con-

vex monomials with degree no grater than deg(f(x)). From this it follows that fvex = h(x) and
fcave = −

∑
i cigi(x). In particular, we want a convex function h(x), with coefficients ci as small

as possible:
min
c

wT c s.t. ∇2f(x) +
∑
i

ci∇2gi(x) � 0 ∀x ∈ Rn, (3)

with the objective function being a weighted sum of coefficients. The weight vector w can encode
preferences in the minimization, e.g., smaller coefficients for larger degrees. This minimization
problem is NP-hard. If it was not, we could decide whether an arbitrary polynomial f(x) is convex
by solving such a program, which contradicts the NP-hardness result of [1]. Instead, we utilize a
tighter set of constraints, i.e., sum-of-square constraints, which are easier to solve [14].
Definition 2. For an even degree polynomial f(x) ∈ Pnd , with d = 2m, f is an SOS polynomial if
and only if there exist g1, . . . , gk ∈ Pnm such that f(x) =

∑k
i=1 gi(x)

2.

Thus, instead of solving the NP-hard program stated in Eq. (3), we optimize:

min
c

wT c s.t. ∇2f(x) +
∑
i

ci∇2gi(x) ∈ SOS. (4)

The set of SOS Hessians is a subset of the positive definite Hessians [9]. Hence, every solution of
this problem can be considered a valid construction. Furthermore, the sum-of-squares optimization
in Eq. (4) can be formulated as an efficiently solvable semi-definite program (SDP) [10, 9]. It is im-
portant to note that the gap between the SOS Hessians and the positive definite Hessians increases
as the degree of the polynomials grows. Hence using SOS constraints we might not find a solution,
even though there exists one for the original program given in Eq. (3). In practice, SOS optimization
works well for monomials and low-degree polynomials. For pairwise graphical models with arbi-
trary degree polynomials, as well as for graphical models of order up to four with maximum fourth
order degree polynomials, we are guaranteed to find a decomposition. This is due to the fact that
SOS convexity and polynomial convexity coincide (Theorem 5.2 in [2]). Most practical graphical
models are within this set. Known counter-examples [2] are typically found using specific tools.

We summarize our algorithm in Alg. 1. Given a graphical model with polynomial potentials with
degree at most d, we obtain a concave-convex decomposition by solving Eq. (4). This can be done
for the full polynomial or for each non-convex monomial. We then apply CCCP in order to perform
inference, where we solve a convex problem at each iteration. In particular, we employ L-BFGS,
mainly due to its super-linear convergence and its storage efficiency [12]. In each L-BFGS step, we
apply a line search scheme based on the Wolfe conditions [12].

2.5 Extensions
Dealing with very large graphs: Motivated by recent progress on accelerating graphical model
inference [7, 21, 20], we can handle large-scale problems by employing dual decomposition and
using our approach to solve the sub-problems.

Non-polynomial cases: We have described our method in the context of graphical models with
polynomial potentials. It can be extended to the non-polynomial case if the involved functions have
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L-BFGS PCBP FusionMove ADMM-Poly Ours
Energy 10736.4 6082.7 4317.7 3221.1 3062.8

RMSE (mm) 4.98 4.50 2.95 3.82 3.07
Time (second) 0.11 56.60 0.12 18.32 8.70 (×2)

Table 1: 3D Reconstruction on 3× 3 meshes with noise variance σ = 2.
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(b) Cardboard meshes
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(c) Shape-from-Shading
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Figure 1: Average energy evolution curve for different applications.

bounded Hessians, since we can still construct the concave-convex decomposition. For instance, for
the Lorentzian regularizer ρ(x) = log(1 + x2

2 ), we note that ρ(x) = {log(1 + x2

2 ) + x2

8 } −
x2

8
is a valid concave-convex decomposition. We refer the reader to the supplementary material for
a detailed proof. Alternatively, we can approximate any continuous function with polynomials by
employing a Taylor expansion around the current iterate, and updating the solution via one CCCP
step within a trust region.

3 Experimental Evaluation

We demonstrate the effectiveness of our approach using three different applications: non-rigid 3D
reconstruction, shape from shading and image denoising. We refer the reader to the supplementary
material for more figures as well as an additional toy experiment on a densely connected graph with
box constraints.

