
Fast Kernel Learning for Multidimensional Pattern
Extrapolation

Andrew Gordon Wilson∗
CMU

Elad Gilboa∗
WUSTL

Arye Nehorai
WUSTL

John P. Cunningham
Columbia

Abstract

The ability to automatically discover patterns and perform extrapolation is an es-
sential quality of intelligent systems. Kernel methods, such as Gaussian processes,
have great potential for pattern extrapolation, since the kernel flexibly and inter-
pretably controls the generalisation properties of these methods. However, auto-
matically extrapolating large scale multidimensional patterns is in general diffi-
cult, and developing Gaussian process models for this purpose involves several
challenges. A vast majority of kernels, and kernel learning methods, currently
only succeed in smoothing and interpolation. This difficulty is compounded by
the fact that Gaussian processes are typically only tractable for small datasets, and
scaling an expressive kernel learning approach poses different challenges than
scaling a standard Gaussian process model. One faces additional computational
constraints, and the need to retain significant model structure for expressing the
rich information available in a large dataset. In this paper, we propose a Gaussian
process approach for large scale multidimensional pattern extrapolation. We re-
cover sophisticated out of class kernels, perform texture extrapolation, inpainting,
and video extrapolation, and long range forecasting of land surface temperatures,
all on large multidimensional datasets, including a problem with 383,400 training
points. The proposed method significantly outperforms alternative scalable and
flexible Gaussian process methods, in speed and accuracy. Moreover, we show
that a distinct combination of expressive kernels, a fully non-parametric represen-
tation, and scalable inference which exploits existing model structure, are critical
for large scale multidimensional pattern extrapolation.

1 Introduction

Our ability to effortlessly extrapolate patterns is a hallmark of intelligent systems: even with large
missing regions in our field of view, we can see patterns and textures, and we can visualise in our
mind how they generalise across space. Indeed machine learning methods aim to automatically
learn and generalise representations to new situations. Kernel methods, such as Gaussian processes
(GPs), are popular machine learning approaches for non-linear regression and classification [1, 2, 3].
Flexibility is achieved through a kernel function, which implicitly represents an inner product of
arbitrarily many basis functions. The kernel interpretably controls the smoothness and generalisation
properties of a GP. A well chosen kernel leads to impressive empirical performances [2].

However, it is extremely difficult to perform large scale multidimensional pattern extrapolation with
kernel methods. In this context, the ability to learn a representation of the data entirely depends
on learning a kernel, which is a priori unknown. Moreover, kernel learning methods [4] are not
typically intended for automatic pattern extrapolation; these methods often involve hand crafting
combinations of Gaussian kernels (for smoothing and interpolation), for specific applications such
as modelling low dimensional structure in high dimensional data. Without human intervention,
the vast majority of existing GP models are unable to perform pattern discovery and extrapolation.
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While recent approaches such as [5] enable extrapolation on small one dimensional datasets, it is
difficult to generalise these approaches for larger multidimensional situations. These difficulties
arise because Gaussian processes are computationally intractable on large scale data, and while
scalable approximate GP methods have been developed [6, 7, 8, 9, 10, 11, 12, 13], it is uncertain
how to best scale expressive kernel learning approaches. Furthermore, the need for flexible kernel
learning on large datasets is especially great, since such datasets often provide more information to
automatically learn an appropriate statistical representation.

In this paper, we introduce GPatt, a flexible, non-parametric, and computationally tractable approach
to kernel learning for multidimensional pattern extrapolation, with particular applicability to data
with grid structure, such as images, video, and spatial-temporal statistics. Specifically:

• We extend fast Kronecker-based GP inference (e.g., [14, 15]) to account for non-grid data. Our
experiments include data where more than 70% of the training data are not on a grid. Indeed most
applications where one would want to exploit Kronecker structure involve missing and non-grid
data – caused by, e.g., water, government boundaries, missing pixels and image artifacts. By
adapting expressive spectral mixture kernels to the setting of multidimensional inputs and Kro-
necker structure, we achieve exact inference and learning costs of O(PN P+1

P ) computations and
O(PN 2

P ) storage, for N datapoints and P input dimensions, compared to the standard O(N3)
computations and O(N2) storage associated with GPs.

• We show that i) spectral mixture kernels (adapted for Kronecker structure); ii) scalable infer-
ence based on Kronecker methods (adapted for incomplete grids); and, iii) truly non-parametric
representations, when used in combination (to form GPatt) distinctly enable large-scale multi-
dimensional pattern extrapolation with GPs. We demonstrate this through a comparison with
various expressive models and inference techniques: i) spectral mixture kernels with arguably the
most popular scalable GP inference method (FITC) [10]; ii) a flexible and efficient recent spectral
based kernel learning method (SSGP) [6]; and, iii) the most popular GP kernels with Kronecker
based inference.

• The information capacity of non-parametric methods grows with the size of the data. A truly
non-parametric GP must have a kernel that is derived from an infinite basis function expansion.
We find that a truly non-parametric representation is necessary for pattern extrapolation on large
datasets, and provide insights into this surprising result.

• GPatt is highly scalable and accurate. This is the first time, as far as we are aware, that highly
expressive non-parametric kernels with in some cases hundreds of hyperparameters, on datasets
exceeding N = 105 training instances, can be learned from the marginal likelihood of a GP, in
only minutes. Such experiments show that one can, to some extent, solve kernel selection, and
automatically extract useful features from the data, on large datasets, using a special combination
of expressive kernels and scalable inference.

