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Abstract

While there are many studies on weight regularization, the study on structure reg-
ularization is rare. Many existing systems on structured prediction focus on in-
creasing the level of structural dependencies within the model. However, this trend
could have been misdirected, because our study suggests that complex structures
are actually harmful to generalization ability in structured prediction. To control
structure-based overfitting, we propose a structure regularization framework via
structure decomposition, which decomposes training samples into mini-samples
with simpler structures, deriving a model with better generalization power. We
show both theoretically and empirically that structure regularization can effec-
tively control overfitting risk and lead to better accuracy. As a by-product, the
proposed method can also substantially accelerate the training speed. The method
and the theoretical results can apply to general graphical models with arbitrary
structures. Experiments on well-known tasks demonstrate that our method can
easily beat the benchmark systems on those highly-competitive tasks, achieving
record-breaking accuracies yet with substantially faster training speed.

1 Introduction

Structured prediction models are popularly used to solve structure dependent problems in a wide
variety of application domains including natural language processing, bioinformatics, speech recog-
nition, and computer vision. Recently, many existing systems on structured prediction focus on
increasing the level of structural dependencies within the model. We argue that this trend could
have been misdirected, because our study suggests that complex structures are actually harmful to
model accuracy. While it is obvious that intensive structural dependencies can effectively incorpo-
rate structural information, it is less obvious that intensive structural dependencies have a drawback
of increasing the generalization risk, because more complex structures are easier to suffer from
overfitting. Since this type of overfitting is caused by structure complexity, it can hardly be solved
by ordinary regularization methods such as L2 and L1 regularization schemes, which is only for
controlling weight complexity.

To deal with this problem, we propose a simple structure regularization solution based on tag struc-
ture decomposition. The proposed method decomposes each training sample into multiple mini-
samples with simpler structures, deriving a model with better generalization power. The proposed
method is easy to implement, and it has several interesting properties: (1) We show both theoretical-
ly and empirically that the proposed method can effectively reduce the overfitting risk on structured
prediction. (2) The proposed method does not change the convexity of the objective function, such
that a convex function penalized with a structure regularizer is still convex. (3) The proposed method
has no conflict with the weight regularization. Thus we can apply structure regularization together
with weight regularization. (4) The proposed method can accelerate the convergence rate in training.

The term structural regularization has been used in prior work for regularizing structures of features,
including spectral regularization [1], regularizing feature structures for classifiers [20], and many
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recent studies on structured sparsity in structured prediction scenarios [11, 8], via adopting mixed
norm regularization [10], Group Lasso [22], and posterior regularization [5]. Compared with those
prior work, we emphasize that our proposal on tag structure regularization is novel. This is because
the term structure in all of the aforementioned work refers to structures of feature space, which
is substantially different compared with our proposal on regularizing tag structures (interactions
among tags).

Also, there are some other related studies. [17] described an interesting heuristic piecewise train-
ing method. [19] described a “lookahead" learning method. Our work differs from [17] and [19]
mainly because our work is built on a regularization framework, with arguments and theoretical
justifications on reducing generalization risk and improving convergence rate. Also, our method
and the theoretical results can fit general graphical models with arbitrary structures, and the de-
tailed algorithm is very different. On generalization risk analysis, related studies include [2, 12] on
non-structured classification and [18, 7] on structured classification.

To the best of our knowledge, this is the first theoretical result on quantifying the relation between
structure complexity and the generalization risk in structured prediction, and this is also the first
proposal on structure regularization via regularizing tag-interactions. The contributions of this work1

are two-fold:

• On the methodology side, we propose a structure regularization framework for structured
prediction. We show both theoretically and empirically that the proposed method can ef-
fectively reduce the overfitting risk, and at the same time accelerate the convergence rate in
training. Our method and the theoretical analysis do not make assumptions based on specif-
ic structures. In other words, the method and the theoretical results can apply to graphical
models with arbitrary structures, including linear chains, trees, and general graphs.

• On the application side, for several important natural language processing tasks, our simple
method can easily beat the benchmark systems on those highly-competitive tasks, achieving
record-breaking accuracies as well as substantially faster training speed.

