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Abstract

We consider the challenging practical problem of optimizing the power produc-
tion of a complex of hydroelectric power plants, which involves control over three
continuous action variables, uncertainty in the amount of water inflows and a va-
riety of constraints that need to be satisfied. We propose a policy-search-based
approach coupled with predictive modelling to address this problem. This ap-
proach has some key advantages compared to other alternatives, such as dynamic
programming: the policy representation and search algorithm can conveniently
incorporate domain knowledge; the resulting policies are easy to interpret, and
the algorithm is naturally parallelizable. Our algorithm obtains a policy which
outperforms the solution found by dynamic programming both quantitatively and
qualitatively.

1 Introduction

The efficient harnessing of renewable energy has become paramount in an era characterized by
decreasing natural resources and increasing pollution. While some efforts are aimed towards the
development of new technologies for energy production, it is equally important to maximize the ef-
ficiency of existing sustainable energy production methods [5], such as hydroelectric power plants.
In this paper, we consider an instance of this problem, specifically the optimization of one of a com-
plex of hydroelectric power plants operated by Hydro-Québec, the largest hydroelectricity producer
in Canada [17].

The problem of optimizing hydroelectric power plants, also known as the reservoir management
problem, has been extensively studied for several decades and a variety of computational methods
have been applied to solve it (see e.g. [3, 4] a for literature review). The most common approach is
based on dynamic programming (DP) [13]. However, one of the major obstacles of this approach lies
in the difficulty of incorporating different forms of domain knowledge, which are key to obtaining
solutions that are practically relevant. For example, the optimization is subject to constraints on
water levels which might span several time-steps, making them difficult to integrate into typical DP-
based algorithms. Moreover, human decision makers in charge of the power plants are reluctant to
rely on black-box closed loop policies that are hard to understand. This has led to continued use in
the industry of deterministic optimization methods that provide long-term open loop policies; such
policies are then further adjusted by experts [2]. Finally, despite the different measures taken to
relieve the curse of dimensionality in DP-style approaches, it remains a big concern for large scale
problems.

In this paper, we develop and evaluate a variation of simulation–based optimization [16], a special
case of policy search [6], which combines some aspects of stochastic gradient descent and block
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coordinate descent [14]. We compare our solution to a DP-based solution developed by Hydro-
Québec based on historical inflow data, and show both quantitative and qualitative improvement.
We demonstrate how domain knowledge can be naturally incorporated into an easy-to-interpret pol-
icy representation, as well as used to guide the policy search algorithm. We use a type of predictive
state representations [9, 10] to learn a model for the water inflows. The policy representation fur-
ther leverages the future inflow predictions obtained from this model. The approach is very easy
to parallelize, and therefore easily scalable to larger problems, due to the availability of low-cost
computing resources. Although much effort in this paper goes to analyzing and solving one spe-
cific problem, the proposed approach is general and could be applied to any sequential optimization
problems involving constraints. At the end of the paper, we summarize the utility of this approach
from a domain–independent perspective.

The paper is organized as follows. Sec. 2 provides information about the hydroelectric power plant
complex (needed to implement the simulator used in the policy search procedure) and describes the
generative model used by Hydro-Québec to generate inflow data with similar statistical properties
as inflows observed historically. Sec. 3 describes the learning algorithm that produces a predic-
tive model for the inflows, based on recent advances in predictive state representations. In Sec. 4
we present the policy representation and the search algorithm. Sec. 5 presents a quantitative and
qualitative analysis of the results, and Sec. 6 concludes the paper.

2 Problem specification

We consider a hydroelectric power plant system consisting of four sites, R1, . . . ,R4 operating on the
same course of water. Although each site has a group of turbines, we treat this group as a single
large turbine whose speed is to be controlled. R4 is the topmost site, and water turbined at reservoir
Ri flows to Ri−1 (where it gets added to any other naturally incoming flows). The topmost three
sites (R2,R3,R4) have their own reservoirs, in which water accumulates before being pushed through
a number of turbines which generate the electricity. However, some amount of water might not be
useful for producing electricity because it is spilled (e.g., to prevent reservoir overflow). Typically,
policies that manage to reduce spillage produce more power.

