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Abstract

Variational inference algorithms have proven successful for Bayesian analysis
in large data settings, with recent advances using stochastic variational infer-
ence (SVI). However, such methods have largely been studied in independent or
exchangeable data settings. We develop an SVI algorithm to learn the parameters
of hidden Markov models (HMMs) in a time-dependent data setting. The chal-
lenge in applying stochastic optimization in this setting arises from dependencies
in the chain, which must be broken to consider minibatches of observations. We
propose an algorithm that harnesses the memory decay of the chain to adaptively
bound errors arising from edge effects. We demonstrate the effectiveness of our
algorithm on synthetic experiments and a large genomics dataset where a batch
algorithm is computationally infeasible. |

1 Introduction

Modern data analysis has seen an explosion in the size of the datasets available to analyze. Signifi-
cant progress has been made scaling machine learning algorithms to these massive datasets based on
optimization procedures [} 2| 13]]. For example, stochastic gradient descent employs noisy estimates
of the gradient based on minibatches of data, avoiding a costly gradient computation using the full
dataset [4]. There is considerable interest in leveraging these methods for Bayesian inference since
traditional algorithms such as Markov chain Monte Carlo (MCMC) scale poorly to large datasets,
though subset-based MCMC methods have been recently proposed as well [3} 16} [7} I8].

Variational Bayes (VB) casts posterior inference as a tractable optimization problem by minimizing
the Kullback-Leibler divergence between the target posterior and a family of simpler variational
distributions. Thus, VB provides a natural framework to incorporate ideas from stochastic opti-
mization to perform scalable Bayesian inference. Indeed, a scalable modification to VB harnessing
stochastic gradients—stochastic variational inference (SVI)—has recently been applied to a variety
of Bayesian latent variable models [9} [10]. Minibatch-based VB methods have also proven effective
in a streaming setting where data arrives sequentially [[11]].

However, these algorithms have been developed assuming independent or exchangeable data. One
exception is the SVI algorithm for the mixed-membership stochastic block model [[12], but indepen-
dence at the level of the generative model must be exploited. SVI for Bayesian time series including
HMMs was recently considered in settings where each minibatch is a set of independent series [13]],
though in this setting again dependencies do not need to be broken.

In contrast, we are interested in applying SVI to very long time series. As a motivating example,
consider the application in Sec. 4| of a genomics dataset consisting of 7' = 250 million observa-
tions in 12 dimensions modeled via an HMM to learn human chromatin structure. An analysis of
the entire sequence is computationally prohibitive using standard Bayesian inference techniques for
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HMMs due to a per-iteration complexity linear in 7. Unfortunately, despite the simple chain-based
dependence structure, applying a minibatch-based method is not obvious. In particular, there are two
potential issues immediately arising in sampling subchains as minibatches: (1) the subsequences are
not mutually independent, and (2) updating the latent variables in the subchain ignores the data
outside of the subchain introducing error. We show that for (1), appropriately scaling the noisy sub-
chain gradients preserves unbiased gradient estimates. To address (2), we propose an approximate
message-passing scheme that adaptively bounds error by accounting for memory decay of the chain.

We prove that our proposed SVIHMM algorithm converges to a local mode of the batch objective,
and empirically demonstrate similar performance to batch VB in significantly less time on syn-
thetic datasets. We then consider our genomics application and show that SVIHMM allows efficient
Bayesian inference on this massive dataset where batch inference is computationally infeasible.

2 Background

2.1 Hidden Markov models

Hidden Markov models (HMMs) [14] are a class of discrete-time doubly stochastic processes con-

sisting of observations y; and latent states x; € {1, ..., K} generated by a discrete-valued Markov
chain. Specifically, fory = (y1,...,yr) and x = (21, ..., z7), the joint distribution factorizes as
T
p(x,y) = mo(x)p(yi 1) [ [ plwilzi1, Ap(yilar, 6) (1)
t=2

where A = [Aij]fszl is the transition matrix with A;; = Pr(zy = jlze—1 = i), ¢ = {¢r},
the emission parameters, and mq the initial distribution. We denote the set of HMM parameters
as § = (mo, A, ). We assume that the underlying chain is irreducible and aperiodic so that a
stationary distribution T exists and is unique. Furthermore, we assume that we observe the sequence
at stationarity so that Ty = 7, where 7 is given by the leading left-eigenvector of A. As such, we do
not seek to learn 7 in the setting of observing a single realization of a long chain.