2 Structure Regularization

A graph of observations (even with arbitrary structures) can be indexed and be denoted by using
an indexed sequence of observations OOO = {o1, . . . , on}. We use the term sample to denote OOO =
{o1, . . . , on}. For example, in natural language processing, a sample may correspond to a sentence
of n words with dependencies of tree structures (e.g., in syntactic parsing). For simplicity in analysis,
we assume all samples have n observations (thus n tags). In a typical setting of structured prediction,
all the n tags have inter-dependencies via connecting each Markov dependency between neighboring
tags. Thus, we call n as tag structure complexity or simply structure complexity below.

A sample is converted to an indexed sequence of feature vectorsxxx = {xxx(1), . . . ,xxx(n)}, wherexxx(k) ∈
X is of the dimension d and corresponds to the local features extracted from the position/index k.
We can use an n× d matrix to represent xxx ∈ Xn. Let Z = (Xn,Yn) and let zzz = (xxx,yyy) ∈ Z denote
a sample in the training data. Suppose a training set is S = {zzz1 = (xxx1, yyy1), . . . , zzzm = (xxxm, yyym)},
with size m, and the samples are drawn i.i.d. from a distribution D which is unknown. A learning
algorithm is a function G : Zm 7→ F with the function space F ⊂ {Xn 7→ Yn}, i.e., G maps a
training set S to a function GS : Xn 7→ Yn. We suppose G is symmetric with respect to S, so that
G is independent on the order of S.

Structural dependencies among tags are the major difference between structured prediction and non-
structured classification. For the latter case, a local classification of g based on a position k can be
expressed as g(xxx(k−a), . . . ,xxx(k+a)), where the term {xxx(k−a), . . . ,xxx(k+a)} represents a local win-
dow. However, for structured prediction, a local classification on a position depends on the whole
input xxx = {xxx(1), . . . ,xxx(n)} rather than a local window, due to the nature of structural dependencies
among tags (e.g., graphical models like CRFs). Thus, in structured prediction a local classification
on k should be denoted as g(xxx(1), . . . ,xxx(n), k). To simplify the notation, we define

g(xxx, k) , g(xxx(1), . . . ,xxx(n), k)

1See the code at http://klcl.pku.edu.cn/member/sunxu/code.htm
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Figure 1: An illustration of structure regularization in simple linear chain case, which decompose a
training sample zzz with structure complexity 6 into three mini-samples with structure complexity 2.
Structure regularization can apply to more general graphs with arbitrary dependencies.

We define point-wise cost function c : Y×Y 7→ R+ as c[GS(xxx, k), yyy(k)], which measures the cost on
a position k by comparing GS(xxx, k) and the gold-standard tag yyy(k), and we introduce the point-wise
loss as

ℓ(GS , zzz, k) , c[GS(xxx, k), yyy(k)]

Then, we define sample-wise cost function C : Yn × Yn 7→ R+, which is the cost function with
respect to a whole sample, and we introduce the sample-wise loss as

L(GS , zzz) , C[GS(xxx), yyy] =
n∑

k=1

ℓ(GS , zzz, k) =
n∑

k=1

c[GS(xxx, k), yyy(k)]

Given G and a training set S, what we are most interested in is the generalization risk in structured
prediction (i.e., expected average loss) [18, 7]:

R(GS) = Ezzz

[L(GS , zzz)

n

]
Since the distribution D is unknown, we have to estimate R(GS) by using the empirical risk:

Re(GS) =
1

mn

m∑
i=1

L(GS , zzzi) =
1

mn

m∑
i=1

n∑
k=1

ℓ(GS , zzzi, k)

To state our theoretical results, we must describe several quantities and assumptions following prior
work [2, 12]. We assume a simple real-valued structured prediction scheme such that the class
predicted on position k of xxx is the sign of GS(xxx, k) ∈ D.2 Also, we assume the point-wise cost
function cτ is convex and τ -smooth such that ∀y1, y2 ∈ D, ∀y∗ ∈ Y

|cτ (y1, y∗)− cτ (y2, y
∗)| ≤ τ |y1 − y2| (1)

Also, we use a value ρ to quantify the bound of |GS(xxx, k) − GS\i(xxx, k)| while changing a single
sample (with size n′ ≤ n) in the training set with respect to the structured inputxxx. This ρ-admissible
assumption can be formulated as ∀k,

|GS(xxx, k)−GS\i(xxx, k)| ≤ ρ||GS −GS\i ||2 · ||xxx||2 (2)

where ρ ∈ R+ is a value related to the design of algorithm G.

