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Abstract

We present the first sample compression algorithm for neaegghbors with non-
trivial performance guarantees. We complement these gtems by demonstrat-
ing almost matching hardness lower bounds, which show tlrabound is nearly
optimal. Our result yields new insight into margin-basedrest neighbor classifi-
cation in metric spaces and allows us to significantly shagmel simplify existing
bounds. Some encouraging empirical results are also pgesken

1 Introduction

The nearest neighbor classifier for non-parametric classidin is perhaps the most intuitive learn-
ing algorithm. It is apparently the earliest, having beetnoduced by Fix and Hodges in 1951
(technical report reprinted in[1]). In this model, the lear observes a sampteof labeled points
(X,Y) = (X4, Yi)iem), WhereX; is a point in some metric spacé andY; € {1, -1} is its label.
Being a metric spaceY’ is equipped with a distance functian: X x X — R. Given a new unla-
beled point: € X to be classifieds is assigned the same label as its nearest neighl#nirich is
argminy. oy d(z, X;). Under mild regularity assumptions, the nearest neighlagsifier's expected
error is asymptotically bounded by twice the Bayesian emtbien the sample size tends to infinity
[2]10 These results have inspired a vast body of research on pitgxi@sed classification (s€€ [4, 5]
for extensive background and [6] for a recent refinementadsit results). More recently, strong
margin-dependent generalization bounds were obtained]jmfere the margin is the minimum
distance between opposite labeled pointS'in

In addition to provable generalization bounds, neareghimr (NN) classification enjoys several
other advantages. These include simple evaluation on n&ayidamediate extension to multiclass
labels, and minimal structural assumptions — it does natrassa Hilbertian or even a Banach
space. However, the naive NN approach also has disadvantiagegarticular, it requires storing the
entire sample, which may be memory-intensive. Furtheormftion-theoretic considerations show
that exact NN evaluation requir€x|.S|) time in high-dimensional metric spacés [8] (and possibly
Euclidean space as welll[9]) — a phenomenon known as theiddgoc curse of dimensionality
Lastly, the NN classifier has infinite VC-dimensian [5], imjplg that it tends to overfit the data.

1A Bayes-consistent modification of theNN classifier was recently proposed fin [3].



This last problem can be mitigated by taking the majorityevamongk > 1 nearest neighbors
[10,[11)5], or by deleting some sample points so as to attirgar marginl[12].

Shortcomings in the NN classifier led Hart [13] to pose thebpgm of sample compression. In-
deed, significant compression of the sample has the pdtémsamultaneously address the issues
of memory usage, NN search time, and overfitting. Hart carsidthe minimum Consistent Subset
problem — elsewhere called the Nearest Neighbor Condepsoijem — which seeks to identify
a minimal subsef* C S that isconsistentith S, in the sense that the nearest neighba$ frof
everyx € S possesses the same labekad his problem is known to be NP-hard [14] 15], and Hart
provided a heuristic with runtimé(n?). The runtime was recently improved by [16]@{n?), but
neither paper gave performance guarantees.

The Nearest Neighbor Condensing problem has been the sobjextensive research since its in-
troduction [17) 18, 119]. Yet surprisingly, there are no kmoapproximation algorithms for it —

all previous results on this problem are heuristics that &ty non-trivial approximation guaran-
tees. Conversely, no strong hardness-of-approximat&uiteefor this problem are known, which
indicates a gap in the current state of knowledge.

Main results. Our contribution aims at closing the existing gap in sologito the Nearest Neighbor
Condensing problem. We present a simple near-optimal appation algorithm for this problem,
where our only structural assumption is that the pointsiisdme metric space. Define thealed
marginy < 1 of a sampleS as the ratio of the minimum distance between opposite lddénts

in S to the diameter of. Our algorithm produces a consistent S&tC S of size [1/~]ddim(S)+1
(Theoreni 1), wherddim(.S) is the doubling dimension of the spageThis result can significantly
speed up evaluation on test points, and also yields shangesimpler generalization bounds than
were previously known (Theoremh 3).

