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Abstract

Lifted inference algorithms for probabilistic first-order logic frameworks such as
Markov logic networks (MLNs) have received significant attention in recent years.
These algorithms use so called lifting rules to identify symmetries in the first-order
representation and reduce the inference problem over a large probabilistic model
to an inference problem over a much smaller model. In this paper, we present
two new lifting rules, which enable fast MAP inference in a large class of MLNs.
Our first rule uses the concept of single occurrence equivalence class of logical
variables, which we define in the paper. The rule states that the MAP assignment
over an MLN can be recovered from a much smaller MLN, in which each logical
variable in each single occurrence equivalence class is replaced by a constant (i.e.,
an object in the domain of the variable). Our second rule states that we can safely
remove a subset of formulas from the MLN if all equivalence classes of variables
in the remaining MLN are single occurrence and all formulas in the subset are
tautology (i.e., evaluate to true) at extremes (i.e., assignments with identical truth
value for groundings of a predicate). We prove that our two new rules are sound and
demonstrate via a detailed experimental evaluation that our approach is superior in
terms of scalability and MAP solution quality to the state of the art approaches.

1 Introduction
Markov logic [4] uses weighted first order formulas to compactly encode uncertainty in large,
relational domains such as those occurring in natural language understanding and computer vision. At
a high level, a Markov logic network (MLN) can be seen as a template for generating ground Markov
networks. Therefore, a natural way to answer inference queries over MLNs is to construct a ground
Markov network and then use standard inference techniques (e.g., Loopy Belief Propagation) for
Markov networks. Unfortunately, this approach is not practical because the ground Markov networks
can be quite large, having millions of random variables and features.

Lifted inference approaches [17] avoid grounding the whole Markov logic theory by exploiting
symmetries in the first-order representation. Existing lifted inference algorithms can be roughly
divided into two types: algorithms that lift exact solvers [2, 3, 6, 17], and algorithms that lift
approximate inference techniques such as belief propagation [12, 20] and sampling based methods [7,
21]. Another line of work [1, 5, 9, 15] attempts to characterize the complexity of lifted inference
independent of the specific solver being used. Despite the presence of large literature on lifting,
there has been limited focus on exploiting the specific structure of the MAP problem. Some recent
work [14, 16] has looked at exploiting symmetries in the context of LP formulations for MAP
inference. Sarkhel et. al [19] show that the MAP problem can be propositionalized in the limited
setting of non-shared MLNs. But largely, the question is still open as to whether there can be a greater
exploitation of the structure for lifting MAP inference.
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In this paper, we propose two new rules for lifted inference specifically tailored for MAP queries.
We identify equivalence classes of variables which are single occurrence i.e., they have at most a
single variable from the class appearing in any given formula. Our first rule for lifting states that
MAP inference over the original theory can be equivalently formulated over a reduced theory where
every single occurrence class has been reduced to a unary sized domain. This leads to a general
framework for transforming the original theory into a (MAP) equivalent reduced theory. Any existing
(propositional or lifted) MAP solver can be applied over this reduced theory. When every equivalence
class is single occurrence, our approach is domain independent, i.e., the complexity of MAP inference
does not depend on the number of constants in the domain. Existing lifting constructs such as the
decomposer [6] and the non-shared MLNs [19] are special cases of our single occurrence rule.

When the MLN theory is single occurrence, one of the MAP solutions lies at extreme, namely all
groundings of any given predicate have identical values (true/false) in the MAP assignment. Our
second rule for lifting states that formulas which become tautology (i.e., evaluate to true) at extreme
assignments can be ignored for the purpose of MAP inference when the remaining theory is single
occurrence. Many difficult to lift formulas such as symmetry and transitivity are easy to handle in our
framework because of this rule. Experiments on three benchmark MLNs clearly demonstrate that our
approach is more accurate and scalable than the state of the art approaches for MAP inference.