We specify conjugate Dirichlet priors on the rows of the transition matrix as
K
p(A) = [ Dir(A;. | o). 2)
j=1

Here, Dir(7 | «) denotes a K -dimensional Dirichlet distribution with concentration parameters c.
Although our methods are more broadly applicable, we focus on HMMs with multivariate Gaussian
emissions where ¢y = {ug, X}, with conjugate normal-inverse-Wishart (NIW) prior

Yt | Ty ~ N(yt | My s E.’Et)v (bk = (Mk:zk) ~ NIW(N07K07EO7VO)' (3)

For simplicity, we suppress dependence on 6 and write 7 (), p(2¢|2¢—1), and p(y:|z:) throughout.

2.2 Structured mean-field VB for HMMs

We are interested in the posterior distribution of the state sequence and parameters given an obser-
vation sequence, denoted p(x, f|y). While evaluating marginal likelihoods, p(y|#), and most prob-
able state sequences, arg max, p(x|y, ), are tractable via the forward-backward (FB) algorithm
when parameter values 6 are fixed [14], exact computation of the posterior is intractable for HMMs.
Markov chain Monte Carlo (MCMC) provides a widely used sampling-based approach to posterior
inference in HMMs [15} [16]. We instead focus on variational Bayes (VB), an optimization-based
approach that approximates p(x, f|y) by a variational distribution ¢(6,x) within a simpler family.
Typically, for HMMs a structured mean field approximation is considered:

q(0,%) = q(A)q(#)q(x), )
breaking dependencies only between the parameters § = {A, ¢} and latent state sequence x [17].

Note that making a full mean field assumption in which ¢(x) = []._, q(x;) loses crucial information
about the latent chain needed for accurate inference.



Each factor in Eq. (@) is endowed with its own variational parameter and is set to be in the same
exponential family distribution as its respective complete conditional. The variational parameters
are optimized to maximize the evidence lower bound (ELBO) L:

np(y) = Eq [Inp(0)] — Eq [Inq(0)] + E; [Inp(y, x|0)] — Eg [Ing(x)] := L(q(0),¢(x)).  (5)

Maximizing £ is equivalent to minimizing the KL divergence KL(¢(x,0)||p(x,0]y)) [18]. In
practice, we alternate updating the global parameters 6—those coupled to the entire set of
observations—and the local variables {x;}—a variable corresponding to each observation, y;. De-
tails on computing the terms in the equations and algorithms that follow are in the Supplement.

The global update is derived by differentiating £ with respect to the global variational parameters
[L7]. Assuming a conjugate exponential family leads to a simple coordinate ascent update [9]:

W =u+ By [t(x,y)]. (6)

Here, t(x,y) denotes the vector of sufficient statistics, and w = (w*, w?) and u = (u?, u?) the
variational parameters and model hyperparameters, respectively, in natural parameter form.

The local update is derived analogously, yielding the optimal variational distribution over the latent
sequence:

T T
q*(x) o< exp (Eq(A) Inm(z)] + Y Egay 0 Ae, 2] + Y Ege) [hlp(ytxt)}) - (D
t=2 t=1

Compare with Eq. (I). Here, we have replaced probabilities by exponentiated expected log proba-
bilities under the current variational distribution. To determine the optimal ¢*(x) in Eq. (7)), define:

/Nlj,k. =exp [EgayIn(A4;6)]  Dlylze = k) := exp [Eyp) Inp(yi|z, = k)] . (8)
We estimate 7 with 7 being the leading eigenvector of Eq(4)[A]. We then use 7, A= (g]k) and
p = {p(ye|z = k), k =1,...,K,t = 1,...,T} to run a forward-backward algorithm, produc-
ing forward messages « and backward messages 8 which allow us to compute ¢*(x; = k) and
¢ (xs—1 = j,x¢ = k). [19,[17]. See the Supplement.