To establish optimality, we complement the approximati@suft with an almost matching
hardness-of-approximation lower-bound. Using a reductiom the Label Cover problem, we
show that the Nearest Neighbor Condensing problem is N&-twmmapproximate within factor

2(ddim($)10g(1/7))" " (Theoren{®). Note that the above upper-bound is an absdkeegsar-
antee, and stronger than an approximation guarantee.

Additionally, we present a simple heuristic to be appliedanjunction with the algorithm of Theo-
rem[d, that achieves further sample compression. The esapérformances of both our algorithm
and heuristic seem encouraging (see Seéfion 4).

Related work. A well-studied problem related to the Nearest Neighbor @msthg problem is that
of extracting a small set of simple conjunctions consistétit much of the sample, introduced by
[20] and shown by [21] to be equivalent to minimum Set Covee(R2/ 23] for further extensions).
This problem is monotone in the sense that adding a conpmtidithe solution set can only increase
the sample accuracy of the solution. In contrast, in our lpralthe addition of a point of to S*
can caus&™ to be inconsistent — and this distinction is critical to tte#dness of our problem.

Removal of points from the sample can also yield lower dinmraity, which itself implies faster
nearest neighbor evaluation and better generalizationdsuor metric space$, [24] and [25] gave
algorithms for dimensionality reduction via point remogialespective of margin size).

The use of doubling dimension as a tool to characterize mieairning has appeared several times
in the literature, initially by[[26] in the context of neatewighbor classification, and then [n [27]
and [28]. A series of papers by Gottlieb, Kontorovich andikhgamer investigate doubling spaces
for classification[[12], regression [29], and dimensioruetibn [25].

k-nearest neighbor. A natural question is whether the Nearest Neighbor Condgrmioblem of
[13] has a direct analogue when th@earest neighbor rule is replaced byta> 1)-nearest neighbor
—thatis, when the label of a point is determined by the migjedte among itg nearest neighbors.
A simple argument shows that the analogy breaks down. Indeednimal requirement for the
condensing problem to be meaningful is that the full (unemsed) sef is feasible, i.e. consistent
with itself. Yeteven fok = 3 there exist self-inconsistent sets. Take for example th& sensisting
of two positive points at0, 1) and (0, —1) and two negative points &t,0) and(—1,0). Then the
3-nearest neighbor rule misclassifies every poirfijinences itself is inconsistent.



Paper outline. This paper is organized as follows. In Secfidn 2, we presenalgorithm and prove
its performance bound, as well as the reduction implyingéar optimality (Theoreiln 2). We then
highlight the implications of this algorithm for learning Bectior B. In Sectioh] 4 we describe a
heuristic which refines our algorithm, and present emdiresults.

1.1 Preliminaries

Metric spaces. A metric d on a setX is a positive symmetric function satisfying the triangle
inequalityd(x,y) < d(z,z) + d(z,y); together the two comprise the metric spdéé d). The
diameter of a sefl C &, is defined bydiam(A) = sup, ,c 4 d(z,y). Throughout this paper we
will assume thatliam(S) = 1; this can always be achieved by scaling.

Doubling dimension. For a metric(X, d), let A be the smallest value such that every balltin

of radiusr (for anyr) can be covered by balls of radiuss. The doubling dimensiorf X' is
ddim(X’) = log, A. A metric isdoublingwhen its doubling dimension is bounded. Note that while a
low Euclidean dimension implies a low doubling dimension¢kdean metrics of dimensiahhave
doubling dimensio®(d) [30]), low doubling dimension is strictly more general tHaw Euclidean
dimension. The following packing property can be demonstt&ia a repetitive application of the
doubling property: For sef with doubling dimensiordim(X’) anddiam(S) < 3, if the minimum
interpoint distance ity is at leasty < 5 then

S| < [B/a]tm )+ (1)

(see, for example [8]). The above bound is tight up to conidtantors, meaning there exist sets of
Size(ﬁ/a)ﬂ(ddim(x))_

Nearest Neighbor Condensing. Formally, we define the Nearest Neighbor Condensing (NNC)
problem as follows: We are given a set= S_ U S of points, and distance metric: S x S — R.

