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Abstract

Owing to several applications in large scale learning and vision problems, fast
submodular function minimization (SFM) has become a critical problem. Theoreti-
cally, unconstrained SFM can be performed in polynomial time [10, 11]. However,
these algorithms are typically not practical. In 1976, Wolfe [21] proposed an
algorithm to find the minimum Euclidean norm point in a polytope, and in 1980,
Fujishige [3] showed how Wolfe’s algorithm can be used for SFM. For general
submodular functions, this Fujishige-Wolfe minimum norm algorithm seems to
have the best empirical performance.

Despite its good practical performance, very little is known about Wolfe’s minimum
norm algorithm theoretically. To our knowledge, the only result is an exponential
time analysis due to Wolfe [21] himself. In this paper we give a maiden convergence
analysis of Wolfe’s algorithm. We prove that in t iterations, Wolfe’s algorithm
returns anO(1/t)-approximate solution to the min-norm point on any polytope. We
also prove a robust version of Fujishige’s theorem which shows that an O(1/n2)-
approximate solution to the min-norm point on the base polytope implies exact
submodular minimization. As a corollary, we get the first pseudo-polynomial time
guarantee for the Fujishige-Wolfe minimum norm algorithm for unconstrained
submodular function minimization.

1 Introduction
An integer-valued1 function f : 2X → Z defined over subsets of some finite ground set X of n
elements is submodular if it satisfies the following diminishing marginal returns property: for every
S ⊆ T ⊆ X and i ∈ X \ T , f(S ∪ {i}) − f(S) ≥ f(T ∪ {i}) − f(T ). Submodularity arises
naturally in several applications such as image segmentation [17], sensor placement [18], etc. where
minimizing an arbitrary submodular function is an important primitive.

In submodular function minimization (SFM), we assume access to an evaluation oracle for f which
for any subset S ⊆ X returns the value f(S). We denote the time taken by the oracle to answer a
single query as EO. The objective is to find a set T ⊆ X satisfying f(T ) ≤ f(S) for every S ⊆ X .
In 1981, Grotschel, Lovasz and Schrijver [8] demonstrated the first polynomial time algorithm for
SFM using the ellipsoid algorithm. This algorithm, however, is practically infeasible due to the
running time and the numerical issues in implementing the ellipsoid algorithm. In 2001, Schrijver [19]
and Iwata et al. [9] independently designed combinatorial polynomial time algorithms for SFM.
Currently, the best algorithm is by Iwata and Orlin [11] with a running time ofO(n5EO+n6).

However, from a practical stand point, none of the provably polynomial time algorithms exhibit good
performance on instances of SFM encountered in practice (see §4). This, along with the widespread
applicability of SFM in machine learning, has inspired a large body of work on practically fast
procedures (see [1] for a survey). But most of these procedures focus either on special submodular
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functions such as decomposable functions [16, 20] or on constrained SFM problems [13, 12, 15,
14].

Fujishige-Wolfe’s Algorithm for SFM: For any submodular function f , the base polytope Bf of f
is defined as follows:

Bf = {x ∈ Rn : x(A) ≤ f(A), ∀A ⊂ X, and x(X) = f(X)}, (1)

where x(A) :=
∑
i∈A xi and xi is the i-th coordinate of x ∈ Rn. Fujishige [3] showed that if one can

obtain the minimum norm point on the base polytope, then one can solve SFM. Finding the minimum
norm point, however, is a non-trivial problem; at present, to our knowledge, the only polynomial
time algorithm known is via the ellipsoid method. Wolfe [21] described an iterative procedure to find
minimum norm points in polytopes as long as linear functions could be (efficiently) minimized over
them. Although the base polytope has exponentially many constraints, a simple greedy algorithm
can minimize any linear function over it. Therefore using Wolfe’s procedure on the base polytope
coupled with Fujishige’s theorem becomes a natural approach to SFM. This was suggested as early
as 1984 in Fujishige [4] and is now called the Fujishige-Wolfe algorithm for SFM.