2.3 Stochastic variational inference for non-sequential models

Even in non-sequential models, the batch VB algorithm requires an entire pass through the dataset
for each update of the global parameters. This can be costly in large datasets, and wasteful when
local-variable passes are based on uninformed initializations of the global parameters or when many
data points contain redundant information.

To cope with this computational challenge, stochastic variational inference (SVI) [9] leverages a
Robbins-Monro algorithm [1]] to optimize the ELBO via stochastic gradient ascent. When the data
are independent, the ELBO in Eq. (3) can be expressed as

L = Eyg) np(0)] = Eg) [nq(0)] + Y By Inp(yi, 2l0)] = Eypo Ing(x)]. (9

i=1
If a single observation index s is sampled uniformly s ~ Unif(1,...,T), the ELBO corresponding
to (s, ys) as if it were replicated T times is given by

L= Eq(9) [lnp(ﬂ)] - Eq(O) [ln CI(Q)} +T- (Eq(xs) [lnp(ys, :U5|9)] - E(I(ms) [ln Q(ﬂfs)]) , (10
and it is clear that E5[£®] = L. At each iteration n of the SVI algorithm, a data point y is sampled
and its local q*(xs) is computed given the current estimate of global variational parameters w.,.

Next, the global update is performed via a noisy, unbiased gradient step (£ [@wﬁs] = VL).
When all pairs of distributions in the model are conditionally conjugate, it is cheaper to compute the

stochastic natural gradient, %w/ls, which additionally accounts for the information geometry of the
distribution [9]]. The resulting stochastic natural gradient step with step-size p,, is:

Wpt1 = Wy + pnﬁwﬁs(wn). (11)
We show the form of ﬁwﬁs in Sec. specifically in Eq. with details in the Supplement.



3 Stochastic variational inference for HMMs

The batch VB algorithm of Sec. becomes prohibitively expensive as the length of the chain T’
becomes large. In particular, the forward-backward algorithm in the local step takes O (K 2T time.
Instead, we turn to a subsampling approach, but naively applying SVI from Sec. [2.3| fails in the
HMM setting: decomposing the sum over local variables into a sum of independent terms as in
Eq. (O) ignores crucial transition counts, equivalent to making a full mean-field approximation.

Extending SVI to HMMs requires additional considerations due to the dependencies between the ob-
servations. It is clear that subchains of consecutive observations rather than individual observations
are necessary to capture the transition structure (see Sec. [3.I). We show that if the local variables
of each subchain can be exactly optimized, then stochastic gradients computed on subchains can be
scaled to preserve unbiased estimates of the full gradient (see Sec.[3.2).

Unfortunately, as we show in Sec. [3.3] the local step becomes approximate due to edge effects:
local variables are incognizant of nodes outside of the subchain during the forward-backward pass.
Although an exact scheme requires message passing along the entire chain, we harness the memory
decay of the latent Markov chain to guarantee that local state beliefs in each subchain form an e-
approximation g.(x) to the full-data beliefs ¢*(x). We achieve these approximations by adaptively
buffering the subchains with extra observations based on current global parameter estimates. We
then prove that for € sufficiently small, the noisy gradient computed using ¢.(x) corresponds to an
ascent direction in £, guaranteeing convergence of our algorithm to a local optimum. We refer to
our algorithm, which is outlined in Alg.|1} as SVIHMM.

Algorithm 1 Stochastic Variational Inference for HMMs (SVIHMM)

- Initialize variational parameters (w{', wg ) and choose stepsize schedule p,,, n =1,2,...