The amount of water in each reservoir changes as a function of the water turbined/spilled from the
upstream site, the water inflow coming from the ground, and the amount of water turbined/spilled at
the current site, as follows:

V4(t+ 1) = V4(t) + I4(t)−X4(t)− Y4(t),

Vi(t+ 1) = Vi(t) +Xi+1(t) + Yi+1(t) + Ii(t)−Xi(t)− Yi(t), i = 2, 3

where Vi(t) is the volume of water at reservoir Ri at time t, Xi(t) is the amount of water turbined
at Ri at time t, Yi(t) is the amount of water spilled at site Ri at time t, and Ii(t) is water inflow to
site Ri at time t. Since R1 does not have a reservoir, all the incoming water is used to operate the
turbine, and the extra water is spilled. At the other sites, the water spillage mechanism is used only
as a means to prevent reservoir overflow.

The control problem that needs to be solved is to determine the amount of water to turbine during
each period t, in order to maximize power production, while also satisfying constraints on the water
level. We are interested in a problem considered of intermediate temporal resolution, in which
a control action at each of the 3 topmost sites is chosen weekly, after observing the state of the
reservoirs and the inflows of the previous week.

Power production model

The amount of power produced is a function of the current water level (headwater) at the reservoir
and the total speed of the turbines (m3/s). It is not a linear function, but it is well approximated by
a piece-wise linear function for a fixed value of the headwater (see Fig. A.1 in the supplementary
material) . The following equation is used to obtain the power production curve for other values of
the headwater [18]:

P (x, h) =

(
h

href

)1.5

· Pref

([
h

href

]−0.5

· x

)
, (1)

where x is the flow, h is the current headwater level, href is the reference headwater, and Pref is
the production curve of the reference headwater. Note that Eq. 1 implies that the maximum total

2



speed of the turbines also changes as the headwater changes; specifically,
[

h
href

]−0.5

x should not
exceed the maximum total speed of the turbines, given in the appendix figures. For completeness,
Figure A.2 (supplementary material) can be used to convert the amount of water in the reservoir to
the headwater value.

Constraints

Several constraints must be satisfied while operating the plant, which are ecological in nature.

1. Minimum turbine speed at R1 (MIN FLOW (w), w ∈ {1, ..., 52}):

This sufficient flow needs to be maintained to allow for easy passage for the fish living in
the river.

2. Stable turbine speed throughout weeks 43-45 (fluctuations of up toBUFFER = 35m3/s
between weeks are acceptable). Nearly constant water flow at this time of the year ensures
that the area is favorable for fish spawning.

3. The amount of water in reservoir R2 should not go below MIN V OL = 1360 hm3.
Due to the depth of the reservoir, the top and bottom water temperatures differ. Turbin-
ing warmer water (at reservoir’s top) is preferrable for the fish, but this constraint is less
important than the previous two.

Water inflow process

The operation of the hydroelectric power plant is almost entirely dependent on the inflows at each
site. Historical data suggests that it is safe to assume that the inflows at different sites in the same
period t are just scaled values of each other. However, there is relatively little data available to
optimize the problem through simulation: there are only 54 years of inflow data, which translates
into 2808 values (one value per week - see Fig. 1). Hydro-Quebec use this data to learn a generative
model for inflows. It is a periodic autoregressive model of first order, PAR(1), whose structure is
well aligned with the hydrological description of the inflows [1]. The model generates data using
the following equation:

x(t+ 1) = αt mod N · x(t) + ξ(t),

where ξ(t) ∼ N (0, νt mod N ) i.i.d., x(0) = ξ(0), and N = 52 in our setting.
As the weekly historical data is not necessarily normally distributed, transformations are used to
normalize the data before learning the parameters of the PAR(1) model. The transformations used
here are either logarithmic, ln(X + a), where a is a parameter, or gamma, based on Wilson Hilferty
transformation [15]. Hence, to generate synthetic data, the reverse of these transformations are
applied to the output produced by the PAR(1) process1.