This approach towards SFM was revitalized in 2006 when Fujishige and Isotani [6, 7] announced
encouraging computational results regarding the minimum norm point algorithm. In particular, this
algorithm significantly out-performed all known provably polynomial time algorithms. Theoretically,
however, little is known regarding the convergence of Wolfe’s procedure except for the finite, but
exponential, running time Wolfe himself proved. Nor is the situation any better for its application
on the base polytope. Given the practical success, we believe this is an important, and intriguing,
theoretical challenge.

In this work, we make some progress towards analyzing the Fujishige-Wolfe method for SFM and, in
fact, Wolfe’s algorithm in general. In particular, we prove the following two results:

• We prove (in Theorem 4) that for any polytope B, Wolfe’s algorithm converges to an ε-
approximate solution, in O(1/ε) steps. More precisely, in O(nQ2/ε) iterations, Wolfe’s
algorithm returns a point ‖x‖22 ≤ ‖x∗‖22 + ε, where Q = maxp∈B ‖p‖2.

• We prove (in Theorem 5) a robust version of a theorem by Fujishige [3] relating min-norm
points on the base polytope to SFM. In particular, we prove that an approximate min-norm
point solution provides an approximate solution to SFM as well. More precisely, if x
satisfies ‖x‖22 ≤ zTx+ ε2 for all z ∈ Bf , then, f(Sx) ≤ minS f(S) + 2nε, where Sx can
be constructed efficiently using x.

Together, these two results gives us our main result which is a pseudopolynomial bound on the
running time of the Fujishige-Wolfe algorithm for submodular function minimization.
Theorem 1. (Main Result.) Fix a submodular function f : 2X → Z. The Fujishige-
Wolfe algorithm returns the minimizer of f in O((n5EO + n7)F 2) time where F :=
maxni=1 (|f({i})|, |f([n])− f([n] \ i)|).

Our analysis suggests that the Fujishige-Wolfe’s algorithm is dependent on F and has worse depen-
dence on n than the Iwata-Orlin [11] algorithm. To verify this, we conducted empirical study on
several standard SFM problems. However, for the considered benchmark functions, running time of
Fujishige-Wolfe’s algorithm seemed to be independent of F and exhibited better dependence on n
than the Iwata-Orlin algorithm. This is described in §4.

2 Preliminaries: Submodular Functions and Wolfe’s Algorithm
2.1 Submodular Functions and SFM
Given a ground set X on n elements, without loss of generality we think of it as the first n integers
[n] := {1, 2, . . . , n}. f be a submodular function. Since submodularity is translation invariant,
we assume f(∅) = 0. For a submodular function f , we write Bf ⊆ Rn for the associated base
polyhedron of f defined in (1). Given x ∈ Rn, one can find the minimum value of q>x over
q ∈ Bf in O(n log n + nEO) time using the following greedy algorithm: Renumber indices such
that x1 ≤ · · · ≤ xn. Set q∗i = f([i]) − f([i − 1]). Then, it can be proved that q∗ ∈ Bf and is the
minimizer of the x>q for q ∈ Bf .

The connection between the SFM problem and the base polytope was first established in the following
minimax theorem of Edmonds [2].
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Theorem 2 (Edmonds [2]). Given any submodular function f with f(∅) = 0, we have

min
S⊆[n]

f(S) = max
x∈Bf

( ∑
i:xi<0

xi

)

The following theorem of Fujishige [3] shows the connection between finding the minimum norm
point in the base polytope Bf of a submodular function f and the problem of SFM on input f . This
forms the basis of Wolfe’s algorithm. In §3.2, we prove a robust version of this theorem.
Theorem 3 (Fujishige’s Theorem [3]). Let f : 2[n] → Z be a submodular function and let Bf be the
associated base polyhedron. Let x∗ be the optimal solution to minx∈Bf

||x||. Define S = {i | x∗i <
0}. Then, f(S) ≤ f(T ) for every T ⊆ [n].

2.2 Wolfe’s Algorithm for Minimum Norm Point of a polytope.

We now present Wolfe’s algorithm for computing the minimum-norm point in an arbitrary polytope
B ⊆ Rn. We assume a linear optimization oracle (LO) which takes input a vector x ∈ Rn and
outputs a vector q ∈ arg minp∈B x

>p.