We must compute a minimal cardinality subsgtC S with the property that for any € S, the
nearest neighbor gfin .S’ comes from the same subde,, S_} as doew. If p has multiple exact
nearest neighbors ifi’, then they must all be of the same subset.

Label Cover. The Label Cover problem was first introduced by![31] in a sehpaper on the
hardness of computation. Several formulations of this lgmthave appeared the literature, and we
give the description forwarded by [32]: The input is a bigargraphG = (U, V, E), with two sets

of labels: A for U and B for V. For each edgéu,v) € FE (whereu € U, v € V), we are given

a relationlI, , C A x B consisting of admissible label pairs for that edgelaBeling (£, g) is a
pair of functionsf : U — 24 andg : V — 2B\{()} assigning a set of labels to each vertex. A
labelingcoversan edge(u, v) if for every labelb € g(v) there is some label € f(u) such that
(a,b) € 11, ,,. The goalis to find a labeling that covers all edges, and wimitimizes the sum of
the number of labels assigned to eack U, thatis)_ . |f(u)|. It was shown in([32] that it is

NP-hard to approximate Label Cover to within a facgre n)t o , wheren is the total size of the
input.

L earning. We work in theagnostidearning model[33,/5]. The learner receivelabeled examples
(Xi,Y;) € Xx{—1,1}drawniid according to some unknown probability distrilbatP. Associated
to anyhypothesish : X — {—1,1} is its empirical erroreri(h) = n~! > ici) Lin(x,)»v:y and
generalization errorerr(h) = P(h(X) £ Y).

2 Near-optimal approximation algorithm

In this section, we describe a simple approximation alparifor the Nearest Neighbor Condensing
problem. In Sectiof 211 we provide almost tight hardnesapgfroximation bounds. We have the
following theorem:

Theorem 1. Given a point sef and its scaled marginy < 1, there exists an algorithm that in time
min{n?, 200d4mEN) y 10g(1/4)}
computes a consistent sgt C S of size at mosf1 /] ddim(S)+1,

Recall that arz-net of point setS' is a subsef. C S with two properties:



(i) Packing.The minimum interpoint distance if\. is at least.
(i) Covering.Every pointp € S has a nearest neighbor$h strictly within distances.

We make the following observation: Since the margin of thiafpget isv, ay-net of S is consistent
with S§. That is, every poinp € S has a neighbor ir¥, strictly within distancey, and since the
margin of S is ~, this neighbor must be of the same label sepaBy the packing property of
doubling spaces (Equatigh 1), the sizeSfis at most[1/~]44m($)+1 The solution returned by
our algorithm isS,, and satisfies the guarantees claimed in Thebtem 1.

It remains only to compute the nst,. A brute-force greedy algorithm can accomplish this in time
O(n?): For every poinp € S, we addp to S, if the distance fronp to all points currently inS., is
~ or greaterd(p, S-) > ~. See Algorithni L.

Algorithm 1 Brute-force net construction
Require: S

1: S, < arbitrary point ofS

2: forallp € Sdo

3 if d(p, Sy) >« then

4: S, =58,U{p}
5: end if
6: end for

The construction time can be improved by buildinged hierarchy similar to the one employed by
[8], in total time 20(ddim(S))y Jog(1/v). (See also[[34. 35, 36].) A hierarchy consists of all nets
Sqi fori = 0,—1,..., |logvy], whereSy: C S,i-1 foralli > |log~|. Two pointsp,q € S,: are
neighborsif d(p,q) < 4 - 2°. Further, each poinj € S is achild of a single nearbparentpoint

p € Sy satisfyingd(p, q) < 2¢. By the definition of a net, a parent point must exist. If twonte
p,q € Sy are neighborsd(p, q) < 4 -2°) then their respective parents ¢’ € S,:+1 are necessarily
neighbors as welld(p’, ¢') < d(p',p) + d(p,q) + d(q,q') < 20Tt + 4.2t 4 20+ = 4. 2+,

