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Abstract

In this paper, we consider a multi-step version of the stochastic ADMM method
with efficient guarantees for high-dimensional problems. We first analyze the
simple setting, where the optimization problem consists of a loss function and
a single regularizer (e.g. sparse optimization), and then extend to the multi-block
setting with multiple regularizers and multiple variables (e.g. matrix decomposi-
tion into sparse and low rank components). For the sparse optimization problem,
our method achieves the minimax rate of O(s log d/T ) for s-sparse problems in
d dimensions in T steps, and is thus, unimprovable by any method up to constant
factors. For the matrix decomposition problem with a general loss function, we
analyze the multi-step ADMM with multiple blocks. We establish O(1/T ) rate
and efficient scaling as the size of matrix grows. For natural noise models (e.g.
independent noise), our convergence rate is minimax-optimal. Thus, we establish
tight convergence guarantees for multi-block ADMM in high dimensions. Experi-
ments show that for both sparse optimization and matrix decomposition problems,
our algorithm outperforms the state-of-the-art methods.

1 Introduction

Stochastic optimization techniques have been extensively employed for online machine learning
on data which is uncertain, noisy or missing. Typically it involves performing a large number of
inexpensive iterative updates, making it scalable for large-scale learning. In contrast, traditional
batch-based techniques involve far more expensive operations for each update step. Stochastic opti-
mization has been analyzed in a number of recent works.

The alternating direction method of multipliers (ADMM) is a popular method for online and dis-
tributed optimization on a large scale [1], and is employed in many applications. It can be viewed as
a decomposition procedure where solutions to sub-problems are found locally, and coordinated via
constraints to find the global solution. Specifically, it is a form of augmented Lagrangian method
which applies partial updates to the dual variables. ADMM is often applied to solve regularized
problems, where the function optimization and regularization can be carried out locally, and then
coordinated globally via constraints. Regularized optimization problems are especially relevant in
the high dimensional regime since regularization is a natural mechanism to overcome ill-posedness
and to encourage parsimony in the optimal solution, e.g., sparsity and low rank. Due to the efficiency
of ADMM in solving regularized problems, we employ it in this paper.

We consider a simple modification to the (inexact) stochastic ADMM method [2] by incorporating
multiple steps or epochs, which can be viewed as a form of annealing. We establish that this simple
modification has huge implications in achieving tight bounds on convergence rate as the dimensions
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of the problem instances scale. In each iteration, we employ projections on to certain norm balls
of appropriate radii, and we decrease the radii in epochs over time. For instance, for the sparse
optimization problem, we constrain the optimal solution at each step to be within an `1-norm ball of
the initial estimate, obtained at the beginning of each epoch. At the end of the epoch, an average is
computed and passed on to the next epoch as its initial estimate. Note that the `1 projection can be
solved efficiently in linear time, and can also be parallelized easily [3]. For matrix decomposition
with a general loss function, the ADMM method requires multiple blocks for updating the low rank
and sparse components. We apply the same principle and project the sparse and low rank estimates
on to `1 and nuclear norm balls, and these projections can be computed efficiently.

Theoretical implications: The above simple modifications to ADMM have huge implications
for high-dimensional problems. For sparse optimization, our convergence rate is O( s log d

T ), for
s-sparse problems in d dimensions in T steps. Our bound has the best of both worlds: efficient
high-dimensional scaling (as log d) and efficient convergence rate (as 1

T ). This also matches the
minimax rate for the linear model and square loss function [4], which implies that our guarantee is
unimprovable by any (batch or online) algorithm (up to constant factors). For matrix decomposition,
our convergence rate is O((s+ r)β2(p) log p/T )) +O(max{s+ r, p}/p2) for a p× p input matrix
in T steps, where the sparse part has s non-zero entries and low rank part has rank r. For many nat-
ural noise models (e.g. independent noise, linear Bayesian networks), β2(p) = p, and the resulting
convergence rate is minimax-optimal. Note that our bound is not only on the reconstruction error,
but also on the error in recovering the sparse and low rank components. These are the first conver-
gence guarantees for online matrix decomposition in high dimensions. Moreover, our convergence
rate holds with high probability when noisy samples are input, in contrast to expected convergence
rate, typically analyzed in the literature. See Table 1, 2 for comparison of this work with related
frameworks. Proof of all results and implementation details can be found in the longer version [5].