We start by recalling some definitions. The affine hull of a finite set S ⊆ Rn is aff(S) = {y | y =∑
z∈S αz · z,

∑
z∈S αz = 1}. The affine minimizer of S is defined as y = arg minz∈aff(S) ||z||2,

and y satisfies the following affine minimizer property: for any v ∈ aff(S), v>y = ||y||2. The
procedure AffineMinimizer(S) returns (y, α) where y is the affine minimizer and α = (αs)s∈S is
the set of coefficients expressing y as an affine combination of points in S. This procedure can be
naively implemented in O(|S|3 + n|S|2) as follows. Let B be the n× |S| matrix where each column
in a point in S. Then α = (B>B)−11/1>(B>B)−11 and y = Bα.

Algorithm 1 Wolfe’s Algorithm
1. Let q be an arbitrary vertex of B. Initialize x← q. We always maintain x =

∑
i∈S λiqi as a

convex combination of a subset S of vertices of B. Initialize S = {q} and λ1 = 1.
2. WHILE(true): (MAJOR CYCLE)

(a) q := LO(x). // Linear Optimization: q ∈ argminp∈B x
>p.

(b) IF ||x||2 ≤ x>q + ε2 THEN break. // Termination Condition. Output x.

(c) S := S ∪ {q}.
(d) WHILE(true): (MINOR CYCLE)

i. (y, α) = AffineMinimizer(S). //y = argminz∈aff(S) ||z||.
ii. IF αi ≥ 0 for all i THEN break. //If y ∈ conv(S), then end minor loop.

iii. ELSE
// If y /∈ conv(S), then update x to the intersection of the boundary of conv(S) and the segment joining y and

previous x. Delete points from S which are not required to describe the new x as a convex combination.

θ := mini:αi<0 λi/(λi − αi) // Recall, x =
∑

i λiqi.

Update x ← θy + (1− θ)x. // By definition of θ, the new x lies in conv(S).

Update λi ← θαi + (1− θ)λi. //This sets the coefficients of the new x

S = {i : λi > 0}. // Delete points which have λi = 0. This deletes at least one point.

(e) Update x← y. // After the minor loop terminates, x is updated to be the affine minimizer of the current set S.

3. RETURN x.

When ε = 0, the algorithm on termination (if it terminates) returns the minimum norm point in B
since ||x||2 ≤ x>x∗ ≤ ||x|| · ||x∗||. For completeness, we sketch Wolfe’s argument in [21] of finite
termination. Note that |S| ≤ n always; otherwise the affine minimizer is 0 which either terminates
the program or starts a minor cycle which decrements |S|. Thus, the number of minor cycles in a
major cycle ≤ n, and it suffices to bound the number of major cycles. Each major cycle is associated
with a set S whose affine minimizer, which is the current x, lies in the convex hull of S. Wolfe calls
such sets corrals. Next, we show that ||x|| strictly decreases across iterations (major or minor cycle)
of the algorithm, which proves that no corral repeats, thus bounding the number of major cycles by
the number of corrals. The latter is at most

(
N
n

)
, where N is the number of vertices of B.

Consider iteration j which starts with xj and ends with xj+1. Let Sj be the set S at the beginning
of iteration j. If the iteration is a major cycle, then xj+1 is the affine minimizer of Sj ∪ {qj}
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where qj = LO(xj). Since x>j qj < ||xj ||2 (the algorithm doesn’t terminate in iteration j) and
x>j+1qj = ||xj+1||2 (affine minimizer property), we get xj 6= xj+1, and so ||xj+1|| < ||xj || (since
the affine minimizer is unique). If the iteration is a minor cycle, then xj+1 = θxj + (1− θ)yj , where
yj is the affine minimizer of Sj and θ < 1. Since ||yj || < ||xj || (yj 6= xj since yj /∈ conv(Sj)), we
get ||xj+1|| < ||xj ||.

3 Analysis

Our refined analysis of Wolfe’s algorithm is encapsulated in the following theorem.
Theorem 4. Let B be an arbitrary polytope such that the maximum Euclidean norm of any vertex of
B is at most Q. After O(nQ2/ε2) iterations, Wolfe’s algorithm returns a point x ∈ B which satisfies
||x||2 ≤ x>q + ε2, for all points q ∈ B. In particular, this implies ||x||2 ≤ ||x∗||2 + 2ε2.