The netS,0 = S; consists of a single arbitrary point. Having constructgd it is an easy matter
to constructSy:-1: Since we requiré,i—1 O S,:, we will initialize S,:-1 = S,i. For eachy € S,
we need only to determine whethéiy, So:-1) > 2¢71, and if so add; to Sy:—1. Crucially, we need
not comparey to all points of Syi—1: If there exists a poinp € S,: with d(q,p) < 2¢, then the
respective parents, ¢’ € Sy of p, ¢ must be neighbors. Let s&tinclude only the children of’
and of¢”’s neighbors. To determine the inclusion of everg S in Ssi—1, it suffices to compute
whetherd(q, T) > 2¢~1, and son such queries are sufficient to constrégt-:. The points ofl’
have minimum distanc—! and are all contained in a ball of radits 2’ + 2¢~! centered aT’, so
by the packing property (Equatigh [Ij| = 20(d4im(S)) |t follows that the above quer(q, T') can
be answered in tima©(d4im(%)) - For each point inS we execute)(log(1/+)) queries, for a total

runtime of20(ddim(5))y 1og(1/+). The above procedure is illustrated in the Appendix.

2.1 Hardnessof approximation of NNC

In this section, we prove almost matching hardness resuith& NNC problem.

Theorem 2. Given a setS of labeled points with scaled margin, it is NP-hard to ap-
proximate the solution to the Nearest Neighbor Condensimdplem onS to within a factor
9(ddim(S) log(1/y))' ~°™

To simplify the proof, we introduce an easier version of NN&lled WeightedNearest Neighbor
Condensing (WNNC). In this problem, the input is augmentéth & function assigning weight
to each point ofS, and the goal is to find a subsét c S of minimum total weight We will
reduce Label Cover to WNNC and then reduce WNNC to NNC (witmeanild assumptions on
the admissible range of weights), all while preserving hass of approximation. The theorem will
follow from the hardness of Label Coveér [32].

First reduction. Given a Label Cover instance of size= |U|+|V|+|A|+|B|+|E|+)_ . p TE|,
fix large valuec to be specified later, and an infinitesimally small constarWe create an instance
of WNNC as follows (see Figufd 1).

1. We first create a point, € S, of weight 1.



Label Cover Nearest Neighbor Condensing

li:(ay,by) € Hel
l,: (ayb,) € Hel

I3 (ay,by) € I,
Iy (ay,by) € HEZ

Is: (ay,b,) € I,

Figure 1: Reduction from Label Cover to Nearest Neighbordemsing.

We introduce sefr C S_ representing edges ifi: For each edge € E, create poinp, of
weightoo. The distance from, to p is3 + 7.

2. We introduce se$y,p C S_ representing pairs iV x B: For each vertex € V' and label
b € B, create poinp, ; of weight 1. If edge: is incident tov and there exists a labét, b) € II,
for anya € A, then the distance from, ; to p, is 3.

Further add a point— € S_ of weight 1, at distance 2 from all points &y 5.

3. We introduce se$;, C S, representing labels ifl.. For each edge = (u,v) and labeb € B
for which (a, b) € I1. (for anya € A), we create poinp. ;, C Sy, of weightoo. p. , represents
the set of label$a, b) € II. over alla € A. p. is at distanc + 7 from p,, 3.

Further add a point/, € S of weight 1, at distance + 27 from all points inSy..

4. We introduce seby 4 C S, representing pairs ity x A: For each vertex, € U and label
a € A, create poinp,, , of weightc. For any edge = (u,v) and labeb € B, if (a,b) € II,
then the distance from. ; € S, t0 p, o IS 2.

The points of each séig, Sy, 5, St andSy, 4 are packed into respective balls of diameter 1. Fixing
any target doubling dimensioR = (1) and recalling that the cardinality of each of these sets
is less thanm?, we conclude that the minimum interpoint distance in eadhi®an—°(/P), All
interpoint distances not yet specified are set to their mamirpossible value. The diameter of the
resulting set is constant, so its scaled marginis m (/). We claim that a solution of WNNC
on the constructed instance implies some solution of theL@bver Instance:

1. p+ must appear in any solution: The nearest neighbogs, cdire the negative points &fz, so
if p4 is not included the nearest neighbor of Sgt is necessarily the nearest neighbopef,
which is not consistent.