Practical implications: The proposed algorithms provide significantly faster convergence in high
dimension and better robustness to noise. For sparse optimization, our method has significantly
better accuracy compared to the stochastic ADMM method and better performance than RADAR,
based on multi-step dual averaging [6]. For matrix decomposition, we compare our method with the
state-of-art inexact ALM [7] method. While both methods have similar reconstruction performance,
our method has significantly better accuracy in recovering the sparse and low rank components.

Related Work: ADMM: Existing online ADMM-based methods lack high-dimensional guaran-
tees. They scale poorly with the data dimension (as O(d2)), and also have slow convergence for
general problems (as O( 1√

T
)). Under strong convexity, the convergence rate can be improved to

O( 1
T ) but only in expectation: such analyses ignore the per sample error and consider only the

expected convergence rate(see Table 1). In contrast, our bounds hold with high probability. Some
stochastic ADMM methods, Goldstein et al. [8], Deng [9] and Luo [10] provide faster rates for
stochastic ADMM, than the rate noted in Table 1. However, they require strong conditions which
are not satisfied for the optimization problems considered here, e.g., Goldstein et al. [8] require both
the loss function and the regularizer to be strongly convex.

Related Work: Sparse Optimization: For the sparse optimization problem, `1 regularization is
employed and the underlying true parameter is assumed to be sparse. This is a well-studied problem
in a number of works (for details, refer to [6]). Agarwal et al. [6] propose an efficient online method
based on dual averaging, which achieves the same optimal rates as the ones derived in this paper. The
main difference is that our ADMM method is capable of solving the problem for multiple random
variables and multiple conditions while their method cannot incorporate these extensions.

Related Work: Matrix Decomposition: To the best of our knowledge, online guarantees for high-
dimensional matrix decomposition have not been provided before. Wang et al. [12] propose a multi-
block ADMM method for the matrix decomposition problem but only provide convergence rate
analysis in expectation and it has poor high dimensional scaling (as O(p4) for a p × p matrix)
without further modifications. Note that they only provide convergence rate on difference between
loss function and optimal loss, whereas we provide the convergence rate on individual errors of the
sparse and low rank components ‖S̄(T ) − S∗‖2F, ‖L̄(T ) − L∗‖2F. See Table 2 for comparison of
guarantees for matrix decomposition problem.

Notation In the sequel, we use lower case letter for vectors and upper case letter for matrices.
Moreover, X ∈ Rp×p. ‖x‖1, ‖x‖2 refer to `1, `2 vector norms respectively. The term ‖X‖∗ stands
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Method Assumptions Convergence rate
ST-ADMM [2] L, convexity O(d2/

√
T )

ST-ADMM [2] SC, E O(d2 log T/T )

BADMM [11] convexity, E O(d2/
√
T )

RADAR [6] LSC, LL O(s log d/T )
REASON 1 (this paper) LSC, LL O(s log d/T )

Minimax bound [4] Eigenvalue conditions O(s log d/T )

Table 1: Comparison of online sparse optimization methods under s sparsity level for the optimal
paramter, d dimensional space, and T number of iterations. SC = Strong Convexity, LSC = Local
Strong Convexity, LL = Local Lipschitz, L = Lipschitz property, E=in Expectation. The last row
provides the minimax-optimal rate for any method. The results hold with high probability.