: while (convergence criterion is not met) do
Sample a subchain y* C {y1,...,yr} with S ~ p(95)

1
2
3
4:  Local step: Compute 7, A, pg and run ¢(x°) = ForwardBackward(y®, 7, 4, ps).
5
6

Global update: w1 = Wn(1 — pn) + pn(u+ c? Eyxs)[t(x%, y7)])
: end while

3.1 ELBO for subsets of data

Unlike the independent data case (Eq. (9)), the local term in the HMM setting decomposes as
T T
Inp(y,x|0) =Innw(z;) + ZlnAth,wt + Zlnp(yt|xt). (12)
t=2 i=1
Because of the paired terms in the first sum, it is necessary to consider consecutive observations
to learn transition structure. For the SVIHMM algorithm, we define our basic sampling unit as
subchains y° = (y7,...,y5), where S refers to the associated indices. We denote the ELBO

restricted to y as £, and associated natural gradient as V. £5.

3.2 Global update

We detail the global update assuming we have optimized ¢*(x) exactly (i.e., as in the batch set-
ting), although this assumption will be relaxed as discussed in Sec 3.3] Paralleling Sec. 2.3] the
global SVIHMM step involves updating the global variational parameters w via stochastic (natural)
gradient ascent based on ¢* (x), the beliefs corresponding to our current subchain S.

Recall from Eq. that the original SVI algorithm maintains F, [%WLS] = VwZ by scaling the
gradient based on an individual observation s by the total number of observations 7. In the HMM
case, we analogously derive a batch factor vector ¢ = (¢, c?) such that

Es[%wﬁs] = VoLl with VoL5=u+ CTEq*(xS) [t(xs,ys)] —w. (13)

The specific form of Eq. for Gaussian emissions is in the Supplement. Now, the Robbins-Monro
average in Eq. (TT)) can be written as

W1 = Wn(l = pn) + po(u+ T Ep s (x5, y7)]). (14)



When the noisy natural gradients V., £° are independent and unbiased estimates of the true natural
gradient, the iterates in Eq. converge to a local maximum of £ under mild regularity conditions
as long as step-sizes p,, satisfy > p2 < oo, and > Pn = 00 [2,9]. In our case, the noisy gradients
are necessarily correlated even for independently sampled subchains due to dependence between
observations (y1,...,yr). However, as detailed in [20], unbiasedness suffices for convergence of
Eq. (T4) to a local mode.

Batch factor Recalling our assumption of being at stationarity, Ey () In7(z1) = Ey(r) Inm(z;)
for all 7. If we sample subchains from the uniform distribution over subchains of length L, denoted
p(.9), then we can write

T—L+1 T T
Es|E, 1np<ys,xse>] ~p()E, | Y mle) +(L-1)Y A, . + szth)] ,
t=1 t=2 t=1

15)
where the expectation is with respect to (7, A, ¢); this is detailed in the Supplement. The approx-
imate equality in Eq. (TI3) arises because while most transitions appear in L — 1 subchains, those
near the endpoints of the full chain do not, e.g., 1 and zr appear in only one subchain. This error
becomes negligible as the length of the HMM increases. Since p(S) is uniform over all length L sub-
chains, by linearity of expectation the batch factor ¢ = (¢4, ¢?) is givenby ¢* = (T—L+1)/(L—1),
¢? = (T — L + 1)/L. Other choices of p(S) can be used by considering the appropriate version of
Eq. (I3)) analogously to [12]], generally with a batch factor c® varying with each subset y*°.

3.3 Local update

The optimal SVIHMM local variational distribution arises just as in the batch case of Eq. (7), but
with time indices restricted to the length L subchain y°:

L L
7" (x°) o< exp (Eq(A) [Inm(2?)] + Z Eqa [ln Awipl‘f} + Z Eq4) [lnp(yﬂxf)]) . (16)
£=2 =1
To compute these local beliefs, we use our current g(A), ¢(¢)—which have been informed by all
previous subchains—to form 7, A, ps = {p(y; |v; = k),Vk,£ =1,..., L}, with these parameters
defined as in the batch case. We then use these parameters in a forward-backward algorithm detailed
in the Supplement. However, this message passing produces only an approximate optimization due

to loss of information incurred at the ends of the subchain. Specifically, for y° = (v, ..., ys+1),
the forward messages coming from y1, . . ., y;—1 are not available to y,, and similarly the backwards
messages from y;4 1,41, . . ., y7 are not available to y; ..