2. Points inSg have infinite weight, so no points &fz appear in the solution. All points g
are at distance exactb/+ n from p_, hence each point iz must be covered by some point
of Sy, g to which it is connected — other points iy 5 are farther thal + n. (Note thatSy g
itself can be covered by including the single pgint)
Choosing covering points iy, corresponds to assigning labelsinto vertices ofl” in the
Label Cover instance.

3. Points inS;, have infinite weight, so no points &f;, appear in the solution. Hence, eith€ér
or some points oby 4 must be used to cover points 8f. Specifically, a point inS;, € S
incident on an included point &y, 5 € S_ is at distance exactly + n from this point, and so
it must be covered by some point §f; 4 to which it is connected, at distance 2 — other points
in Sy 4 are farther thar2 4+ ». Points ofSz not incident on an included point &y, z can be
covered by, , which at distance + 21 is still closer than any point i8y, 5. (Note thatSy, 4
itself can be covered by including a single arbitrary pointg, 4, which at distance 1 is closer
than all other point sets.)
Choosing the covering point ify, 4 corresponds to assigning labelsAnto vertices ofU in
the Label Cover instance, thereby inducing a valid labefiimgome edge and solving the Label
Cover problem.



Now, a trivial solution to this instance of WNNC is to take pdints of Sy 4, Sv,p and the single
pointp,: thenSk andp_ are covered byy, g, andSy, andp’, by Sy 4. The size of the resulting
setisc|Su.a| + |Su.s| + 1, and this provides an upper bound on the optimal solutionsdting
c=m* > m? > m(|Su g|+1), we ensure that the solution cost of WNNC is asymptoticailyse

to the number of points afy 4 included in its solution. This in turn is exactly the sum dbdés

of A assigned to each vertex bf in a solution to the Label Cover problem. Label Cover is hard

to approximate within a factare=™" " implying that WNNC is hard to approximate within a
factor of2(loam)" """ — o(Dlog(1/) =

Before proceeding to the next reduction, we note that towoutghe inclusion of points o' g, S,

in the solution set, infinite weight is not necessary: It seffito give each heavy point weigftt
which is itself greater than the weight of the optimal salntby a factor of at leash?. Hence, we
may assume all weights are restricted to the rgages®(M], and the hardness result for WNNC
still holds.

Second reduction. We now reduce WNNC to NNC, assuming that the weights ofrthgoints
are in the rangél, m©()]. Let v be the scaled margin of the WNNC instance. To mimic the
weight assignment of WNNC using the unweighted points of NM€ introduce the following
gadget graplé(w, D): Given parametew and doubling dimensio®, create a point séf of size

w whose interpoint distances are the same as those realizadsél/ of contiguous points on the
D-dimensional;-grid of side-lengtiw'/P]. Now replace each poipt € T' by twin positive and
negative points at mutual distange so that the distance from each twin replacing each twin
replacing any; € T is the same as the distance frgnto q. G(w, D) consists ofl", as well as
a single positive point at distange’/”] from all positive points off’, and [w!/P7 + 2 from all
negative points of’, and a single negative point at distarjee’/”] from all negative points of’,
and[w'/P] + 2 from all positive points off".

Clearly, the optimal solution to NNC on the gadget instarscichoose the two points not if.
Further, if any single point iff” is included in the solution, then all & must be included in the
solution: First the twin of the included point must also beluded in the solution. Then, any point
at distance 1 from both twins must be included as well, aloitky its own twin. But then all points
within distance 1 of the new twins must be included, etc.jl @it points of 7" are found in the
solution.

To effectively assign weight to a positive point of NNC, waladgadget to the point set, and place
all negative points of the gadget at distarjeg /] from this point. If the point is not included in
the NNC solution, then the cost of the gadget is onlly Rut if this point is included in the NNC
solution, then it is the nearest neighbor of the negativeggagoints, and so all the gadget points
must be included in the solution, incurring a costuaf A similar argument allows us to assign
weight to negative points of NNC. The scaled margin of the Nh&ance is of siz€(y/w'/P) =
Q(ym—°1/DP)), which completes the proof of Theoréin 2.