Method Assumptions Convergence rate
Multi-block-ADMM[12] L, SC, E O(p4/T )

Batch method[13] LL, LSC, DF O((s log p+ rp)/T )+O(s/p2)
REASON 2 (this paper) LSC, LL, DF O((s+ r)β2(p) log p/T ))+O(max{s+ r, p}/p2)

Minimax bound[13] `2, IN, DF O((s log p+ rp)/T )+O(s/p2)

Table 2: Comparison of optimization methods for sparse+low rank matrix decomposition for a p×p
matrix under s sparsity level and r rank matrices and T is the number of samples. Abbreviations
are as in Table 1, IN = Independent noise model, DF = diffuse low rank matrix under the optimal
parameter. β(p) = Ω(

√
p),O(p) and its value depends the model. The last row provides the

minimax-optimal rate for any method under the independent noise model. The results hold with high
probability unless otherwise mentioned. For Multi-block-ADMM [12] the convergence rate is on the
difference of loss function from optimal loss, for the rest of works in the table, the convergence rate is
on the individual estimates of the sparse and low rank components: ‖S̄(T )−S∗‖2F+‖L̄(T )−L∗‖2F.
for nuclear norm of X . In addition, ‖X‖2, ‖X‖F denote spectral and Frobenius norms respectively.
We use vectorized `1, `∞ norm for matrices, i.e., ‖X‖1 =

∑
i,j

|Xij |, ‖X‖∞ = max
i,j
|Xij |.

2 `1 Regularized Stochastic Optimization

We consider the optimization problem θ∗ ∈ arg min E[f(θ, x)], θ ∈ Ω where θ∗ is a sparse vector.
The loss function f(θ, xk) is a function of a parameter θ ∈ Rd and samples xi. In stochastic setting,
we do not have access to E[f(θ, x)] nor to its subgradients. In each iteration we have access to one
noisy sample. In order to impose sparsity we use regularization. Thus, we solve a sequence

θk ∈ arg min
θ∈Ω′

f(θ, xk) + λ‖θ‖1, Ω′ ⊂ Ω, (1)

where the regularization parameter λ > 0 and the constraint sets Ω′ change from epoch to epoch.

2.1 Epoch-based Stochastic ADMM Algorithm

We now describe the modified inexact ADMM algorithm for the sparse optimization problem in (1),
and refer to it as REASON 1, see Algorithm 1. We consider an epoch length T0, and in each epoch
i, we project the optimal solution on to an `1 ball with radius Ri centered around θ̃i, which is the
initial estimate of θ∗ at the start of the epoch. The θ-update is given by

θk+1 = arg min
‖θ−θ̃i‖21≤R2

i

{〈∇f(θk), θ − θk〉 − 〈zk, θ − yk〉+
ρ

2
‖θ − yk‖22 +

ρx
2
‖θ − θk‖22}. (2)

Note that this is an inexact update since we employ the gradient∇f(·) rather than optimize directly
on the loss function f(·) which is expensive. The above program can be solved efficiently since
it is a projection on to the `1 ball, whose complexity is linear in the sparsity level of the gradient,
when performed serially, and O(log d) when performed in parallel using d processors [3]. For the
regularizer, we introduce the variable y, and the y-update is yk+1 = arg min{λi‖yk‖1−〈zk, θk+1−
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Algorithm 1: Regularized Epoch-based Admm for Stochastic Opt. in high-dimensioN 1 (REASON 1)

Input ρ, ρx, epoch length T0 , initial prox center θ̃1, initial radius R1, regularization parameter
{λi}kTi=1.
Define Shrinkκ(a) = (a− κ)+ − (−a− κ)+.
for Each epoch i = 1, 2, ..., kT do

Initialize θ0 = y0 = θ̃i
for Each iteration k = 0, 1, ..., T0 − 1 do

θk+1 = arg min
‖θ−θ̃i‖1≤Ri

{〈∇f(θk), θ − θk〉 − 〈zk, θ − yk〉+
ρ

2
‖θ − yk‖22 +

ρx
2
‖θ − θk‖22}

yk+1 = Shrinkλi/ρ(θk+1 −
zk
ρ

), zk+1 = zk − τ(θk+1 − yk+1)

Return : θ(Ti) := 1
T

∑T0−1
k=0 θk for epoch i and θ̃i+1 = θ(Ti).