The above theorem shows that Wolfe’s algorithm converges to the minimum norm point at an 1/t-rate.
We stress that the above is for any polytope. To apply this to SFM, we prove the following robust
version of Fujishige’s theorem connecting the minimum norm point in the base polytope and the set
minimizing the submodular function value.
Theorem 5. Fix a submodular function f with base polytope Bf . Let x ∈ Bf be such that ||x||2 ≤
x>q + ε2 for all q ∈ Bf . Renumber indices such that x1 ≤ · · · ≤ xn. Let S = {1, 2, . . . , k},where
k is smallest index satisfying (C1) xk+1 ≥ 0 and (C2) xk+1− xk ≥ ε/n. Then, f(S) ≤ f(T ) + 2nε
for any subset T ⊆ S. In particular, if ε = 1

4n and f is integer-valued, then S is a minimizer.

Theorem 4 and Theorem 5 implies our main theorem.
Theorem 1. (Main Result.) Fix a submodular function f : 2X → Z. The Fujishige-
Wolfe algorithm returns the minimizer of f in O((n5EO + n7)F 2) time where F :=
maxni=1 (|f({i})|, |f([n])− f([n] \ i)|).

Proof. The vertices of Bf are well understood: for every permutation σ of [n], we have a vertex
with xσ(i) = f({σ(1), . . . , σ(i)}) − f({σ(1), . . . , σ(i − 1)}). By submodularity of f , we get
for all i, |xi| ≤ F . Therefore, for any point x ∈ Bf , ||x||2 ≤ nF 2. Choose ε = 1/4n. From
Theorem 4 we know that if we run O(n4F 2) iterations of Wolfe, we will get a point x ∈ Bf such
that ||x||2 ≤ x>q + ε2 for all q ∈ Bf . Theorem 5 implies this solves the SFM problem. The running
time for each iteration is dominated by the time for the subroutine to compute the affine minimizer of
S which is at most O(n3), and the linear optimization oracle. For Bf , LO(x) can be implemented in
O(n log n+ nEO) time. This proves the theorem.

We prove Theorem 4 and Theorem 5 in §3.1 and §3.2, respectively.

3.1 Analysis of Wolfe’s Min-norm Point Algorithm

The stumbling block in the analysis of Wolfe’s algorithm is the interspersing of major and minor
cycles which oscillates the size of S preventing it from being a good measure of progress. Instead, in
our analysis, we use the norm of x as the measure of progress. Already we have seen that ||x|| strictly
decreases. It would be nice to quantify how much the decrease is, say, across one major cycle. This,
at present, is out of our reach even for major cycles which contain two or more minor cycles in them.
However, we can prove significant drop in norm in major cycles which have at most one minor cycle
in them. We call such major cycles good. The next easy, but very useful, observation is the following:
one cannot have too many bad major cycles without having too many good major cycles.
Lemma 1. In any consecutive 3n+ 1 iterations, there exists at least one good major cycle.

Proof. Consider a run of r iterations where all major cycles are bad, and therefore contain ≥ 2
minor cycles. Say there are k major cycles and r − k minor cycles, and so r − k ≥ 2k implying
r ≥ 3k. Let SI be the set S at the start of these iterations and SF be the set at the end. We have
|SF | ≤ |SI |+ k − (r − k) ≤ |SI |+ 2k − r ≤ n− r

3 . Therefore, r ≤ 3n, since |SF | ≥ 0.

Before proceeding, we introduce some notation.
Definition 1. Given a point x ∈ B, let us denote err(x) := ||x||2 − ||x∗||2. Given a point x and
q, let ∆(x, q) := ||x||2 − x>q and let ∆(x) := maxq∈B∆(x, q) = ||x||2 −minq∈B x

>q. Observe
that ∆(x) ≥ err(x)/2 since ∆(x) ≥ ||x||2 − x>x∗ ≥ (||x||2 − ||x∗||2)/2.
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We now use t to index all good major cycles. Let xt be the point x at the beginning of the t-th
good major cycle. The next theorem shows that the norm significantly drops across good major
cycles.
Theorem 6. For t iterating over good major cycles, err(xt)− err(xt+1) ≥ ∆2(xt)/8Q

2.