2.1 Structure Regularization

Most existing regularization techniques are for regularizing model weights/parameters (e.g., a rep-
resentative regularizer is the Gaussian regularizer or so called L2 regularizer), and we call such
regularization techniques as weight regularization.

Definition 1 (Weight regularization) Let Nλ : F 7→ R+ be a weight regularization function on
F with regularization strength λ, the structured classification based objective function with general
weight regularization is as follows:

Rλ(GS) , Re(GS) +Nλ(GS) (3)

2In practice, many popular structured prediction models have a convex and real-valued cost function (e.g.,
CRFs).
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Algorithm 1 Training with structure regularization
1: Input: model weights www, training set S, structure regularization strength α
2: repeat
3: S′ ← ∅
4: for i = 1→ m do
5: Randomly decompose zzzi ∈ S into mini-samples Nα(zzzi) = {zzz(i,1), . . . , zzz(i,α)}
6: S′ ← S′ ∪Nα(zzzi)
7: end for
8: for i = 1→ |S′| do
9: Sample zzz′ uniformly at random from S′, with gradient ∇gzzz′(www)

10: www ← www − η∇gzzz′(www)
11: end for
12: until Convergence
13: return www

While weight regularization is normalizing model weights, the proposed structure regularization
method is normalizing the structural complexity of the training samples. As illustrated in Figure 1,
our proposal is based on tag structure decomposition, which can be formally defined as follows:

Definition 2 (Structure regularization) Let Nα : F 7→ F be a structure regularization function
on F with regularization strength α with 1 ≤ α ≤ n, the structured classification based objective
function with structure regularization is as follows3:

Rα(GS) , Re[GNα(S)] =
1

mn

m∑
i=1

α∑
j=1

L[GS′ , zzz(i,j)] =
1

mn

m∑
i=1

α∑
j=1

n/α∑
k=1

ℓ[GS′ , zzz(i,j), k] (4)

where Nα(zzzi) randomly splits zzzi into α mini-samples {zzz(i,1), . . . , zzz(i,α)}, so that the mini-samples
have a distribution on their sizes (structure complexities) with the expected value n′ = n/α. Thus,
we get

S′ = {zzz(1,1), z(1,2), . . . , zzz(1,α)︸ ︷︷ ︸
α

, . . . , zzz(m,1), zzz(m,2), . . . , zzz(m,α)︸ ︷︷ ︸
α

} (5)

with mα mini-samples with expected structure complexity n/α. We can denote S′ more compactly
as S′ = {zzz′1, zzz′2, . . . , zzz′mα} and Rα(GS) can be simplified as

Rα(GS) ,
1

mn

mα∑
i=1

L(GS′ , zzz′i) =
1

mn

mα∑
i=1

n/α∑
k=1

ℓ[GS′ , zzz′i, k] (6)

When the structure regularization strength α = 1, we have S′ = S and Rα = Re. The structure
regularization algorithm (with the stochastic gradient descent setting) is summarized in Algorithm
1. Recall that xxx = {xxx(1), . . . ,xxx(n)} represents feature vectors. Thus, it should be emphasized that
the decomposition of xxx is the decomposition of the feature vectors, not the original observations.
Actually the decomposition of the feature vectors is more convenient and has no information loss —
decomposing observations needs to regenerate features and may lose some features.

The structure regularization has no conflict with the weight regularization, and the structure regular-
ization can be applied together with the weight regularization.

Definition 3 (Structure & weight regularization) By combining structure regularization in Def-
inition 2 and weight regularization in Definition 1, the structured classification based objective
function is as follows:

Rα,λ(GS) , Rα(GS) +Nλ(GS) (7)
When α = 1, we have Rα,λ = Re(GS) +Nλ(GS) = Rλ.