Update : R2
i+1 = R2

i /2.

y〉+ ρ
2‖θk+1−y‖22}. This update can be simplified to the form given in REASON 1, where Shrinkκ(·)

is the soft-thresholding or shrinkage function [1]. Thus, each step in the update is extremely simple
to implement. When an epoch is complete, we carry over the average θ(Ti) as the next epoch center
and reset the other variables.

2.2 High-dimensional Guarantees

We now provide convergence guarantees for the proposed method under the following assumptions.

Assumption A1: Local strong convexity (LSC): The function f : S → R satisfies anR-local form
of strong convexity (LSC) if there is a non-negative constant γ = γ(R) such that for any θ1, θ2 ∈ S
with ‖θ1‖1 ≤ R and ‖θ2‖1 ≤ R, f(θ1) ≥ f(θ2) + 〈∇f(θ2), θ1 − θ2〉+ γ

2 ‖θ2 − θ1‖22.
Note that the notion of strong convexity leads to faster convergence rates in general. Intuitively,
strong convexity is a measure of curvature of the loss function, which relates the reduction in the
loss function to closeness in the variable domain. Assuming that the function f is twice continuously
differentiable, it is strongly convex, if and only if its Hessian is positive semi-definite, for all feasible
θ. However, in the high-dimensional regime, where there are fewer samples than data dimension, the
Hessian matrix is often singular and we do not have global strong convexity. A solution is to impose
local strong convexity which allows us to provide guarantees for high dimensional problems. This
notion has been exploited before in a number of works on high dimensional analysis, e.g., [14, 13, 6].
It holds for various loss functions such as square loss.

Assumption A2: Sub-Gaussian stochastic gradients: Let ek(θ) := ∇f(θ, xk) − E[∇f(θ, xk)].
There is a constant σ = σ(R) such that for all k > 0, E[exp(‖ek(θ)‖2∞)/σ2] ≤ exp(1), for all θ
such that ‖θ − θ∗‖1 ≤ R.

Remark: The bound holds with σ = O(
√

log d) whenever each component of the error vector has
sub-Gaussian tails [6].

Assumption A3: Local Lipschitz condition: For each R > 0, there is a constant G = G(R) such
that, |f(θ1)−f(θ2)| ≤ G‖θ1−θ2‖1, for all θ1, θ2 ∈ S such that ‖θ−θ∗‖1 ≤ R and ‖θ1−θ∗‖1 ≤ R.

The design parameters are as below where λi is the regularization for `1 term in epoch i, ρ and ρx
are penalties in θ-update as in (2) and τ is the step size for the dual update.

λ2
i =

γRi

s
√
T0

√
log d+

G2(ρ+ ρx)2

T 2
0

+ σ2
i log(

3

δi
), ρ ∝

√
T0 log d

Ri
, ρx > 0, τ ∝

√
T0

Ri
.

(3)
Theorem 1. Under Assumptions A1−A3, λi as in (3) , with fixed epoch lengths T0 = T log d/kT ,
where T is the total number of iterations and

kT = log2

γ2R2
1T

s2(log d+ γ
sG+ 12σ2 log( 6

δ ))
,
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and T0 satisfies T0 = O(log d), for any θ∗ with sparsity s, with probability at least 1− δ we have

‖θ̄T − θ∗‖22 = O
(
s

log d+ γ
sG+ (log(1/δ) + log(kT /log d))σ2

T

log d

kT

)
,

where θ̄T is the average for the last epoch for a total of T iterations.

Improvement of log d factor : The above theorem covers the practical case where the epoch length
T0 is fixed. We can improve the above results using varying epoch length (which depend on the
problem parameters) such that ‖θ̄T − θ∗‖22 = O(s log d/T ). The details can be found in the longer
version [5].This convergence rate of O(s log d/T ) matches the minimax lower bounds for sparse
estimation [4]. This implies that our guarantees are unimprovable up to constant factors.