2 Background
A first order logic [18] theory is constructed using the constant, variable, function and
predicate symbols. Predicates are defined over terms as arguments where each term is either
a constant, or a variable or a function applied to a term. A formula is constructed by combining
predicates using operators such as ¬, ∧ and ∨. Variables in a first-order theory are often referred
to as Logical Variables. Variables in a formula can be universally or existentially quanti-
fied. A Knowledge Base (KB) is a set of formulas. A theory is in Conjunctive Normal Form
(CNF) if it is expressed as a conjunction of disjunctive formulas. The process of (partial)
grounding corresponds to replacing (some) all of the free variables in a predicate or a formula
with constants in the theory. In this paper, we assume function-free first order logic theory with
Herbrand interpretations [18], and that variables in the theory are implicitly universally quantified.

Markov Logic [4] is defined as a set of pairs (fi, wi), where fi is a formula in first-order logic and
wi is its weight. The weight wi signifies the strength of the constraint represented by the formula fi.
Given a set of constants, an MLN can be seen as a template for constructing ground Markov networks.
There is a node in the network for every ground atom and a feature for every ground formula. The
probability distribution specified by an MLN is:

P (X = x) =
1

Z
exp

 ∑
i:fi∈F

wini(x)

 (1)

where X = x specifies an assignment to the ground atoms, the sum in the exponent is taken over the
indices of the first order formulas (denoted by F ) in the theory, wi is the weight of the ith formula,
ni(x) denotes the number of true groundings of the ith formula under the assignment x, and Z is
the normalization constant. A formula f in MLN with weight w can be equivalently replaced by
negation of the formula i.e., ¬f with weight −w. Hence, without loss of generality, we will assume
that all the formulas in our MLN theory have non-negative weights. Also for convenience, we will
assume that each formula is either a conjunction or a disjunction of literals.

The MAP inference task is defined as the task of finding an assignment (there could be multiple such
assignments) having the maximum probability. Since Z is a constant and exp is a monotonically
increasing function, the MAP problem for MLNs can be written as:

arg max
x

P (X = x) = arg max
x

∑
i:fi∈F

wini(x) (2)

One of the ways to find the MAP solution in MLNs is to ground the whole theory and then reformulate
the problem as a MaxSAT problem [4]. Given a set of weighted clauses (constraints), the goal in
MaxSAT is to find an assignment which maximizes the sum of the weights of the satisfied clauses.
Any standard solver such as MaxWalkSAT [10] can be used over the ground theory to find the MAP
solution. This can be wasteful when there is rich structure present in the network and lifted inference
techniques can exploit this structure [11]. In this paper, we assume an MLN theory for the ease of
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exposition. But our ideas are easily generalizable to other similar representations such as weighted
parfactors [2], probabilistic knowledge bases [6] and WFOMC [5].

3 Basic Framework
3.1 Motivation
Most existing work on lifted MAP inference adapts the techniques for lifting marginal inference. One
of the key ideas used in lifting is to exploit the presence of a decomposer [2, 6, 9]. A decomposer
splits the theory into identical but independent sub-theories and therefore only one of them needs to
be solved. A counting argument can be used when a decomposer is not present [2, 6, 9]. For theories
containing upto two logical variables in each clause, there exists a polynomial time lifted inference
procedure [5]. Specifically exploiting the structure of MAP inference, Sarkhel et. al [19] show that
MAP inference in non-shared MLNs (with no self joins) can be reduced to a propositional problem.
Despite all these lifting techniques, there is a larger class of MLN formulas where it is still not clear
whether there exists an efficient lifting algorithm for MAP inference. For instance, consider the single
rule MLN theory:

w1 Parent(X,Y ) ∧ Friend(Y,Z)⇒ Knows(X,Z)

This rule is hard to lift for any of the existing algorithms since neither the decomposer nor the counting
argument is directly applicable. The counting argument can be applied after (partially) grounding X
and as a result lifted inference on this theory will be more efficient than ground inference. However,
consider adding transitivity to the above theory:

w2 Friend(X,Y ) ∧ Friend(Y,Z)⇒ Friend(X,Z)

This makes the problem even harder because in order to process the new MLN formula via lifted
inference, one has to at least ground both the arguments of Friend. In this work, we exploit specific
properties of MAP inference and develop two new lifting rules, which are able to lift the above theory.
In fact, as we will show, MAP inference for MLN containing (exactly) the two formulas given above
is domain independent, namely, it does not depend on the domain size of the variables.