Figure 1: Historical inflow data.

1The parameters of the PAR(1) process, as well as the transformations and their parameters (in the logarith-
mic case) are estimated using the SAMS software [11].
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3 Predictive modeling of the inflows

It is intuitively clear that predicting future inflows well could lead to better control policies. In this
section, we describe the model that lets us compute the predictions of future inflows, which are used
as an input to policies. We use a recently developed time series modelling framework based on pre-
dictive state representations (PSRs) [9, 10], called mixed-observable PSRs (MO-PSR) [8]. Although
one could estimate future inflows based on knowledge that the generative process is PAR(1), our ob-
jective is to use a general modelling tool that does not rely on this assumption, for two reasons. First,
decoupling the generative model from the predictive model allows us to replace the current gener-
ative model with more complex alternatives later on, with little effort. Moreover, more complex
models do not necessary have a clear way to estimate a sufficient statistic from a given history (see
e.g. temporal disaggregation models [12]). Second, we want to test the ability of predictive state
representations, which are a fairly recent approach, to produce a model that is useful in a real-world
control problem. We now describe the models and learning algorithms used.

3.1 Predictive state representations

(Linear) PSRs were introduced as a means to represent a partially observable environment without
explicitly modelling latent states, with the goal of developing efficient learning algorithms [9, 10]. A
predictive representation is only required to keep some form of sufficient statistic of the past, which
is used to predict the probability of future sequences of observations generated by the underlying
stochastic process.

LetO be a discrete observation space. With probability P(o1, ..., ok), the process outputs a sequence
of observations o1, ..., ok ∈ O. Then, for some n ∈ N, the set of parameters

{m∗ ∈ Rn, {Mo ∈ Rn×n}o∈O,p0 ∈ Rn}
defines a n-dimensional linear PSR that represents this process if the following holds:

∀k ∈ N, oi ∈ O : P(o1, ..., ok) = m>∗Mok · · ·Mo1p0,

where p0 is the initial state of the PSR [7]. Let p(h) be the PSR state corresponding to a history h.
Then, for any o ∈ O, it is possible to track a sufficient statistic of the history, which can be used to
make any future predictions, using the equation:

p(ho) ,
Mop(h)

m>∗Mop(h)
.

Because PSRs are very general, learning can be difficult without exploiting some structure of the
problem domain. In our problem, knowing the week of the year gives significant information to the
predictive model, but the model does not need to learn the dynamics of this variable. This turns
out to be a special case of the so-called mixed observable PSR model [8], in which an observation
variable can be used to decompose the problem into several, typically much smaller, problems.

3.2 Mixed-observable PSR for inflow process

Figure 2: Prediction accuracy of the mean pre-
dictor (blue), MO-PSR predictor (black), and the
predictions calculated from a true model (red).

We define the discrete observation space O by
discretizing the space of inflows into 20 bins,
then follow [8] to estimate a MO-PSR represen-
tation from 3 × 105 trajectories obtained from
the generative model. This procedure is a gen-
eralization of the spectral learning algorithm
developed for PSRs [7], which is a consistent
estimator.
Specifically, let the set of all observed tuples of
sequences of length 3 be denoted by H and T
simultaneously. We then split the set H into 52
subsets, each corresponding to a different week
of the year, and obtain a collection {Hw}w∈W ,
where W = {1, ..., 52}. Then, we estimate a
collection of the following vectors and matrices
from data:
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• {PHw
}w∈W - a set of |Hw|-dimensional vectors with entries equal to

P(h ∈ Hw|h occured right before week w),
• {PT ,Hw

}w∈W - a set of |T | × |Hw|-dimensional matrices with entries equal to
P(h, t|h ∈ Hw, t ∈ T , h occured right before week w),

• {PT ,o,Hw}w∈W,o∈O - a set of |T | × |Hw|-dimensional matrices with entries equal to
P(h, o, t|h ∈ Hw, o ∈ O, t ∈ T , h occured right before week w).