3 Extension to Doubly Regularized Stochastic Optimization

We consider the optimization problem M∗ ∈ arg min E[f(M,X)], where we want to decompose
M into a sparse matrix S ∈ Rp×p and a low rank matrix L ∈ Rp×p. f(M,Xk) is a function of a
parameter M and samples Xk. Xk can be a matrix (e.g. independent noise model) or a vector (e.g.
Gaussian graphical model). In stochastic setting, we do not have access to E[f(M,X)] nor to its
subgradients. In each iteration, we have access to one noisy sample and update our estimate based
on that. We impose the desired properties with regularization. Thus, we solve a sequence

M̂k := arg min{f̂(M,Xk) + λn‖S‖1 + µn‖L‖∗} s.t. M = S + L, ‖L‖∞ ≤
α

p
. (4)

We propose an online program based on multi-block ADMM algorithm. In addition to tailoring
projection ideas employed for sparse case, we impose an `∞ constraint of α/p on each entry of L.
This constraint is also imposed for the batch version of the problem (4) in [13], and we assume that
the true matrix L∗ satisfies this constraint. Intuitively, the `∞ constraint controls the “spikiness”
of L∗. If α ≈ 1, then the entries of L are O(1/p), i.e. they are “diffuse” or “non-spiky”, and no
entry is too large. When the low rank matrix L∗ has diffuse entries, it cannot be a sparse matrix,
and thus, can be separated from the sparse S∗ efficiently. In fact, the `∞ constraint is a weaker form
of the incoherence-type assumptions needed to guarantee identifiability [15] for sparse+low rank
decomposition. For more discussions, see Section 3.2.

3.1 Epoch-based Multi-Block ADMM Algorithm

We now extend the ADMM method proposed in REASON 1 to multi-block ADMM. The details
are in Algorithm 2, and we refer to it as REASON 2. Recall that the matrix decomposition setting
assumes that the true matrix M∗ = S∗ + L∗ is a combination of a sparse matrix S∗ and a low rank
matrixL∗. In REASON 2, the updates for matricesM,S,L are done independently at each step. The
updates follow definition of ADMM and ideas presented in Section 2. We consider epochs of lengths
T0. We do not need to project the update of matrix M . The update rules for S, L are result of doing
an inexact proximal update by considering them as a single block, which can then be decoupled.
We impose an `1-norm projection for the sparse estimate S around the epoch initialization S̃i. For
the low rank estimate L, we impose a nuclear norm projection around the epoch initialization L̃i.
Intuitively, the nuclear norm projection, which is an `1 projection on the singular values, encourages
sparsity in the spectral domain leading to low rank estimates. We also require an `∞ constraint on
L. Thus, the update rule for L has two projections, i.e. infinity and nuclear norm projections. We
decouple it into ADMM updates L, Y with dual variable U corresponding to this decomposition.

3.2 High-dimensional Guarantees

We now prove that REASON 2 recovers both the sparse and low rank estimates in high dimensions
efficiently. We need the following assumptions, in addition to Assumptions A2, A3.

Assumption A4: Spectral Bound on the Gradient Error Let Ek(M,Xk) := ∇f(M,Xk) −
E[∇f(M,Xk)], ‖Ek‖2 ≤ β(p)σ, where σ := ‖Ek‖∞.
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Recall from Assumption A2 that σ = O(log p), under sub-Gaussianity. Here, we require spectral
bounds in addition to ‖ · ‖∞ bound in A2.

Assumption A5: Bound on spikiness of low-rank matrix ‖L∗‖∞ ≤ α
p , as discussed before.