Recall our assumption in the global update step that ¢*(x*) corresponds to a subchain of the full-
data optimal beliefs ¢*(x). Here, we see that this assumption is assuredly false; instead, we analyze
the implications of using approximate local subchain beliefs and aim to ameliorate the edge effects.

Buffering subchains To cope with the subchain edge effects, we augment the subchain S with
enough extra observations on each end so that the local state beliefs, g(z;), i € S, are within an
e-ball of ¢*(z;) — those had we considered the entire chain. The practicality of this approach arises
from the approximate finite memory of the process. In particular, consider performing a forward-
backward pass on (z§_,,..., 7, ) leading to approximate beliefs G" (x;). Given € > 0, define 7.
as the smallest buffer length 7 such that

a7 (1) — " o) < e a7

The 7 that satisfies Eq. determines the number of observations used to buffer the subchain. After
improving subchain beliefs, we discard ¢” (x;), ¢ € buffer, prior to the global update. As will be
seen in Sec.[d] in practice the necessary 7 is typically very small relative to the lengthy observation
sequences of interest.

Buffering subchains is related to splash belief propagation (BP) for parallel inference in undirected
graphical models, where the belief at any given node is monitored based on locally-aware message
passing in order to maintain a good approximation to the true belief [21]. Unlike splash BP, we



embed the buffering scheme inside an iterative procedure for updating both the local latent structure
and the global parameters, which affects the e-approximation in future iterations. Likewise, we wish
to maintain the approximation on an entire subchain, not just at a single node.

Even in settings where parameters 6 are known, as in splash BP, analytically choosing 7 is generally
infeasible. As such, we follow the approach of splash BP to select an approximate 7.. We then go
further by showing that SVIHMM still converges using approximate messages within an uncertain
parameter setting where 6 is learned simultaneously with the state sequence x.

Specifically, we approximate 7. by monitoring the change in belief residuals with a sub-routine
GrowBuf, outlined in Alg.[2] that iteratively expands a buffer ¢°'4 — ¢™°" around a given subchain
y?. Growbuf terminates when all belief residuals satisfy

max [|g(z:)"" — q(z:)h < e. (18)

The GrowBuf sub-routine can be computed efficiently due to (1) monotonicity of the forward and
backward messages so that only residuals at endpoints, ¢(z) and (27 ), need be considered, and
(2) the reuse of computations. Specifically, the forward-backward pass can be rooted at the midpoint
of y¥ so that messages to the endpoints can be efficiently propagated, and vice versa [22].

Furthermore, choosing sufficiently small € guarantees that the noisy natural gradient lies in the same
half-plane as the true natural gradient, a sufficient condition for maintaining convergence when using
approximate gradients [23]]; the proof is presented in the Supplement.

Algorithm 2 GrowBuf procedure.
1: Input: subchain S, min buffer length v € Z, error tolerance € > 0.

2: Initialize ¢°'(x¥) = ForwardBackward(y®, #, A, Ps) and set S°4 = S,

3: while true do

4:  Grow buffer S"*% by extending S°' by u observations in each direction.

50 "V (x5"") = ForwardBackward(yS"", #, A, Pgnev ), reusing messages from 501
6 if [|g™v (x%) — ¢°M(x%)|| < € then

7: return ¢*(x°) = ¢"°V(x%)

8: endif

9: Set Sold = Smew and qold — qnew.