Finally, we perform Singular Value Decomposition (SVD) on the estimated matrices {PT ,Hw}w∈W
and use their corresponding low rank matrices of left singular vectors {Uw}w∈W to compute the
MO-PSR parameters as follows:

• ∀o ∈ O, w ∈ W : Bw
o = U>w−1PT ,o,Hw(U>wPT ,Hw)†,

• ∀w ∈ W : bw0 = U>wPT ,Hw
1,

• ∀w ∈ W : bw∗ = (P>T ,Hw
Uw)†PHw

,

where w − 1 is the week before w, and † denotes the Moore–Penrose pseudoinverse. The above
parameters can be used to estimate probability of any sequence of future observations, given starting
week w, as:

P(o1, ..., ot) = bw+t>
∗ Bw+t−1

ot · · ·Bw
o1b

w
0 ,

where w + i represents the i-th week after w.

Figure 2 shows the prediction accuracy of the learnt MO-PSR model at different horizons, compared
to two baselines: the weekly average, and the true PAR(1) model that knows the hidden state (oracle
predictor).

4 Policy search

The objective is to maximize the expected return, E(R), over each year, given by the amount of
power produced that year minus the penalty for constraint violations. Specifically,

R =

52∑
w=1

[
P (w)−

3∑
i=1

αiCi(w)

]
,

where P (w) is the amount of power produced during week w, and Ci(w) is the penalty for violating
the i-th constraint, defined as:

C1(w) = min{MIN FLOW (w)−R1flow(w), 0}2

C2(w) =

{
min{|R1flow(w)−meanR1flow| −BUFFER, 0}2 if w ∈ {43, 44, 45}
0 otherwise

C3(w) = min{MIN V OL−R2vol(w), 0}3/2

whereR1flow(w) is the water flow (turbined + spilled) at R1 during weekw,R2vol(w) is the water
volume at R2 at the end of week w, and meanR1flow is the average water flow at site R1 during
weeks 43-45. There are three variables to control: the speed of turbines R2,R3,R4. As discussed,
the speed of the turbine at site R1 is entirely controlled by the amount of incoming water.

The approach we take belongs to a general class of policy search methods [6]. This technique is
based on the ability to simulate policies, and the algorithm will typically output the policy that has
achieved the highest reward during the simulation.

The policy for each turbine takes the parametric form of a truncated linear combination of features:

min

[
max

(
k∑
i=1

xj · θj ,MAX SPEEDRi

)
, 0

]
,

where MAX SPEEDRi
is the maximum speed of the turbine at Ri, xj are the features and θj are

the parameters. For each site, the features include the current amount of water in the reservoir, the
total amount of water in downstream reservoirs, and a constant. For the policy that uses the predictive
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model we include one more feature per site: the expected amount of inflow for the following week.
Hence, there are 8 and 11 features for the policies without/with predictions respectively (as there are
no downstream reservoirs for R2).

Using this policy representation results in reasonable performance, but a closer look at constraint 2
during simulation reveals that the reservoirs should not be too full; otherwise, there is a high chance
of spillage, preventing the ability to set a stable flow during the three consecutive weeks critical for
fish spawning. To address this concern, we use a different set of parameters during weeks 41-43, to
ensure that the desired state of the reservoirs is reached before the constrained period sets in. Note
that the policy search framework allows us to make such an adjustment very easily.

Finally, we also use the structure of the policy to comply as much as possible with constraint 2,
by setting the speed of the turbine at site R2 during weeks 44-45 to be equal to the previous water
flow at site R1. For the policy that uses the predictive model, we further refine this by subtracting
the expected predicted amount of inflow at site R1. This brings the number of parameters used for
the policies to 16 and 22 respectively. As the policies are simply (truncated) linear combinations of
features, they are easy to inspect and interpret.