We now complete the proof of Theorem 4 using Theorem 6.

Proof of Theorem 4. Using Theorem 6, we get that err(xt)− err(xt+1) ≥ err(xt)
2/32Q2 since

∆(x) ≥ err(x)/2 for all x. We claim that in t∗ ≤ 64Q2/ε2 good major cycles, we reach xt with
err(xt∗) ≤ ε2. To see this rewrite as follows:

err(xt+1) ≤ err(xt)

(
1− err(xt)

32Q2

)
, for all t.

Now let e0 := err(x0). Define t0, t1, . . . such that for all k ≥ 1 we have err(xt) > e0/2
k for

t ∈ [tk−1, tk). That is, tk is the first time t at which err(xt) ≤ e0/2k. Note that for t ∈ [tk−1, tk),
we have err(xt+1) ≤ err(xt)

(
1− e0

32Q22k

)
. This implies in 32Q22k/e0 time units after tk−1, we

will have err(xt) ≤ err(xtk−1
)/2; we have used the fact that (1 − δ)1/δ < 1/2 when δ < 1/32.

That is, tk ≤ tk−1 + 32Q22k/e0. We are interested in t∗ = tK where 2K = e0/ε
2. We get

t∗ ≤ 32Q2

e0

(
1 + 2 + · · ·+ 2K

)
≤ 64Q22K/e0 = 64Q2/ε2.

Next, we claim that in t∗∗ < t∗ + t′ good major cycles, where t′ = 8Q2/ε2, we obtain an xt∗∗
with ∆(xt∗∗) ≤ ε2. This is because, if not, then, using Theorem 6, in each of the good major
cycles t∗ + 1, t∗ + 2, . . . t∗ + t′, err(x) falls additively by > ε4/8Q2 and thus err(xt∗+t′) <
err(xt∗) − ε2 ≤ 0, which is a contradiction. Therefore, in O(Q2/ε2) good major cycles, the
algorithm obtains an x = xt∗∗ with ∆(x) ≤ ε2, proving Theorem 4.

The rest of this subsection is dedicated to proving Theorem 6.

Proof of Theorem 6: We start off with a simple geometric lemma.
Lemma 2. Let S be a subset of Rn and suppose y is the minimum norm point of aff(S). Let x and
q be arbitrary points in aff(S). Then,

||x||2 − ||y||2 ≥ ∆(x, q)2

4Q2
(2)

where Q is an upper bound on ||x||, ||q||.

Proof. Since y is the minimum norm point in aff(S), we have x>y = q>y = ||y||2. In particular,
||x− y||2 = ||x||2 − ||y||2. Therefore,

∆(x, q) = ‖x‖2 − xT q = ‖x‖2 − x>y + y>q − xT q = (y − x)T (q − x) ≤ ‖y − x‖ · ‖q − x‖
≤ ‖y − x‖(‖x‖+ ‖q‖) ≤ 2Q‖y − x‖,

where the first inequality is Cauchy-Schwartz and the second is triangle inequality. Lemma now
follows by taking square of the above expression and by observing that ‖y−x‖2 = ‖x‖2−‖y‖2.

The above lemma takes case of major cycles with no minor cycles in them.
Lemma 3 (Progress in Major Cycle with no Minor Cycles). Let t be the index of a good major cycle
with no minor cycles. Then err(xt)− err(xt+1) ≥ ∆2(xt)/4Q

2.

Proof. Let St be the set S at start of the tth good major cycle, and let qt be the point minimizing x>t q.
Let S = St ∪ qt and let y be the minimum norm point in aff(S). Since there are no minor cycles,
y ∈ conv(S). Abuse notation and let xt+1 = y be the iterate at the call of the next major cycle (and
not the next good major cycle). Since the norm monotonically decreases, it suffices to prove the
lemma statement for this xt+1. Now apply Lemma 2 with x = xt and q = qt and S = St ∪ qt. We
have that err(xt)− err(xt+1) = ||xt||2 − ||y||2 ≥ ∆(xt, qt)

2/4Q2 = ∆(xt)
2/4Q2.