3.2 Notation and Preliminaries
We will use the upper case letters X,Y, Z etc. to denote the variables. We will use the lower case
letters a, b, c etc. to denote the constants. Let ∆X denote the domain of a variable X . We will assume
that the variables in the MLN are standardized apart, namely, no two formulas contain the same
variable symbol. Further, we will assume that the input MLN is in normal form [9]. An MLN is
said to be in normal form if a) If X and Y are two variables appearing at the same argument position
in a predicate P in the MLN theory, then ∆X = ∆Y . b) There are no constants in any formula. Any
given MLN can be converted into the normal form by a series of mechanical operations in time that
is polynomial in the size of the MLN theory and the evidence. We will require normal forms for
simplicity of exposition. For lack of space, proofs of all the theorems and lemmas marked by (*) are
presented in the extended version of the paper (see the supplementary material).

Following Jha et. al [9] and Broeck [5], we define a symmetric and transitive relation over the
variables in the theory as follows. X and Y are related if either a) they appear in the same position
of a predicate P , or b) ∃ a variable Z such that X,Z and Y,Z are related. We refer to the relation
above as binding relation [5]. Being symmetric and transitive, binding relation splits the variables
into a set of equivalence classes. We say that X and Y bind to each other if they belong to
the same equivalence class under the binding relation. We denote this by writing X ∼ Y . We will
use the notation X̄ to refer to the equivalence class to which variable X belongs. As an example,
the MLN theory consisting of two rules: 1) P (X) ∨Q(X,Y ) 2) P (Z) ∨Q(U, V ) has two variable
equivalence classes given by {X,Z,U} and {Y, V }.
Broeck [5] introduce the notion of domain lifted inference. An inference procedure is domain
lifted if it is polynomial in the size of the variable domains. Note that the notion of domain lifted
does not impose any condition on how the complexity depends on the size of the MLN theory. On
the similar lines, we introduce the notion of domain independent inference.

Definition 3.1. An inference procedure is domain independent if its time complexity is inde-
pendent of the domain size of the variables. As in the case of domain lifted inference, the complexity
can still depend arbitrarily on the size of the MLN theory.
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4 Exploiting Single Occurrence
We show that the domains of equivalence classes satisfying certain desired properties can be reduced
to unary sized domains for the MAP inference task. This forms the basis of our first inference rule.

Definition 4.1. Given an MLN theory M , a variable equivalence class X̄ is said to be single
occurrence with respect to M if for any two variables X,Y ∈ X̄ , X and Y do not appear
together in any formula in the MLN. In other words, every formula in the MLN has at most a single
occurrence of variables from X̄ . A predicate is said to be single occurrence if each of the equivalence
classes of its argument variables is single occurrence. An MLN is said to be single occurrence
if each of its variable equivalence classes is single occurrence.

Consider the MLN theory with two formulas as earlier: 1) P (X) ∨Q(X,Y ) 2) P (Z) ∨Q(U, V ).
Here, {Y, V } is a single occurrence equivalence class while {X,Z,U} is not. Next, we show that
the MAP tuple of an MLN can be recovered from a much smaller MLN in which the domain size of
each variable in each single occurrence equivalence class is reduced to one.

4.1 First Rule for Lifting MAP

Theorem 4.1. Let M be an MLN theory represented by the set of pairs {(fi, wi)}mi=1. Let X̄ be
a single occurrence equivalence class with domain ∆X̄ . Then, MAP inference problem in M can
be reduced to the MAP inference problem over a simpler MLN Mr

X̄
represented by a set of pairs

{(fi, w′i)}mi=1 where the domain of X̄ has been reduced to a single constant.