Our algorithm is based on a random local search around the current solution, by perturbing different
blocks of parameters while keeping others fixed, as in block coordinate descent [14]. Each time a
significantly better solution than the current one is found, line search is performed in the direction
of improvement. The pseudo-code is shown in Alg. 1. The algorithm itself, like the policy represen-
tation, exploits problem structure by also searching the parameters of a single turbine as part of the
overall search procedure.

Algorithm 1 Policy search algorithm
Parameters:
N− maximum number of interations
θ = {θR2

,θR3
,θR4

} = {θ1, ..., θm} ∈ Rm - initial parameter vector
n− number of parallel policy evaluations
Threshold− significance threshold
γ− sampling variance
Output: θ

1: repeat
2: Stage 1: . searching over entire parameter space
3: θ = SEARCHWITHINBLOCK(θ, all indexes)
4: Stage 2: . searching over parameters of each turbine separately
5: for all reservoirs Rj do
6: θ = SEARCHWITHINBLOCK(θ, parameter indexes of turbine Rj)
7: Stage 3: . searching over each parameter separately
8: for j ← 1,m do
9: θ = SEARCHWITHINBLOCK(θ, index j)

10: until no improvement at any stage
11:
12: procedure SEARCHWITHINBLOCK(θ, I) . I, Ic - an index set and its complement
13: repeat
14: Obtain n samples {∆i ∼ N (0, γI)}i∈{1,...,n}
15: Evaluate policies defined by parameters {{θIc ,θI + ∆i}}i∈{1,...,n} (in parallel)

16: if Ê(R{θIc ,θI+∆i}) > Ê(Rθ) + Threshold then
17: Find α∗ = arg maxα Ê(R{θIc ,θI+α∆i}) using a line search
18: θ ← {θIc ,θI + α∗∆i}
19: until no improvement for N consecutive iterations
20: return θ

The estimate of the expected reward of a policy is calculated by running the simulator on a single
2000-year-long trajectory obtained from the generative model described in Sec. 2. Since the algo-
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Qualitative comparison between DP and PS with pred solutions evaluated on the historical data.
Left - DP, right - PS with pred. Plots (a)-(b) show the amount of water turbined at site R4; plots (c)-(d) show
the water flow at site R1; plots (e)-(f) show the change in the volume of reservoir R2. Dashed horizontal lines
in plots (c)-(f) represent the constraints, dotted vertical lines in plots (c)-(d) mark weeks 43-45.

rithm depends on the initialization of the parameter vector, we sample the initial parameter vector
uniformly at random and repeat the search 50 times. The best solution is reported.

Mean-prod R1 v.% R1 43-45 v.% R1 43-45 v. mean R2 v.%

DP 8,251GW 0% 22% 11 0%
PS no pred 8,286GW 0% 28% 2.6 1.8%

PS with pred 8,290GW 0% 3.7% 0.5 1.8%

Table 1: Comparison between solutions found by dynamic programming (DP), policy search without predic-
tive model (PS no pred) and policy search using the predictive model (PS with pred). Mean-prod represents the
average annual electricity production; R1 v.% is the percentage of years in which constraint 1 is violated; R2

v.% is the percentage of years in which constraint 3 is violated; R1 43-45 v.% is the percentage of years in which
constraint 2 is violated; R1 43-45 v. mean represents the average amount by which constraint 2 is violated.