Assumption A6: Local strong convexity (LSC) The function f : Rd1×d2 → Rn1×n2 satisfies
an R-local form of strong convexity (LSC) if there is a non-negative constant γ = γ(R) such that
f(B1) ≥ f(B2) + Tr(∇f(B2)(B1 − B2)) + γ

2 ‖B2 − B1‖F, for any ‖B1‖ ≤ R and ‖B2‖ ≤ R,
which is essentially the matrix version of Assumption A1.

We choose algorithm parameters as below where λi, µi are the regularization for `1 and nuclear
norm respectively, ρ, ρx correspond to penalty terms in M -update and τ is dual update step size.

λ2
i =

γ
√

(R2
i + R̃2

i )

(s+ r)
√
T0

√
log p+

G2(ρ+ ρx)2

T 2
0

+β2(p)σ2
i log(

3

δi
)+

α2

p2
+
β2(p)σ2

T0

(
log p+log

1

δ

)
(5)

µ2
i = cµλ

2
i , ρ ∝

√
T0 log p

R2
i + R̃2

i

, ρx > 0, τ ∝
√

T0

R2
i + R̃2

i

Theorem 2. Under Assumptions A2 − A6, parameter settings (5), let T denote total number of
iterations and T0 = T log p/kT , where

kT ' − log

(
(s+ r)2

γ2R2
1T

[
log p+

G

s+ r
+ β2(p)σ2 [(1 +G)(log(6/δ) + log kT ) + log p]

])
,

and T0 satisfies T0 = O(log p), with probability at least 1− δ we have

‖S̄(T )− S∗‖2F + ‖L̄(T )− L∗‖2F =

O

(s+ r)
log p+G+ β2(p)σ2

[
(1 +G)(log 6

δ + log kT
log p ) + log p

]
T

log p

kT

+

(
1 +

s+ r

γ2p

)
α2

p
.

Improvement of log p factor : The above result can be improved by a log p factor by considering
varying epoch lengths (which depend on problem parameters). The resulting convergence rate is
O((s+ r)p log p/T + α2/p). The details can be found in the longer version [5].

Scaling of β(p): We have the following bounds Θ(
√
p) ≤ β(p)Θ(p). This implies that the conver-

gence rate (with varying epoch lengths) is O((s + r)p log p/T + α2/p), when β(p) = Θ(
√
p) and

when β(p) = Θ(p), it isO((s+ r)p2 log p/T +α2/p). The upper bound on β(p) arises trivially by
converting the max-norm ‖Ek‖∞ ≤ σ to the bound on the spectral norm ‖Ek‖2. In many interesting
scenarios, the lower bound on β(p) is achieved, as outlined below in Section 3.2.1.

Comparison with the batch result: Agarwal et al. [13] consider the batch version of the same
problem (4), and provide a convergence rate of O((s log p + rp)/T + sα2/p2). This is also the
minimax lower bound under the independent noise model. With respect to the convergence rate, we
match their results with respect to the scaling of s and r, and also obtain a 1/T rate. We match
the scaling with respect to p (up to a log factor), when β(p) = Θ(

√
p) attains the lower bound,

and we discuss a few such instances below. Otherwise, we are worse by a factor of p compared
to the batch version. Intuitively, this is because we require different bounds on error terms Ek in
the online and the batch settings. The batch setting considers an empirical estimate, hence operates
on the averaged error. Whereas in the online setting we suffer from the per sample error. Efficient
concentration bounds exist for the batch case [16], while for the online case, no such bounds exist in
general. Hence, we conjecture that our bounds in Theorem 2 are unimprovable in the online setting.