10: end while

3.4 Minibatches for variance mitigation and their effect on computational complexity

Stochastic gradient algorithms often benefit from sampling multiple observations in order to reduce
the variance of the gradient estimates at each iteration. We use a similar idea in SVIHMM by
sampling a minibatch B = (y®',...,y"™) consisting of M subchains. If the latent Markov chain
tends to dwell in one component for extended periods, sampling one subchain may only contain
information about a select number of states observed in that component. Increasing the length
of this subchain may only lead to redundant information from this component. In contrast, using a
minibatch of many smaller subchains may discover disparate components of the chain at comparable
computational cost, accelerating learning and leading to a better local optimum. However, subchains
must be sufficiently long to be informative of transition dynamics. In this setting, the local step on
each subchain is identical; summing over subchains in the minibatch yields the gradient update:

~ VAVB
w” = Z CTEQ(XS) [t<xs’ys>} o Wnitl = Wn(l - pn) + pn (u + |B|) .
SeB

We see that the computational complexity of SVIHMM is O(K?(L +27.) M), leading to significant
efficiency gains compared to O(K?T) in batch inference when (L + 27, )M << T.

4 Experiments

We evaluate the performance of SVIHMM compared to batch VB on synthetic experiments designed
to illustrate the trade off between the choice of subchain length L and the number of subchains per



Table 1: Runtime and predictive log-probability (without GrowBuf) on RC data.

|L/2] | Runtime (sec.) | Avg. iter. time (sec.) | log-predictive
100 2.74 £ 0.001 0.03 £+ 0.000 —5.915 + 0.004
500 11.79 4+ 0.004 0.12 £+ 0.000 —5.850 + 0.000
1000 23.17 £ 0.006 0.23 £ 0.000 —5.850 £ 0.000

batch | 1240.73 £0.370 248.15 4+ 0.074 —5.840 £+ 0.000

minibatch M. We also demonstrate the utility of GrowBuf. We then apply our algorithm to gene
segmentation in a large human chromatin data set.

Synthetic data We create two synthetic datasets with 7' = 10,000 observations and K = 8
latent states. The first, called diagonally dominant (DD), illustrates the potential benefit of large
M, the number of sampled subchains per minibatch. The Markov chain heavily self-transitions so
that most subchains contain redundant information with observations generated from the same latent
state. Although transitions are rarely observed, the emission means are set to be distinct so that this
example is likelihood-dominated and highly identifiable. Thus, fixing a computational budget, we
expect large M to be preferable to large L, covering more of the observation sequence and avoiding
poor local modes arising from redundant information.

The second dataset we consider contains two reversed cycles (RC): the Markov chain strongly tran-
sitions from states 1 — 2 —+ 3 — land 5 — 7 — 6 — 5 with a small probability of transitioning
between cycles via bridge states 4 and 8. The emission means for the two cycles are very similar
but occur in reverse order with respect to the transitions. Transition information in observing long
enough dynamics is thus crucial to identify between states 1,2, 3 and 5, 6, 7, and a large enough L
is imperative. The Supplement contains details for generating both synthetic datasets.

We compare SVIHMM to batch VB on these two synthetic examples. For each per parameter setting,
we ran 20 random restarts of SVIHMM for 100 iterations and batch VB until convergence of the
ELBO. A forgetting rate x parametrizes step sizes p, = (1 + n)~". We fix the total number of
observations L x M used per iteration of SVIHMM such that increasing M implies decreasing L
(and vice versa).

In Fig. we compare || A— A|| p, where A is the true transition matrix and A its learned variational
mean. We see trends one would expect: the small L, large M settings achieve better performance
for the DD example, but the opposite holds for RC, with | L/2| = 1 significantly underperforming.
(Of course, allowing large L and M is always preferable, except computationally.) Under appro-
priate settings in both cases, we achieve comparable performance to batch VB. In Fig. we see
similar trends in terms of predictive log-probability holding out 10% of the observations as a test
set and using 5-fold cross validation. Here, we actually notice that SVIHMM often achieves higher
predictive log-probability than batch VB, which is attributed to the fact that stochastic algorithms
can find better local modes than their non-random counterparts.