Proof. We will prove the above theorem by constructing the desired theory Mr
X̄

. Note that Mr
X̄

has
the same set of formulas as M with a set of modified weights. Let FX̄ be the set of formulas in M
which contain a variable from the equivalence class X̄ . Let F−X̄ be the set of formulas in M which
do not contain a variable from the equivalence class X̄ . Let {a1, a2, . . . , ar} be the domain of X̄ .
We will split the theory M into r equivalent theories {M1,M2, . . . ,Mr} such that for each Mj : 1

1. For every formula fi ∈ FX̄ with weight wi, Mj contains fi with weight wi.
2. For every formula fi ∈ F−X̄ with weight wi, Mj contains fi with weight wi/r.
3. Domain of X̄ in Mj is reduced to a single constant {aj}.
4. All other equivalence classes have domains identical to that in M .
This divides the set of weighted constraints in M across the r sub-theories. Formally:

Lemma 4.1. * The set of weighted constraints in M is a union of the set of weighted constraints in
the sub-theories {Mj}rj=1.

Corollary 4.1. Let x be an assignment to the ground atoms in M . Let the function WM (x) denote the
weight of satisfied ground formulas in M under the assignment x in theory M . Further, let xj denote
the assignment x restricted to the ground atoms in theory Mj . Then: WM (x) =

∑r
j=1 WMj

(xj).

It is easy to see that Mj’s are identical to each other upto the renaming of the constants aj’s. Hence,
exploiting symmetry, there is a one to one correspondence between the assignments across the
sub-theories. In particular, there is one to one correspondence between MAP assignments across the
sub-theories {Mj}rj=1.

Lemma 4.2. If xMAP
j is a MAP assignment to the theory Mj , then there exists a MAP assignment

xMAP
l to Ml such that xMAP

l is identical to xMAP
j with the difference that occurrence of constant

aj (in ground atoms of Mj) is replaced by constant al (in ground atoms of Ml).

Proof of this lemma follows from the construction of the sub-theories M1,M2, . . .Mr. Next, we
will show that MAP solution for the theory M can be read off from the MAP solution for any of
theories {Mj}rj=1. Without loss of generality, let us consider the theory M1. Let xMAP

1 be some
MAP assignment for M1. Using lemma 4.2 there are MAP assignments xMAP

2 ,xMAP
3 , . . . ,xMAP

r
for M2,M3, . . .Mr which are identical to xMAP

1 upto renaming of the constant a1. We construct an
assignment xMAP for the original theory M as follows.

1Supplement presents an example of splitting an MLN theory based on the following procedure.
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1. For each predicate P which does not contain any occurrence of the variables from the equivalence
class X̄ , read off the assignment to its groundings in xMAP from xMAP

1 . Note that assignments of
groundings of P are identical in each of xMAP

j because of Lemma 4.2.

2. The (partial) groundings of each predicate P whose arguments contain a variable X ∈ X̄ are split
across the sub-theories {Mj}1≤j≤r corresponding to the substitutions {X = aj}1≤j≤r, respectively.
We assign the groundings of P in xMAP the values from the assignments xMAP

1 ,xMAP
2 , . . .xMAP

r
for the respective partial groundings. Because of Lemma 4.2, these partial groundings have identical
values across the sub-theories upto renaming of the constant aj and hence, can be read off from either
of the sub-theory assignments, and more specifically, xMAP

1 .

By construction, assignment xMAP restricted to the ground atoms in sub-theory Mj corresponds to
the assignment xMAP

j for each j, 1 ≤ j ≤ r.

The only thing remaining to show is that xMAP is indeed a MAP assignment for M . Suppose it
is not, then there is another assignment xalt such that WM (xalt) > WM (xMAP). Using Corollary
4.1, WM (xalt) > WM (xMAP)⇒

∑r
j=1 WMj

(xalt
j ) >

∑r
j=1 WMj

(xMAP
j ). This means that ∃j,

such that WMj (xalt
j ) >WMj (xMAP

j ). But this would imply that xMAP
j is not a MAP assignment

for Mj which is a contradiction. Hence, xMAP is indeed a MAP assignment for M .
Definition 4.2. Application of Theorem 4.1 to transform the MAP problem over an MLN theory M
into the MAP over a reduced theory Mr

X̄
is referred to as Single Occurrence Rule for lifted MAP.