Approximation Error: Note that the optimal decomposition M∗ = S∗ + L∗ is not identifiable
in general without the incoherence-style conditions [15, 17]. In this paper, we provide efficient
guarantees without assuming such strong incoherence constraints. This implies that there is an
approximation error which is incurred even in the noiseless setting due to model non-identifiability.
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Algorithm 2: Regularized Epoch-based Admm for Stochastic Opt. in high-dimensioN 2 (REASON 2)

Input ρ, ρx, epoch length T0 , regularization parameters {λi, µi}kTi=1, initial prox centers S̃1, L̃1,
initial radii R1, R̃1.
Define Shrinkκ(a) shrinkage operator as in REASON 1, GMk

= Mk+1 − Sk − Lk − 1
ρZk.

for each epoch i = 1, 2, ..., kT do
Initialize S0 = S̃i, L0 = L̃i,M0 = S0 + L0.
for each iteration k = 0, 1, ..., T0 − 1 do

Mk+1 =
−∇f(Mk) + Zk + ρ(Sk + Lk) + ρxMk

ρ+ ρx

Sk+1 = min
‖S−S̃i‖1≤Ri

λi‖S‖1 +
ρ

2τk
‖S − (Sk + τkGMk

)‖2F

Lk+1 = min
‖L−L̃i‖∗≤R̃i

µi‖L‖∗ +
ρ

2
‖L− Yk − Uk/ρ‖2F

Yk+1 = min
‖Y ‖∞≤α/p

ρ

2τk
‖Y − (Lk + τkGMk

)‖2F +
ρ

2
‖Lk+1 − Y − Uk/ρ‖2F

Zk+1 = Zk − τ(Mk+1 − (Sk+1 + Lk+1))

Uk+1 = Uk − τ(Lk+1 − Yk+1).

Set: S̃i+1 = 1
T0

∑T0−1
k=0 Sk and L̃i+1 := 1

T0

∑T0−1
k=0 Lk

if R2
i > 2(s+ r + (s+r)2

pγ2 )α
2

p then Update R2
i+1 = R2

i /2, R̃
2
i+1 = R̃i

2
/2;

else STOP;

Dimension Run Time (s) Method error at 0.02T error at 0.2T error at T
ST-ADMM 1.022 1.002 0.996

d=20000 T=50 RADAR 0.116 2.10e-03 6.26e-05
REASON 1.5e-03 2.20e-04 1.07e-08

ST-ADMM 0.794 0.380 0.348
d=2000 T=5 RADAR 0.103 4.80e-03 1.53e-04

REASON 0.001 2.26e-04 1.58e-08
ST-ADMM 0.212 0.092 0.033

d=20 T=0.2 RADAR 0.531 4.70e-03 4.91e-04
REASON 0.100 2.02e-04 1.09e-08

Table 3: Least square regression problem, epoch size Ti = 2000, Error= ‖θ−θ∗‖2
‖θ∗‖2 .

Agarwal et al. [13] achieve an approximation error of sα2/p2 for their batch algorithm. Our online
algorithm has an approximation error of max{s + r, p}α2/p2, which is decaying with p. It is not
clear if this bound can be improved by any other online algorithm.

3.2.1 Optimal Guarantees for Various Statistical Models

We now list some statistical models under which we achieve the batch-optimal rate for sparse+low
rank decomposition.

1) Independent Noise Model: Assume we sample i.i.d. matrices Xk = S∗ + L∗ + Nk, where
the noise Nk has independent bounded sub-Gaussian entries with maxi,j Var(Nk(i, j)) = σ2. We
consider the square loss function, ‖Xk −S−L‖2F. Hence Ek = Xk −S∗−L∗ = Nk. From [Thm.
1.1][18], we have w.h.p. ‖Nk‖ = O(σ

√
p). We match the batch bound in [13] in this setting.

Moreover, Agarwal et al. [13] provide a minimax lower bound for this model, and we match it as
well. Thus, we achieve the optimal convergence rate for online matrix decomposition for this model.