A timing comparison of SVIHMM to batch VB with 7' = 3 million is presented in Table ] All
settings of SVIHMM run faster than even a single iteration of batch, with only a negligible change
in predictive log-likelihood. Further discussion on these timing results is in the Supplement.

Motivated by the demonstrated importance of choice of L, we now turn to examine the impact of
the GrowBuf routine via predictive log-probability. In Fig. we see a noticeable improvement
for small L settings when GrowBuf is incorporated (the dashed lines in Fig.[I(D)). In particular,
the RC example is now learning dynamics of the chain even with |L/2] = 1, which was not
possible without buffering. GrowBuf thus provides robustness by guarding against poor choice of
L. We note that the buffer routine does not overextend subchains, on average growing by only ~ 8
observations with ¢ = 1 x 107, Since the number of observations added is usually small, GrowBu f
does not significantly add to per-iteration computational cost (see the Supplement).

Human chromatin segmentation We apply the SVIHMM algorithm to a massive human chro-
matin dataset provided by the ENCODE project [24]]. This data was studied in [25] with the goal
of unsupervised pattern discovery via segmentation of the genome. Regions sharing the same labels
have certain common properties in the observed data, and because the labeling at each position is
unknown but influenced by the label at the previous position, an HMM is a natural model [26].



L/2=10
1.5+ o -3.0
53 o
10- @ > 554 g GrowBuffer
9 =7 e —off
9 o
- 3 {
05 ® 2o £ on
w v <] :
= 0.0-= o
< 1.00 545 K
- o 60 et — 0.1
0.75 -+ D OV
N g o
0.50 - R (9] T -6.2 7 o — 05
A S
0.25- 2 T g4 o 0.7
P— — | ’
0.00- T T T -6.6 1 1 1 1 (i 1 1 | 1 1 1
1 10 100 0 20 40 60 0 20 40 60 0 20 40 60
L/2 (log—scale) Iteration
(a) (b)

Figure 1: (a) Transition matrix error varying L with L x M fixed. (b) Effect of incorporating
GrowBuf. Batch results denoted by horizontal red line in both figures.

We were provided with 250 million observations consisting of twelve assays carried out in the
chronic myeloid leukemia cell line K562. We analyzed the data using SVIHMM on an HMM with
25 states and 12 dimensional Gaussian emissions. We compare our performance to the correspond-
ing segmentation learned by an expectation maximization (EM) algorithm applied to a more flexible
dynamic Bayesian network model (DBN) [27]]. Due to the size of the dataset, the analysis of [27]]
requires breaking the chain into several blocks, severing long range dependencies.

We assess performance by comparing the false discovery rate (FDR) of predicting active promoter
elements in the sequence. The lowest (best) FDR achieved with SVIHMM over 20 random restarts
trials was .999026 using | L/2] = 2000, M = 50,k = ﬂ comparable and slightly lower than
the .999038 FDR obtained using DBN-EM on the severed data [27]. We emphasize that even when
restricted to a simpler HMM model, learning on the full data via SVIHMM attains similar results to
that of [27]] with significant gains in efficiency. In particular, our SVIHMM runs require only under
an hour for a fixed 100 iterations, the maximum iteration limit specified in the DBN-EM approach.
In contrast, even with a parallelized implementation over the broken chain, the DBN-EM algorithm
can take days. In conclusion, SVIHMM enables scaling to the entire dataset, allowing for a more
principled approach by utilizing the data jointly.

5 Discussion

We have presented stochastic variational inference for HMMs, extending such algorithms from in-
dependent data settings to handle time dependence. We elucidated the complications that arise when
sub-sampling dependent observations and proposed a scheme to mitigate the error introduced from
breaking dependencies. Our approach provides an adaptive technique with provable guarantees for
convergence to a local mode. Further extensions of the algorithm in the HMM setting include adap-
tively selecting the length of meta-observations and parallelizing the local step when the number of
meta-observations is large. Importantly, these ideas generalize to other settings and can be applied to
Bayesian nonparametric time series models, general state space models, and other graph structures
with spatial dependencies.
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