5 Experimental results

We compare the solutions obtained using the proposed policy search with (PS with pred) and with-
out predictive model (PS no pred) to a solution based on dynamic programming (DP), developed by
Hydro-Québec. The state space of DP is defined by: week, water volume at each reservoir, and pre-
vious total inflow. All the continuous variables are discretized, and the transition matrix is calculated
based on the PAR(1) generative model of the inflow process presented earlier. The discretization was
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optimized to obtain best results. During the evaluation, the solution provided by DP is adjusted to
avoid obviously wrong decisions, like unnecessary water spilling. All solutions are evaluated on the
original historical data. The constraints in DP are handled in the same way as in both PS solutions,
with penalties for violations taking the same form as shown previously. The only exception is the
constraint 2, which requires keeping the flow roughly equal throughout several time steps. Since it
is not possible to incorporate this constraint into DP as is, it is handled by enforcing a turbine flow
between 265 m3/s (the minimum required by constraint 1) and 290 m3/s.

Table 1 shows the quantitative comparison between the solutions obtained by three methods. PS
solutions are able to produce more power, with the best value improving by nearly half of a percent
- a sizeable improvement in the field of energy production. All solutions ensure that constraint 1
is satisfied (column R1 v.%), but constraint 2 is more difficult. Although PS no pred violates this
constraint slightly more often then DP (column R1 43-45 v.%), the amount by which the constraint
is violated is significantly smaller (column R1 43-45 v. mean). As expected, PS with pred performs
much better, because it explicitly incorporates inflow predictions. Finally, although both PS solu-
tions violate constraint 3 during one out of 54 years (see Fig. 3(f)), such occasional violations are
acceptable as long as they help satisfy other constraints. Overall, it is clear that PS with pred is a
noticeable improvement over DP based on the quantitative comparison alone.

Practitioners are also often interested to assess the applicability of the simulated solution by other
criteria that are not always captured in the problem formulation. Fig. 3 provides different plots that
allow such a comparison between the DP and PS with pred solutions. Plots (a)-(b) show that the
solution provided by PS with pred offers a significantly smoother policy compared to the DP solution
(see also Fig. A.3 in supplementary material). This smoothness is due to the policy parametrization,
while the DP roughness is the result of the discretization of the input/output spaces. Unless there
are significant changes in the amount of inflows within consecutive weeks, major fluctuations in
turbine speeds are undesirable, and their presence cannot be easily explained to the operator. The
only fluctuations in the solution of PS with pred that are not the result of large inflows are cases in
which the reservoir is empty (see e.g. rapid drops around 10-th week at plot (b)), or a significant
increase in turbine speed around weeks 41-45 due to the change in policy parameters. This also
affects the smoothness of the change in the water volume trajectory, which can be observed at plots
(e)-(f) for reservoir R2 for example. The period of weeks 43-45 is a reasonable exception due to the
change in policy parameters that require turbining at faster speeds to satisfy constraint 2.

6 Discussion
We considered the problem of optimizing energy production of a hydroelectric power plant com-
plex under several constraints. The proposed approach is based on a problem-adapted policy search
whose features include predictions obtained from a predictive state representation model. The re-
sulting solution is superior to a well-established alternative, both quantitatively and qualitatively.
It is important to point out that the proposed approach is not, in fact, specific to this problem or
this domain alone. Often, real-world sequential decision problems have several decision variables,
a variety of constraints of different priorities, uncertainty, etc. Incorporating all available domain
knowledge into the optimization framework is often the key to obtaining acceptable solutions. This
is where the policy search approach is very useful, because it is typically easy to incorporate many
types of domain knowledge naturally within this framework. First, the policy space can rely on
features that are deemed useful for the problem, have an interpretable structure and adhere to the
constraints of the problem. Second, policy search can explore the most likely directions of im-
provement first, as considered by experts. Third, the policy can be evaluated directly based on its
performance (regardless of the complexity of the reward function). Forth, it is usually easy to im-
plement the policy search and parallelize parts of the policy search procedure. Finally, the use of
PSRs allows us to produce good features for the policy by providing reliable predictions of future
system behavior. For future work, the main objective is to evaluate the proposed approach on other
realistic complex problems, in particular in domains where solutions obtained from other advanced
techniques are not practically relevant.
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