Now we have to argue about major cycles with exactly one minor cycle. The next observation is a
useful structural result.
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Lemma 4 (New Vertex Survives a Minor Cycle.). Consider any (not necessarily good) major
cycle. Let xt, St, qt be the parameters at the beginning of this cycle, and let xt+1, St+1, qt+1 be the
parameters at the beginning of the next major cycle. Then, qt ∈ St+1.

Proof. Clearly St+1 ⊆ St ∪ qt since qt is added and then maybe minor cycles remove some points
from S. Suppose qt /∈ St+1. Well, then St+1 ⊆ St. But xt+1 is the affine minimizer of St+1 and xt
is the affine minimizer of St. Since St is the larger set, we get ||xt|| ≤ ||xt+1||. This contradicts the
strict decrease in the norm.

Lemma 5 (Progress in an iteration with exactly one minor cyvle). Suppose the tth good major cycle
has exactly one minor cycle. Then, err(xt)− err(xt+1) ≥ ∆(xt)

2/8Q2.

Proof. Let xt, St, qt be the parameters at the beginning of the tth good major cycle. Let y be the
affine minimizer of St∪qt. Since there is one minor cycle, y /∈ conv(St∪qt). Let z = θxt+(1−θ)y
be the intermediate x, that is, point in the line segment [xt, y] which lies in conv(St ∪ qt). Let S′ be
the set after the single minor cycle is run. Since there is just one minor cycle, we get xt+1 (abusing
notation once again since the next major cycle maynot be good) is the affine minimizer of S′.

Let A , ||xt||2 − ||y||2. From Lemma 2, and using qt is the minimizer of x>t q over all q, we have:

A = ||xt||2 − ||y||2 ≥ ∆2(xt)/4Q
2 (3)

Recall, z = θxt + (1− θ)y for some θ ∈ [0, 1]. Since y is the min-norm point of aff(St ∪ qt), and
xt ∈ St, we get ||z||2 = θ2||xt||2 + (1− θ2)||y||2. this yields:

||xt||2 − ||z||2 = (1− θ2)
(
||xt||2 − ||y||2

)
= (1− θ2)A (4)

Further, recall that S′ is the set after the only minor cycle in the tth iteration is run and thus, from
Lemma 4, qt ∈ S′. z ∈ conv(S′) by definition. And since there is only one minor cycle, xt+1 is the
affine minimizer of S′. We can apply Lemma 2 with z, qt and xt+1, to get

||z||2 − ||xt+1||2 ≥
∆2(z, qt)

4Q2
(5)

Now we lower bound ∆2(z, qt). By definition of z, we have:

z>qt = θx>t qt + (1− θ)y>qt = θx>t qt + (1− θ)||y||2

where the last equality follows since y>qt = ||y||2 (since qt ∈ St ∪ qt and y is affine minimizer of
St ∪ qt). This gives

∆(z, qt) = ||z||2 − z>qt
=

(
θ2||xt||2 + (1− θ2)||y||2

)
−
(
θx>t qt + (1− θ)||y||2

)
= θ(||xt||2 − x>t qt)− θ(1− θ)

(
||xt||2 − ||y||2

)
= θ (∆(xt)− (1− θ)A) (6)

From (4),(5), and (6), we get

errt − errt+1 ≥ (1− θ2)A+
θ2 (∆(xt)− (1− θ)A)

2

4Q2
(7)

We need to show that the RHS is at least ∆(xt)
2/8Q2. Intuitively, if θ is small (close to 0), the

first term implies this using (3), and if θ is large (close to 1), then the second term implies this. The
following paragraph formalizes this intuition for any θ.

Now, if (1− θ2)A > ∆(xt)
2/8Q2, we are done. Therefore, we assume (1− θ2)A ≤ ∆(xt)

2/8Q2.
In this case, using the fact that ∆(xt) ≤ ||xt||2 + ||xt||||qt|| ≤ 2Q2, we get that

(1− θ)A ≤ (1− θ2)A ≤ ∆(xt) ·
∆(xt)

8Q2
≤ ∆(xt)/4

Substituting in (7), and using (3), we get

errt − errt+1 ≥ (1− θ2)∆(xt)
2

4Q2
+

9θ2∆(xt)
2

64Q2
≥ ∆(xt)

2

8Q2
(8)

This completes the proof of the lemma.