3 Learning

In this section, we apply Theordrh 1 to obtain improved gdizaigon bounds for binary classifica-
tion in doubling spaces. Working in the standard agnosti€C Batting, we take the labeled sample
S to be drawn iid from some unknown distribution ovirx {—1, 1}, with respect to which all of
our probabilities will be defined. In a slight abuse of natatiwe will blur the distinction between
S C X as a collection of points in a metric space ghd (X x {—1,1})" as a sequence of point-
label pairs. As mentioned in the preliminaries, there isass lof generality in takindiam(S) = 1.
Partitioning the sampl§ = S, U S_ into its positively and negatively labeled subsets, thegimar
induced by the sample is given hyS) = d(S4, S_), whered(A, B) := minge 4 4 p d(x, z") for

A, B C X. Any labeled samplé& induces the nearest-neighbor classifier X — {—1,1} via

(41 ifd(z,Sy) < d(z,5_)
Vs(x)_{—l else :

2By scaling up all weights by a factor af?>, we can ensure that the cost of all added gadgst} 6
asymptotically negligible.



We say thals C S ise-consistenwith Sif 25~ ¢ L @)tvs@)} < € Fore = 0, ane-consistent

S is simply said to beconsisten{which matches our previous notion of consistent subsets).
sampleS is said to be(e, v)-separable(with witnessS) if there is ans-consistentS C S with

1(S) = 7.
We begin by invoking a standard Occam-type argument to shaivthe existence of smadt

consistent sets implies good generalization. The gemérglpower of sample compression was
independently discovered Wy [37,/38], and later elaboragemh by [39].

Theorem 3. For any distributionP, anyn € N and any0 < ¢ < 1, with probability at leasti — §
over the random samplg € (X x {—1,1})", the following holds:

(i) If S c Sis consistent witt, then err(vg) < ﬁ <|§| logn + logn + log %) .
n—

.. ~ . . . S|logn + 2logn + log

(i) If S C Sise-consistentwitl, then err(vg) < n |5]1og n ENT 085
n—|S| 2(n — [S])

Proof. Finding a consistent (resp-consistentS c S constitutes @ample compression scheme of

size|S|, as stipulated i [39]. Hence, the bounds in (i) and (ii)dallimmediately from Theorems
1 and 2 ibid. O

CoroIIarNy 1. With probability at leastl — 4, the following holds: IS is (e, ~)-separable with
witnessS, then

en £1ogn—|—21ogn—|—log%
& <
err(vg) < — +\/ 23— 1) ;

wherel = [1/~]ddim(S)+1,
Proof. Follows immediately from Theorerh$ 1 anld 3(ii). O

Remark. It is instructive to compare the bound aboveltol[12, CorglBt Stated in the language
of this paper, the latter upper-bounds the NN generalinagioor in terms of the sample margjn
andddim(X) by

e+ \/% (dyIn(34en/dy)log,(578n) + 1n(4/6)), (2)
whered, = [16/7] ddim(M)+1 ande is the fraction of the points i that violate the margin condi-
tion (i.e., opposite-labeled point pairs less thapart ind). Hence, Corollar/]1 is a considerable im-
provement ovel{2) in at least three aspects. First, thedizteandenddim(S) may be significantly
smaller than the dimension of the ambient spalckém(X')[d Secondly, the factor of6ddim(*)+1
is shaved off. Finally,[{2) relied on some fairly intricatg-Shattering arguments [40,141], while
Corollary[] is an almost immediate consequence of much sinfptcam-type results.