Like existing weight regularization methods, currently our structure regularization is only for the
training stage. Currently we do not use structure regularization in the test stage.

3The notation N is overloaded here. For clarity throughout, N with subscript λ refers to weight regulariza-
tion function, and N with subscript α refers to structure regularization function.
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2.2 Reduction of Generalization Risk

In contrast to the simplicity of the algorithm, the theoretical analysis is quite technical. In this paper
we only describe the major theoretical result. Detailed analysis and proofs are given in the full
version of this work [14].

Theorem 4 (Generalization vs. structure regularization) Let the structured prediction objective
function of G be penalized by structure regularization with factor α ∈ [1, n] and L2 weight regular-
ization with factor λ, and the penalized function has a minimizer f :

f = argmin
g∈F

Rα,λ(g) = argmin
g∈F

( 1

mn

mα∑
j=1

Lτ (g,zzz
′
j) +

λ

2
||g||22

)
(8)

Assume the point-wise loss ℓτ is convex and differentiable, and is bounded by ℓτ (f,zzz, k) ≤ γ.
Assume f(xxx, k) is ρ-admissible. Let a local feature value be bounded by v such that xxx(k,q) ≤ v for
q ∈ {1, . . . , d}. Then, for any δ ∈ (0, 1), with probability at least 1 − δ over the random draw of
the training set S, the generalization risk R(f) is bounded by

R(f) ≤ Re(f) +
2dτ2ρ2v2n2

mλα
+
( (4m− 2)dτ2ρ2v2n2

mλα2
+ γ

)√α ln δ−1

2m
(9)

Since τ, ρ, and v are typically small compared with other variables, especially m, (9) can be ap-
proximated as follows by ignoring small terms:

R(f) ≤ Re(f) +O
(dn2

√
ln δ−1

λα1.5
√
m

)
(10)

The proof is given in the full version of this work [14]. We call the term O
(

dn2
√
ln δ−1

λα1.5
√
m

)
in (10)

as “overfit-bound", and reducing the overfit-bound is crucial for reducing the generalization risk
bound. First, (10) suggests that structure complexity n can increase the overfit-bound on a magni-
tude of O(n2), and applying weight regularization can reduce the overfit-bound by O(λ). Impor-
tantly, applying structure regularization further (over weight regularization) can additionally reduce
the overfit-bound by a magnitude of O(α1.5). Since many applications in practice are based on s-
parse features, using a sparse feature assumption can further improve the generalization bound. The
improved generalization bounds are given in the full version of this work [14].

2.3 Accelerating Convergence Rates in Training

We also analyze the impact on the convergence rate of online learning by applying structure regu-
larization. Following prior work [9], our analysis is based on the stochastic gradient descent (SGD)
with fixed learning rate. Let g(www) be the structured prediction objective function and www ∈ W is the
weight vector. Recall that the SGD update with fixed learning rate η has a form like this:

wwwt+1 ← wwwt − η∇gzzzt(wwwt) (11)

where gzzz(wwwt) is the stochastic estimation of the objective function based on zzz which is randomly
drawn from S. To state our convergence rate analysis results, we need several assumptions following
(Nemirovski et al. 2009). We assume g is strongly convex with modulus c, that is, ∀www,www′ ∈ W ,

g(www′) ≥ g(www) + (www′ −www)T∇g(www) + c

2
||www′ −www||2 (12)

When g is strongly convex, there is a global optimum/minimizer www∗. We also assume Lipschitz
continuous differentiability of g with the constant q, that is, ∀www,www′ ∈ W ,

||∇g(www′)−∇g(www)|| ≤ q||www′ −www|| (13)

It is also reasonable to assume that the norm of ∇gzzz(www) has almost surely positive correlation with
the structure complexity of zzz,4 which can be quantified by a bound κ ∈ R+:

||∇gzzz(www)||2 ≤ κ|zzz| almost surely for ∀www ∈ W (14)
4Many structured prediction systems (e.g., CRFs) satisfy this assumption that the gradient based on a larger

sample (i.e., n is large) is expected to have a larger norm.
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where |zzz| denotes the structure complexity of zzz. Moreover, it is reasonable to assume