3.1 Non-rigid 3D Reconstruction
We tackle the problem of deformable surface reconstruction from a single image. Following [30],
we parameterize the 3D shape via the depth of keypoints. Let x ∈ RN be the depth of N points.
We follow the locally isometric deformation assumption [20], i.e., the distance between neighboring
keypoints remains constant as the non-rigid surface deforms. The 3D reconstruction problem is then
formulated as

min
x

∑
(i,j)∈N

(
‖xiqi − xjqj‖2 − d2i,j

)2
, (5)

where di,j is the distance between keypoints (given as input), N is the set of all neighboring pixels,
xi is the unknown depth of point i, qi = A−1(ui, vi, 1)

T is the line-of-sight of pixel i with A
denoting the known internal camera parameters. We consider a six-neighborhod system, i.e., up,
down, left, right, upper-left and lower-right. Note that each pairwise potential is a four-degree non-
convex polynomial with two random variables. We can easily decompose it into 15 monomials,
and perform a concave-convex decomposition given the corresponding convex polynomials (see
supplementary material for an example).

We first conduct reconstruction experiments on the 100 randomly generated 3 × 3 meshes of [20],
where zero-mean Gaussian noise with standard deviation σ = 2 is added to each observed keypoint
coordinate. We compare our approach to Fusion Moves [30], particle convex belief propagation
(PCBP) [17], L-BFGS as well as dual decomposition with the alternating direction method of mul-
tipliers using a polynomial solver (ADMM-Poly) [20]. We employ three different metrics, energy at
convergence, running time and root mean square error (RMSE). For L-BFGS and our method, we
use a flat mesh as initialization with two rotation angles (0, 0, 0) and (π/4, 0, 0). The convergence
criteria is an energy decrease of less than 10−5 or a maximum of 500 iterations is reached. As
shown in Table 1 our algorithm achieves lower energy, lower RMSE, and faster running time than
ADMM-Poly and PCBP. Furthermore, as shown in Fig. 1(a) the time for running our algorithm to
convergence is similar to a single iteration of ADMM-Poly, while we achieve much lower energy.
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L-BFGS CLVM ADMM-Poly Ours
Energy 736.98 N/A 905.37 687.21

RMSE (mm) 4.16 7.23 5.68 3.29
Time (second) 0.3406 N/A 314.8 10.16

Table 2: 3D Reconstruction on Cardboard sequences.
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Figure 2: 3D reconstruction results on Cardboard. Left to right: sample comparison, energy curve,
groundtruth, ADMM-Poly and our reconstruction.
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Figure 3: Shape-from-Shading results on Penny. Left to right: energy curve, inferred shape, rendered
image with inferred shape, groundtruth image.

We next reconstruct the real-world 9×9Cardboard sequence [20]. We compare with both ADMM-
Poly and L-BFGS in terms of energy, time and RMSE. We also compare with the constrained latent
variable model of [29], in terms of RMSE. We cannot compare the energy value since the energy
function is different. Again, we use a flat mesh as initialization. As shown in Table 2, our algorithm
outperforms all baselines. Furthermore, it is more than 20 times faster than ADMM-Poly, which is
the second best algorithm. Average energy as a function of time is shown in Fig. 1(b). We refer
the reader to Fig. 2 and the video in the supplementary material for a visual comparison between
ADMM-Poly and our method. From the first subfigure we observe that our method achieves lower
energy for most samples. The second subfigure illustrate the fact that our approach monotonically
decreases the energy, as well as our method being much faster than ADMM-Poly.

3.2 Shape-from-Shading
Following [5, 20], we formulate the shape from shading problem with 3rd-order 4-th de-
gree polynomial functions. Let xi,j = (ui,j , vi,j , wi,j)

T be the 3D coordinates of
each triangle vertex. Under the Lambertian model assumption, the intensity of a trian-
gle r is represented as: Ir = l1pr+l2qr+l3√

p2r+q
2
r+1

, where l = (l1, l2, l3)
T is the direction of

the light, pr and qr are the x and y coordinates of normal vector nr = (pr, qr, 1)
T ,

which is computed as pr =
(vi,j+1−vi,j)(wi+1,j−wi,j)−(vi+1,j−vi,j)(wi,j+1−wi,j)
(ui,j+1−ui,j)(vi+1,j−vi,j)−(ui+1,j−ui,j)(vi,j+1−vi,j) and pr =

(ui,j+1−ui,j)(wi+1,j−wi,j)−(ui+1,j−ui,j)(wi,j+1−wi,j)
(ui,j+1−ui,j)(vi+1,j−vi,j)−(ui+1,j−ui,j)(vi,j+1−vi,j) , respectively. Each clique r represents a trian-

gle, which is constructed by three neighboring points on the grid, i.e., either (xi,j ,xi,j+1,xi+1,j)
or (xi,j ,xi,j−1,xi+1,j). Given the rendered image and lighting direction, shape from shading is
formulated as

min
w

∑
r∈R

(
(p2r + q2r + 1)I2r − (l1pr + l2qr + l3)