Decomposer [6] is a very powerful construct for lifted inference. The next theorem states that
a decomposer is a single occurrence equivalence class (and therefore, the single occurrence rule
includes the decomposer rule as a special case).
Theorem 4.2. * Let M be an MLN theory and let X̄ be an equivalence class of variables. If X̄ is a
decomposer for M , then X̄ is single occurrence in M .

4.2 Domain Independent Lifted MAP

A simple procedure for lifted MAP inference which utilizes the property of MLN reduction for
single occurrence equivalence classes is given in Algorithm 1. Here, the MLN theory is successively
reduced with respect to each of the single occurrence equivalence classes.

Algorithm 1 Reducing all the single occurrence equivalence classes in an MLN

reduce(MLN M )
Mr ←M
for all Equivalence-Class X̄ do

if (isSingleOccurrence(X̄)) then
Mr ← reduceEQ(Mr ,X̄)

end if
end for
return Mr

reduceEQ(MLN M, class X̄)
Mr

X̄ ← {}; size← |∆X̄ |; ∆X̄ ← {aX̄
1 }

for all Formulas fi ∈ FX̄ do
Add (fi, wi) to Mr

X̄
end for
for all Formulas fi ∈ F−X̄ do

Add (fi, wi/size) to Mr
X̄

end for; return Mr
X̄

Theorem 4.3. * MAP inference in a single occurrence MLN is domain independent.

If an MLN theory contains a combination of both single occurrence and non-single occurrence
equivalence classes, we can first reduce all the single occurrence classes to unary domains using
Algorithm 1. Any existing (lifted or propositional) solver can be applied on this reduced theory to
obtain the MAP solution. Revisiting the single rule example from Section 3.1: Parent(X,Y ) ∧
Friend(Y,Z)⇒ Knows(X,Z), we have 3 equivalence classes {X}, {Y }, and {Z}, all of which
are single occurrence. Hence, MAP inference for this MLN theory is domain independent.

5 Exploiting Extremes
Even when a theory does not contain single occurrence variables, we can reduce it effectively if a)
there is a subset of formulas all of whose groundings are satisfied at extremes i.e. the assignments
with identical truth value for all the groundings of a predicate, and b) the remaining theory with these
formulas removed is single occurrence. This is the key idea behind our second rule for lifted MAP.
We will first formalize the notion of an extreme assignment followed by the description of our second
lifting rule.
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5.1 Extreme Assignments

Definition 5.1. Let M be an MLN theory. Given an assignment x to the ground atoms in M , we say
that predicate P is at extreme in x if all the groundings of P take the same value (either true or
false) in x. We say that x is at extreme if all the predicates in M are at extreme in x.
Theorem 5.1.* Given an MLN theory M , let PS be the set of predicates which are single occurrence
in M . Then there is a MAP assignment xMAP such that ∀P ∈ PS, P is at extreme in xMAP.
Corollary 5.1. A single occurrence MLN admits a MAP solution which is at extreme.

Sarkhel et. al [19] show that non-shared MLNs (with no self-joins) have a MAP solution at the
extreme. This turns out to be a special case of single occurrence MLNs.
Theorem 5.2. * If an MLN theory is non-shared and has no-self joins, then M is single occurrence.

5.2 Second Rule for Lifting MAP

Consider the MLN theory with a single formula as in Section 3.1: w1 Parent(X,Y ) ∧
Friend(Y, Z) ⇒ Knows(X,Z). This is a single occurrence MLN and hence by Corollary 5.1,
MAP solution lies at extreme. Consider adding the transitivity constraint to the theory: w2

Friend(X,Y ) ∧ Friend(Y, Z) ⇒ Friend(X,Z). All the groundings of the second formula
are satisfied at any extreme assignment of the Friends predicate groundings. Since, the MAP
solution to the original theory with single formula is at extreme, it satisfies all the groundings of the
second formula. Hence, it is a MAP for the new theory as well. We introduce the notion of tautology
at extremes:
Definition 5.2. An MLN formula f is said to be a tautology at extremes if all of its groundings are
satisfied at any of the extreme assignments of its predicates.