ηc < 1 (15)

because even the ordinary gradient descent methods will diverge if ηc > 1. Then, we show that
structure regularization can quadratically accelerate the SGD rates of convergence:

Proposition 5 (Convergence rates vs. structure regularization) With the aforementioned as-
sumptions, let the SGD training have a learning rate defined as η = cϵβα2

qκ2n2 , where ϵ > 0 is a
convergence tolerance value and β ∈ (0, 1]. Let t be a integer satisfying

t ≥ qκ2n2 log (qa0/ϵ)

ϵβc2α2
(16)

where n and α ∈ [1, n] is like before, and a0 is the initial distance which depends on the initialization
of the weights www0 and the minimizer www∗, i.e., a0 = ||www0 − www∗||2. Then, after t updates of www it
converges to E[g(wwwt)− g(www∗)] ≤ ϵ.

The proof is given in the full version of this work [14]. As we can see, using structure regularization
with the strength α can quadratically accelerate the convergence rate with a factor of α2.

3 Experiments

Diversified Tasks. The natural language processing tasks include (1) part-of-speech tagging, (2)
biomedical named entity recognition, and (3) Chinese word segmentation. The signal processing
task is (4) sensor-based human activity recognition. The tasks (1) to (3) use boolean features and
the task (4) adopts real-valued features. From tasks (1) to (4), the averaged structure complexity
(number of observations) n is very different, with n = 23.9, 26.5, 46.6, 67.9, respectively. The
dimension of tags |Y| is also diversified among tasks, with |Y| ranging from 5 to 45.

Part-of-Speech Tagging (POS-Tagging). Part-of-Speech (POS) tagging is an important and highly
competitive task. We use the standard benchmark dataset in prior work [3], with 38,219 training
samples and 5,462 test samples. Following prior work [19], we use features based on words and
lexical patterns, with 393,741 raw features5. The evaluation metric is per-word accuracy.

Biomedical Named Entity Recognition (Bio-NER). This task is from the BioNLP-2004 shared
task [19]. There are 17,484 training samples and 3,856 test samples. Following prior work [19],
we use word pattern features and POS features, with 403,192 raw features in total. The evaluation
metric is balanced F-score.

Word Segmentation (Word-Seg). We use the MSR data provided by SIGHAN-2004 contest [4].
There are 86,918 training samples and 3,985 test samples. The features are similar to [16], with
1,985,720 raw features in total. The evaluation metric is balanced F-score.

Sensor-based Human Activity Recognition (Act-Recog). This is a task based on real-valued sen-
sor signals, with the data extracted from the Bao04 activity recognition dataset [15]. The features
are similar to [15], with 1,228 raw features in total. There are 16,000 training samples and 4,000
test samples. The evaluation metric is accuracy.

We choose the CRFs [6] and structured perceptrons (Perc) [3], which are arguably the most popular
probabilistic and non-probabilistic structured prediction models, respectively. The CRFs are trained
using the SGD algorithm,6 and the baseline method is the traditional weight regularization scheme
(WeightReg), which adopts the most representative L2 weight regularization, i.e., a Gaussian pri-
or.7 For the structured perceptrons, the baseline WeightAvg is the popular implicit regularization
technique based on parameter averaging, i.e., averaged perceptron [3].

5Raw features are those observation features based only on xxx, i.e., no combination with tag information.
6In theoretical analysis, following prior work we adopt the SGD with fixed learning rate, as described in

Section 2.3. However, since the SGD with decaying learning rate is more commonly used in practice, in
experiments we use the SGD with decaying learning rate.

7We also tested on sparsity emphasized regularization methods, including L1 regularization and Group
Lasso regularization [8]. However, we find that in most cases those sparsity emphasized regularization methods
have lower accuracy than the L2 regularization.
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Figure 2: On the four tasks, comparing the structure regularization method (StructReg) with existing
regularization methods in terms of accuracy/F-score. Row-1 shows the results on CRFs and Row-2
shows the results on structured perceptrons.