One limitation of Theorerhll is that it requires the sampledd(h~)-separable. The form of the
bound in Corollary 1l suggests a natural Structural Risk Mination (SRM) procedure: minimize
the right-hand size oveE, ). A solution to this problem was (essentially) given[inl[12€brem
71

Theorem 4. Let R(e,~) denote the right-hand size of the inequality in Corollafy ddaput
(e*,7*) = argmin__ R(e, ). Then (i) One may compute*,~*) in O(n*37) randomized time.
(i) One may computés, 7) satisfyingR(£,7) < 4R(¢*,~*) in O(ddim(S)n? log n) deterministic
time. Both solutions yield a witne$sc S of (¢, v)-separability as a by-product.

Having thus computed the optimal (or near-optingafy with the corresponding witness we may

now run the algorithm furnished by Theor&in 1 on the sub-saifiind invoke the generalization
bound in Corollary1l. The latter holds uniformly over alF.

% In generalddim(S) < cddim(X’) for some universal constantas shown in[24].



4 Experiments

In this section we discuss experimental results. First, vlledescribe a simple heuristic built upon
our algorithm. The theoretical guarantees in Thedrem Lifeat dependence on the scaled margin
~, and our heuristic aims to give an improved solution in thebpgmatic case where is small.
Consider the following procedure for obtaining a smallengistent set. We first extract a ng{
satisfying the guarantees of Theorem 1. We then removegbinn S, using the following rule:
forall i € {0,...[log~]}, and for each € S, if the distance fronp to all opposite labeled points
in S, is at least2 - 2¢, then remove frons., all points strictly within distanc&’ — ~ of p (see
Algorithm[Z). We can show that the resulting set is consisten

Lemma 5. The above heuristic produces a consistent solution.

Proof. Consider a poinp € S,, and assume without loss of generality thpais positive. If
d(p,S5) >2- 2¢, then the positive net-points strictly within distareof p are closer tg than to
any negative pointits,, and are “covered” by. The removed positive net-points at distagte
themselves cover other positive pointsSivithin distancey, butp covers these points ¢f as well.
Further,p cannot be removed at a later stage in the algorithm, silscdistance from all remaining
points is at leas?’ — . O

Algorithm 2 Consistent pruning heuristic

1: S, is produced by Algorithril1 or its fast version (Appendix)
2: for all: € {0,...,[logv]} do

3 forall p € S, do

4 if p € S andd(p, ST) > 2- 2% then

5 for all ¢ # p € S, with d(p, q) < 2° — v do
6: Sy — S, \{q}

7: end for

8 end if

9 end for

10: end for

As a proof of concept, we tested our sample compressionitigts on several data sets from the
UCI Machine Learning Repository. These included the SkignSentation, Statlog Shuttle, and

Covertype set§. The final dataset features 7 different label types, whichreated as 21 separate

binary classification problems; we report results for laldels. 4, 4 vs. 6, and 4 vs. 7, and these
typify the remaining pairs. We stress that the focus of oyreginents is to demonstrate that (i) a
significant amount of consistent sample compression is @itssible and (ii) the compression does
not adversely affect the generalization error.

For each data set and experiment, we sampled equal sizedhigand test sets, with equal repre-
sentation of each label type. Tlig metric was used for all data sets. We report (i) the initiahgke

set size, (ii) the percentage of points retained after thexteaction procedure of Algorithid 1, (iii)
the percentage retained after the pruning heuristic of égm [2, and (iv) the change in predic-
tion accuracy on test data, when comparing the heuristiseaubhcompressed sample. The results,
averaged over 500 trials, are summarized in Figlre 2.

data set original sample | % after net | % after heuristic | £% accuracy
Skin Segmentationn 10000 35.10 4.78 -0.0010
Statlog Shuttle 2000 65.75 29.65 +0.0080
Covertype 1vs. 4| 2000 35.85 17.70 +0.0200
Covertype4vs. 6 | 2000 96.50 69.00 -0.0300
Covertype4vs. 7| 2000 4.40 3.40 0.0000

Figure 2: Summary of the performance of NN sample comprassgorithms.

4 http://tinyurl.cont skin-dat a; http://tinyurl.com shuttl e-dat a;

http://tinyurl.con cover- data


http://tinyurl.com/skin-data
http://tinyurl.com/shuttle-data
http://tinyurl.com/cover-data
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