Lemma 3 and Lemma 5 complete the proof of Theorem 6.
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3.2 A Robust version of Fujishige’s Theorem
In this section we prove Theorem 5 which we restate below.
Theorem 5. Fix a submodular function f with base polytope Bf . Let x ∈ Bf be such that ||x||2 ≤
x>q + ε2 for all q ∈ Bf . Renumber indices such that x1 ≤ · · · ≤ xn. Let S = {1, 2, . . . , k},where
k is smallest index satisfying (C1) xk+1 ≥ 0 and (C2) xk+1− xk ≥ ε/n. Then, f(S) ≤ f(T ) + 2nε
for any subset T ⊆ S. In particular, if ε = 1

4n and f is integer-valued, then S is a minimizer.

Before proving the theorem, note that setting ε = 0 gives Fujishige’s theorem Theorem 3.

Proof. We claim that the following inequality holds. Below, [i] := {1, . . . , i}.
n−1∑
i=1

(xi+1 − xi) · (f([i])− x([i])) ≤ ε2 (9)

We prove this shortly. Let S and k be as defined in the theorem statement. Note that
∑
i∈S:xi≥0 xi ≤

nε, since (C2) doesn’t hold for any index i < k with xi ≥ 0. Furthermore, since xk+1 − xk ≥ ε/n,
we get using (9), f(S) − x(S) ≤ nε. Therefore, f(S) ≤

∑
i∈S:xi<0 xi + 2nε which implies the

theorem due to Theorem 2.

Now we prove (9). Let z ∈ Bf be the point which minimizes z>x. By the Greedy algorithm
described in Section 2.1, we know that zi = f([i])− f([i− 1]). Next, we write x in a different basis
as follows: x =

∑n−1
i=1 (xi − xi+1)1[i] + xn1[n]. Here 1[i] is used as the shorthand for the vector

which has 1’s in the first i coordinates and 0s everywhere else. Taking dot product with (x− z), we
get

||x||2 − x>z = (x− z)>x =

n−1∑
i=1

(xi − xi+1)
(
x>1[i] − z>1[i]

)
+ xn

(
x>1[n] − z>1[n]

)
(10)

Since zi = f([i])− f([i− 1]), we get x>1[i] − z>1[i] is x([i])− f([i]). Therefore the RHS of (10)
is the LHS of (9). The LHS of (10), by the assumption of the theorem, is at most ε2 implying (9).

4 Discussion and Conclusions

(a) (b) (c)

Figure 1: Running time comparision of Iwata-Orlin’s (IO) method [11] vs Wolfe’s method. (a):
s-t mincut function, (b) Iwata’s 3 groups function [16]. (c): Total number of iterations required by
Wolfe’s method for solving s-t mincut with increasing F

We have shown that the Fujishige-Wolfe algorithm solves SFM in O((n5EO + n7)F 2) time, where
F is the maximum change in the value of the function on addition or deletion of an element. Although
this is the first pseudopolynomial time analysis of the algorithm, we believe there is room for
improvement and hope our work triggers more interest.

Note that our anlaysis of the Fujishige-Wolfe algorithm is weaker than the best known method in
terms of time complexity (IO method by [11]) on two counts: a) dependence on n, b) dependence
on F . In contrast, we found this algorithm significantly outperforming the IO algorithm empirically
– we show two plots here. In Figure 1 (a), we run both on Erdos-Renyi graphs with p = 0.8 and
randomly chosen s, t nodes. In Figure 1 (b), we run both on the Iwata group functions [16] with 3
groups. Perhaps more interestingly, in Figure 1 (c), we ran the Fujishige-Wolfe algorithm on the
simple path graph where s, t were the end points, and changed the capacities on the edges of the
graph which changed the parameter F . As can be seen, the number of iterations of the algorithm
remains constant even for exponentially increasing F .
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