If an MLN theory becomes single occurrence after removing all the tautologies at extremes in it, then
MAP inference in such a theory is domain independent.
Theorem 5.3. * Let M be an MLN theory with the set of formulas denoted by F . Let Fte denote a set
of formulas in M which are tautologies at extremes. Let M ′ be a new theory with formulas F − Fte

and formula weights as in M . Let the variable domains in M ′ be same as in M . If M ′ is single
occurrence then the MAP inference for the original theory M can be reduced to the MAP inference
problem over the new theory M ′.
Corollary 5.2. Let M be an MLN theory. Let M ′ be a single occurrence theory (with variable
domains identical to M ) obtained after removing a subset of formulas in M which are tautologies at
extremes. Then, MAP inference in M is domain independent.
Definition 5.3. Application of Theorem 5.3 to transform the MAP problem over an MLN theory
M into the MAP problem over the remaining theory M ′ after removing (a subset of) tautologies at
extremes is referred to as Tautology at Extremes Rule for lifted MAP.

Clearly, Corollary 5.2 applies to the two rule MLN theory considered above (and in the Section 3.1)
and hence, MAP inference for the theory is domain independent. A necessary and sufficient condition
for a clausal formula to be a tautology at extremes is to have both positive and negative occurrences
of the same predicate symbol. Many difficult to lift but important formulas such as symmetry and
transitivity are tautologies at extremes and hence, can be handled by our approach.

5.3 A Procedure for Identifying Tautologies

In general, we only need the equivalence classes of variables appearing in Fte to be single occurrence
in the remaining theory for Theorem 5.3 to hold. 2 Algorithm 2 describes a procedure to identify the
largest set of tautologies at extremes such that all the variables in them are single occurrence with
respect to the remainder of the theory. The algorithm first identifies all the tautologies at extremes.
It then successively removes those from the set all of whose variables are not single occurrence in
the remainder of the theory. The process stops when all the tautologies have only single occurrence
variables appearing in them. We can then apply the procedure in Section 4 to find the MAP solution
for the remainder of the theory. This is also the MAP for the whole theory by Theorem 5.3.

2Theorem 5.3g in the supplement gives a more general version of Theorem 5.3.
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Algorithm 2 Finding Tautologies at Extremes with Single Occurrence Variables
getSingleOccurTautology(MLN M )
Fte ← getAllTautologyAtExtremes(M );
F ′ = F − Fte; fixpoint=False;
while (fixpoint==False) do

EQVars← getSingleOccurVars(F ′)
fixpoint=True
for all formulas f ∈ Fte do

if (!(Vars(f) ⊆ EQVars)) then
F ′ ← F ′ ∪ {f}; fixpoint = False

end if
end for

end while; return F − F ′

getAllTautologyAtExtremes(MLN M )
//Iterate over all the formulas in M and return the
//subset of formulas which are tautologies at extremes
//Pseudocode omitted due to lack of space

isTautologyAtExtreme(Formula f )
f ′ = Clone(f )
PU ← set of unique predicates in f ′

for all P ∈ PU do
ReplaceByNewPropositionalPred(P ,f ′)

end for
// f ′ is a propositional formula at this point
return isTautology(f ′)

6 Experiments
We compared the performance of our algorithm against Sarkhel et. al [19]’s non shared MLN
approach and the purely grounded version on three benchmark MLNs. For both the lifted approaches,
we used them as pre-processing algorithms to reduce the MLN domains. We applied the ILP based
solver Gurobi [8] as the base solver on the reduced theory to find the MAP assignment. In principle,
any MAP solver could be used as the base solver 3. For the ground version, we directly applied
Gurobi on the grounded theory. We will refer to the grounded version as GRB. We will refer to our
and Sarkhel et. al [19]’s approaches as SOLGRB (Single Occurrence Lifted GRB) and NSLGRB
(Non-shared Lifted GRB), respectively.