Table 1: Comparing our results with the benchmark systems on corresponding tasks.
POS-Tagging (Acc%) Bio-NER (F1%) Word-Seg (F1%)

Benchmark system 97.33 (see [13]) 72.28 (see [19]) 97.19 (see [4])
Our results 97.36 72.43 97.50

The rich edge features [16] are employed for all methods. All methods are based on the 1st-order
Markov dependency. For WeightReg, the L2 regularization strengths (i.e., λ/2 in Eq.(8)) are tuned
among values 0.1, 0.5, 1, 2, 5, and are determined on the development data (POS-Tagging) or simply
via 4-fold cross validation on the training set (Bio-NER, Word-Seg, and Act-Recog). With this
automatic tuning for WeightReg, we set 2, 5, 1 and 5 for POS-Tagging, Bio-NER, Word-Seg, and
Act-Recog tasks, respectively.

3.1 Experimental Results

The experimental results in terms of accuracy/F-score are shown in Figure 2. For the CRF model,
the training is convergent, and the results on the convergence state (decided by relative objective
change with the threshold value of 0.0001) are shown. For the structured perceptron model, the
training is typically not convergent, and the results on the 10’th iteration are shown. For stability of
the curves, the results of the structured perceptrons are averaged over 10 repeated runs.

Since different samples have different size n in practice, we set α being a function of n, so that the
generated mini-samples are with fixed size n′ with n′ = n/α. Actually, n′ is a probabilistic distri-
bution because we adopt randomized decomposition. For example, if n′ = 5.5, it means the mini-
samples are a mixture of the ones with the size 5 and the ones with the size 6, and the mean of the
size distribution is 5.5. In the figure, the curves are based on n′ = 1.5, 2.5, 3.5, 5.5, 10.5, 15.5, 20.5.

As we can see, the results are quite consistent. It demonstrates that structure regularization leads to
higher accuracies/F-scores compared with the existing baselines. We also conduct significance tests
based on t-test. Since the t-test for F-score based tasks (Bio-NER and Word-Seg) may be unreli-
able8, we only perform t-test for the accuracy-based tasks, i.e., POS-Tagging and Act-Recog. For
POS-Tagging, the significance test suggests that the superiority of StructReg over WeightReg is very
statistically significant, with p < 0.01. For Act-Recog, the significance tests suggest that both the
StructReg vs. WeightReg difference and the StructReg vs. WeightAvg difference are extremely statis-

8Indeed we can convert F-scores to accuracy scores for t-test, but in many cases this conversion is unreliable.
For example, very different F-scores may correspond to similar accuracy scores.
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Figure 3: On the four tasks, comparing the structure regularization method (StructReg) with existing
regularization methods in terms of wall-clock training time.

tically significant, with p < 0.0001 in both cases. The experimental results support our theoretical
analysis that structure regularization can further reduce the generalization risk over existing weight
regularization techniques.

Our method outperforms the benchmark systems on the three important natural language processing
tasks. The POS-Tagging task is a highly competitive task, with many methods proposed, and the best
report (without using extra resources) until now is achieved by using a bidirectional learning model
in [13],9 with the accuracy 97.33%. Our simple method achieves better accuracy compared with all
of those state-of-the-art systems. Furthermore, our method achieves as good scores as the benchmark
systems on the Bio-NER and Word-Seg tasks. On the Bio-NER task, [19] achieves 72.28% based
on lookahead learning and [21] achieves 72.65% based on reranking. On the Word-Seg task, [4]
achieves 97.19% based on maximum entropy classification and our recent work [16] achieves 97.5%
based on feature-frequency-adaptive online learning. The comparisons are summarized in Table 1.

Figure 3 shows experimental comparisons in terms of wall-clock training time. As we can see, the
proposed method can substantially improve the training speed. The speedup is not only from the
faster convergence rates, but also from the faster processing time on the structures, because it is
more efficient to process the decomposed samples with simple structures.