2) Linear Bayesian Network: Consider a p-dimensional vector y = Ah + n, where h ∈ Rr with
r ≤ p, and n ∈ Rp. The variable h is hidden, and y is the observed variable. We assume that the
vectors h and n are each zero-mean sub-Gaussian vectors with i.i.d entries, and are independent of
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Run Time T = 50 sec T = 150 sec
Error ‖M∗−S−L‖F

‖M∗‖F
‖S−S∗‖F
‖S∗‖F

‖L∗−L‖F
‖L∗‖F

‖M∗−S−L‖F
‖M∗‖F

‖S−S∗‖F
‖S∗‖F

‖L∗−L‖F
‖L∗‖F

REASON 2
IALM

2.20e-03
5.11e-05

0.004
0.12

0.01
0.27

5.55e-05
8.76e-09

1.50e-04
0.12

3.25e-04
0.27

Table 4: REASON 2 and inexact ALM, matrix decomposition problem. p = 2000, η2 = 0.01

one another. Let σ2
h and σ2

n be the variances for the entries of h and n respectively. Without loss
of generality, we assume that the columns of A are normalized, as we can always rescale A and
σh appropriately to obtain the same model. Let Σ∗y,y be the true covariance matrix of y. From the
independence assumptions, we have Σ∗y,y = S∗ + L∗, where S∗ = σ2

nI is a diagonal matrix and
L∗ = σ2

hAA
> has rank at most r.

In each step k, we obtain a sample yk from the Bayesian network. For the square loss function f ,
we have the error Ek = yky

>
k − Σ∗y,y. Applying [Cor. 5.50][19], we have, with w.h.p. ‖nkn>k −

σ2
nI‖2 = O(

√
pσ2

n), ‖hkh>k − σ2
hI‖2 = O(

√
pσ2

h). We thus have with probability 1 − Te−cp,
‖Ek‖2 ≤ O

(√
p(‖A‖2σ2

h + σ2
n)
)
, ∀ k ≤ T. When ‖A‖2 is bounded, we obtain the optimal

bound in Theorem 2, which matches the batch bound. If the entries ofA are generically drawn (e.g.,
from a Gaussian distribution), we have ‖A‖2 = O(1 +

√
r/p). Moreover, such generic matrices A

are also “diffuse”, and thus, the low rank matrix L∗ satisfies Assumption A5, with α ∼ polylog(p).
Intuitively, when A is generically drawn, there are diffuse connections from hidden to observed
variables, and we have efficient guarantees under this setting.

4 Experiments

REASON 1: For sparse optimization problem, we compare REASON 1 with RADAR and
ST-ADMM under the least-squares regression setting. Samples (xt, yt) are generated such that
xt ∈ Unif[−B,B] and yt = 〈θ∗, x〉 + nt. θ∗ is s-sparse with s = dlog de. nt ∼ N (0, η2).
With η2 = 0.5 in all cases. We consider d = 20, 2000, 20000 and s = 1, 3, 5 respectively.
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Figure 1: Least square regression, Error= ‖θ−θ∗‖2
‖θ∗‖2

vs. iteration number, d1 = 20 and d2 = 20000.

The experiments are performed on a 2.5 GHz In-
tel Core i5 laptop with 8 GB RAM. See Table 3
for experiment results. It should be noted that
RADAR is provided with information of θ∗ for
epoch design and recentering. In addition, both
RADAR and REASON 1 have the same initial
radius. Nevertheless, REASON 1 reaches bet-
ter accuracy within the same run time even for
small time frames. In addition, we compare rel-
ative error ‖θ − θ∗‖2/‖θ∗‖2 in REASON 1 and
ST-ADMM in the first epoch. We observe that in
higher dimension error fluctuations for ADMM
increases noticeably (see Figure 1). Therefore,
projections of REASON 1 play an important role
in denoising and obtaining good accuracy.

REASON 2: We compare REASON 2 with state-of-the-art inexact ALM method for matrix de-
composition problem (ALM codes are downloaded from [20]). Table 4 shows that with equal time,
inexact ALM reaches smaller ‖M

∗−S−L‖F
‖M∗‖F error while in fact this does not provide a good decompo-

sition. Further, REASON 2 reaches useful individual errors. Experiments with η2 ∈ [0.01, 1] show
similar results. Similar experiments on exact ALM shows worse performance than inexact ALM.
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