6.1 Datasets and Methodology
We used the following benchmark MLNs for our experiments. (Results on the Student network [19]
are presented in the supplement.):
1) Information Extraction (IE): This theory is available from the Alchemy [13] website. We pre-
processed the theory using the pure literal elimination rule described by Sarkhel et. al [19]. Resulting
MLN had 7 formulas, 5 predicates and 4 variable equivalence classes.
2) Friends & Smokers (FS): This is a standard MLN used earlier in the literature [20]. The MLN
has 2 formulas, 3 predicates and 1 variable equivalence class. We also introduced singletons for each
predicate.

For each algorithm, we report:
1) Time: Time to reach the optimal as the domain size is varied from 25 to 1000. 4,5

2) Cost: Cost of the unsatisfied clauses as the running time is varied for a fixed domain size (500).
3) Theory Size: Ground theory size as the domain size is varied.

All the experiments were run on an Intel four core i3 processor with 4 GB of RAM.

6.2 Results

Figures 1a-1c plot the results for the IE domain. Figure 1a shows the time taken to reach the
optimal. 6 This theory has a mix of single occurrence and non-single occurrence variables. Hence,
every algorithm needs to ground some or all of the variables. SOLGRB only grounds the variables
whose domain size was kept constant. Hence, varying domain size has no effect on SOLGRB and
it reaches optimal instantaneously for all the domain sizes. NSLGRB partially grounds this theory
and its time to optimal gradually increases with increasing domain size. GRB performs significantly
worse due to grounding of the whole theory.

Figure 1b (log scale) plots the total cost of unsatisfied formulae with varying time at domain size
of 500. SOLGRB reaches optimal right in the beginning because of a very small ground theory.
NSLGRB takes about 15 seconds. GRB runs out of memory. Figure 1c (log scale) shows the size
of the ground theory with varying domain size. As expected, SOLGRB stays constant whereas the

3Using MaxWalkSAT [10] as the base solver resulted in sub-optimal results.
4For IE, two of the variable domains of were varied and other two were kept constant at 10 as done in [19].
5Reported results are averaged over 5 runs.
6 NSLGRB and GRB ran out of memory at domain sizes 800 and 100, respectively.
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ground theory size increases polynomially for both NSLGRB and GRB with differing degrees (due
to the different number of variables grounded).

Figure 2 shows the results for FS. This theory is not single occurrence but the tautology at extremes
rule applies and our theory does not need to ground any variable. NSLGRB is identical to the
grounded version in this case. Results are qualitatively similar to IE domain. Time taken to reach the
optimal is much higher in FS for NSLGRB and GRB for larger domain sizes.

These results clearly demonstrate the scalability as well as the superior performance of our approach
compared to the existing algorithms.
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Figure 2: Friends & Smokers

7 Conclusion and Future Work
We have presented two new rules for lifting MAP inference which are applicable to a wide variety of
MLN theories and result in highly scalable solutions. The MAP inference problem becomes domain
independent when every equivalence class is single occurrence. In the current framework, our rules
have been used as a pre-processing step generating a reduced theory over which any existing MAP
solver can be applied. This leaves open the question of effectively combining our rules with existing
lifting rules in the literature.

Consider the theory with two rules: S(X)∨R(X) and S(Y )∨R(Z)∨ T (U). Here, the equivalence
class {X,Y, Z} is not single occurrence, and our algorithm will only be able to reduce the domain of
equivalence class {U}. But if we apply Binomial rule [9] on S, we get a new theory where {X,Z}
becomes a single occurrence equivalence class and we can resort to domain independent inference. 7

Therefore, application of Binomial rule before single occurrence would lead to larger savings. In
general, there could be arbitrary orderings for applying lifted inference rules leading to different
inference complexities. Exploring the properties of these orderings and coming up with an optimal
one (or heuristics for the same) is a direction for future work.
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