4 Conclusions

We proposed a structure regularization framework, which decomposes training samples into mini-
samples with simpler structures, deriving a trained model with regularized structural complexity.
Our theoretical analysis showed that this method can effectively reduce the generalization risk, and
can also accelerate the convergence speed in training. The proposed method does not change the
convexity of the objective function, and can be used together with any existing weight regularization
methods. Note that, the proposed method and the theoretical results can fit general structures includ-
ing linear chains, trees, and graphs. Experimental results demonstrated that our method achieved
better results than state-of-the-art systems on several highly-competitive tasks, and at the same time
with substantially faster training speed.
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9See a collection of the systems at http://aclweb.org/aclwiki/index.php?title=POS_
Tagging_(State_of_the_art)

8



References
[1] A. Argyriou, C. A. Micchelli, M. Pontil, and Y. Ying. A spectral regularization framework for multi-task

structure learning. In Proceedings of NIPS’07. MIT Press, 2007.

[2] O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning Research,
2:499–526, 2002.

[3] M. Collins. Discriminative training methods for hidden markov models: Theory and experiments with
perceptron algorithms. In Proceedings of EMNLP’02, pages 1–8, 2002.

[4] J. Gao, G. Andrew, M. Johnson, and K. Toutanova. A comparative study of parameter estimation methods
for statistical natural language processing. In Proceedings of ACL’07, pages 824–831, 2007.

[5] J. Graça, K. Ganchev, B. Taskar, and F. Pereira. Posterior vs parameter sparsity in latent variable models.
In Proceedings of NIPS’09, pages 664–672, 2009.

[6] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In ICML’01, pages 282–289, 2001.

[7] B. London, B. Huang, B. Taskar, and L. Getoor. Pac-bayes generalization bounds for randomized struc-
tured prediction. In NIPS Workshop on Perturbation, Optimization and Statistics, 2007.

[8] A. F. T. Martins, N. A. Smith, M. A. T. Figueiredo, and P. M. Q. Aguiar. Structured sparsity in structured
prediction. In Proceedings of EMNLP’11, pages 1500–1511, 2011.

[9] F. Niu, B. Recht, C. Re, and S. J. Wright. Hogwild: A lock-free approach to parallelizing stochastic
gradient descent. In NIPS’11, pages 693–701, 2011.

[10] A. Quattoni, X. Carreras, M. Collins, and T. Darrell. An efficient projection for l1,infinity regularization.
In Proceedings of ICML’09, page 108, 2009.

[11] M. W. Schmidt and K. P. Murphy. Convex structure learning in log-linear models: Beyond pairwise
potentials. In Proceedings of AISTATS’10, volume 9 of JMLR Proceedings, pages 709–716, 2010.

[12] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability and stability in the general
learning setting. In Proceedings of COLT’09, 2009.

[13] L. Shen, G. Satta, and A. K. Joshi. Guided learning for bidirectional sequence classification. In Proceed-
ings of ACL’07, 2007.

[14] X. Sun. Structure regularization for structured prediction: Theories and experiments. In Technical report,
arXiv, 2014.

[15] X. Sun, H. Kashima, and N. Ueda. Large-scale personalized human activity recognition using online
multitask learning. IEEE Trans. Knowl. Data Eng., 25(11):2551–2563, 2013.

[16] X. Sun, W. Li, H. Wang, and Q. Lu. Feature-frequency-adaptive on-line training for fast and accurate
natural language processing. Computational Linguistics, 40(3):563–586, 2014.

[17] C. A. Sutton and A. McCallum. Piecewise pseudolikelihood for efficient training of conditional random
fields. In ICML’07, pages 863–870. ACM, 2007.

[18] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In NIPS’03, 2003.

[19] Y. Tsuruoka, Y. Miyao, and J. Kazama. Learning with lookahead: Can history-based models rival globally
optimized models? In Conference on Computational Natural Language Learning, 2011.

[20] H. Xue, S. Chen, and Q. Yang. Structural regularized support vector machine: A framework for structural
large margin classifier. IEEE Transactions on Neural Networks, 22(4):573–587, 2011.

[21] K. Yoshida and J. Tsujii. Reranking for biomedical named-entity recognition. In ACL Workshop on
BioNLP, page 209ĺC216, 2007.
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