2
)2
. (6)

We tested our algorithm on the Vase, Penny and Mozart datasets, where Vase and Penny are 128×128
images and Mozart is a 256 × 256 image with light direction l = (0, 0, 1)T . The energy evolution
curve, the inferred shape as well as the rendered and groud-truth images are illustrated in Fig. 3.
See the supplementary material for more figures on Penny and Mozart. Our algorithm achieves very
low energy, producing very accurate results in only 30 seconds. ADMM-Poly hardly runs on such
large-scale data due to the computational cost of the polynomial system solver (more than 2 hours

7



L-BFGS GradDesc Ours
Energy 29547 29598 29413
PSNR 30.96 31.56 31.43

Time (sec) 189.5 1122.5 384.5
Table 3: FoE Energy Minimization Results.

Clean Image Noisy Image, PSNR: 24.5952 GradDesc, PSNR: 31.0689 Ours, PSNR: 30.9311 L−BFGS, PSNR: 30.7695
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Figure 4: FoE based image denoising results on Cameraman, σ = 15.

per iteration). In order to compare with ADMM-Poly, we also conduct the shape from shading
experiment on a scaled 16× 16 version of the Vase data. Both methods retrieve a shape that is very
close to the global optimum (0.00027 for ADMM-Poly and 0.00032 for our approach), however,
our algorithm is over 500 times faster than ADMM-Poly (2250 seconds for ADMM-Poly and 13.29
seconds for our proposed method). The energy evolution curve on the 16 × 16 re-scaled image in
shown in Fig. 1(c).

3.3 Image Denoising
We formulate image denoising via minimizing the Fields-of-Experts (FoE) energy [18]. The
data term encodes the fact that the recovered image should be close to the noisy input, where
closeness is weighted by the noise level σ. Given a pre-learned linear filterbank of ‘experts’
{Ji}i=1,...,K , the image prior term encodes the fact that natural images are Gibbs distributed via
p(x) = 1

Z exp(
∏
r∈R

∏K
i=1(1 +

1
2 (J

T
i xr)

2)αi). Thus we formulate denoising as

min
x

λ

σ2
‖x− y‖22 +

∑
r∈R

K∑
i=1

αi log(1 +
1

2
(JTi xr)

2), (7)

where y is the noisy image input, x is the clean image estimation, r indexes 5 × 5 cliques and i is
the index for each FoE filter. Note that this energy function is not a polynomial function. However,
for each FoE model, the Hessian of the energy function log(1 + 1

2 (J
T
i xr)

2) is lower bounded by

−J
T
i Ji
8 (proof in the supplementary material). Therefore, we simply add an extra term γxTr xr with

γ >
JT
i Ji
8 to obtain the concave-convex decomposition log(1+ 1

2 (J
T
i xr)

2) = {log(1+ 1
2 (J

T
i xr)

2)+

γxTr xr}−γxTr xr. We utilize a pre-trained 5× 5 filterbank with 24 filters, and conduct experiments
on the BM3D benchmark 1 with noise level σ = 15. In addition to the other baselines, we compare
to the original FoE inference algorithm, which essentially is a first-order gradient descent method
with fixed gradient step [18]. For L-BFGS, we set the maximum number of iterations to 10,000, to
make sure that the algorithm converges. As shown in Table 3 and Fig. 1(d), our algorithm achieves
lower energy than L-BFGS and first-order gradient descent. Furthermore, we see that lower energy
does not translate to higher PSNR, showing the limitation of FoE as an image prior.

4 Conclusions
We investigated the properties of polynomials, and proved that every multivariate polynomial with
even degree can be decomposed into a sum of convex and concave polynomials with degree no
greater than the original one. Motivated by this property, we exploited the concave-convex proce-
dure to perform inference on continuous Markov random fields with polynomial potentials. Our al-
gorithm is especially fit for solving inference problems on continuous graphical models, with a large
number of variables. Experiments on non-rigid reconstruction, shape-from-shading and image de-
noising validate the effectiveness of our approach. We plan to investigate continuous inference with
arbitrary differentiable functions, by making use of polynomial approximations as well as tighter
concave-convex decompositions.

1http://www.cs.tut.fi/˜foi/GCF-BM3D/
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