• We show the proposed methodology provides a distinct approach to texture extrapolation and in-
painting; it was not previously known how to make GPs work for these fundamental applications.

• Moreover, unlike typical inpainting approaches, such as patch-based methods (which work by
recursively copying pixels or patches into a gap in an image, preserving neighbourhood similar-
ities), GPatt is not restricted to spatial inpainting. This is demonstrated on a video extrapolation
example, for which standard inpainting methods would be inapplicable [16]. Similarly, we apply
GPatt to perform large-scale long range forecasting of land surface temperatures, through learning
a sophisticated correlation structure across space and time. This learned correlation structure also
provides insights into the underlying statistical properties of these data.

• We demonstrate that GPatt can precisely recover sophisticated out-of-class kernels automatically.

2 Spectral Mixture Product Kernels for Pattern Discovery

The spectral mixture kernel has recently been introduced [5] to offer a flexible kernel that can learn
any stationary kernel. By appealing to Bochner’s theorem [17] and building a scale mixture of A
Gaussian pairs in the spectral domain, [5] produced the spectral mixture kernel

kSM(τ) =

A∑
a=1

w2
aexp{−2π2τ2σ2

a} cos(2πτµa) , (1)
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which they applied to one-dimensional input data with a small number of points. For tractability
with multidimensional inputs and large data, we propose a spectral mixture product (SMP) kernel:

kSMP(τ |θ) =
P∏
p=1

kSM(τp|θp) , (2)

where τp is the pth component of τ = x− x′ ∈ RP , θp are the hyperparameters {µa, σ2
a, w

2
a}Aa=1 of

the pth spectral mixture kernel in the product of Eq. (2), and θ = {θp}Pp=1 are the hyperparameters
of the SMP kernel. The SMP kernel of Eq. (2) has Kronecker structure which we exploit for scalable
and exact inference in section 2.1. With enough componentsA, the SMP kernel of Eq. (2) can model
any stationary product kernel to arbitrary precision, and is flexible even with a small number of
components, since scale-location Gaussian mixture models can approximate many spectral densities.
We use SMP-A as shorthand for an SMP kernel with A components in each dimension (for a total
of 3PA kernel hyperparameters and 1 noise hyperparameter). Wilson [18, 19] contains detailed
discussions of spectral mixture kernels.

Critically, a GP with an SMP kernel is not a finite basis function method, but instead corresponds to
a finite (A component) mixture of infinite basis function expansions. Therefore such a GP is a truly
nonparametric method. This difference between a truly nonparametric representation – namely a
mixture of infinite bases – and a parametric kernel method, a finite basis expansion corresponding
to a degenerate GP, is critical both conceptually and practically, as our results will show.

2.1 Fast Exact Inference with Spectral Mixture Product Kernels

Gaussian process inference and learning requires evaluating (K+σ2I)−1y and log |K+σ2I|, for an
N ×N covariance matrix K, a vector of N datapoints y, and noise variance σ2, as described in the
supplementary material. For this purpose, it is standard practice to take the Cholesky decomposition
of (K + σ2I) which requires O(N3) computations and O(N2) storage, for a dataset of size N .
However, many real world applications are engineered for grid structure, including spatial statistics,
sensor arrays, image analysis, and time sampling. [14] has shown that the Kronecker structure
in product kernels can be exploited for exact inference and hyperparameter learning in O(PN 2

P )

storage and O(PN P+1
P ) operations, so long as the inputs x ∈ X are on a multidimensional grid,

meaning X = X1 × · · · × XP ⊂ RP . Details are in the supplement.

Here we relax this grid assumption. Assuming we have a dataset of M observations which are
not necessarily on a grid, we propose to form a complete grid using W imaginary observations,
yW ∼ N (fW , ε

−1IW ), ε → 0. The total observation vector y = [yM ,yW ]> has N = M +W
entries: y = N (f , DN ), where the noise covariance matrix DN = diag(DM , ε

−1IW ), DM =
σ2IM . The imaginary observations yW have no corrupting effect on inference: the moments of
the resulting predictive distribution are exactly the same as for the standard predictive distribution,
namely limε→0(KN +DN )−1y = (KM +DM )−1yM (proof in the supplement).

For inference, we must evaluate (KN +DN )
−1

y. Since DN is not a scaled identity (as is the usual
case in Kronecker methods), we cannot efficiently decompose KN + DN , but we can efficiently
take matrix vector products involving KN and DN . We therefore use preconditioned conjugate gra-
dients (PCG) [20] to compute (KN +DN )

−1
y, an iterative method involving only matrix vector

products. We use the preconditioning matrix C = D
−1/2
N to solve C> (KN +DN )Cz = C>y.

The preconditioning matrix C speeds up convergence by ignoring the imaginary observations yW .
Exploiting the fast multiplication of Kronecker matrices, PCG takes O(JPN P+1

P ) total operations
(where the number of iterations J � N ) to compute (KN +DN )

−1
y to convergence within ma-

chine precision (supplement). This procedure can also be used to handle heteroscedastic noise.

For learning (hyperparameter training) we must evaluate the marginal likelihood (supplement). We
cannot efficiently compute the log |KM +DM | complexity penalty in the marginal likelihood, be-
cause KM is not a Kronecker matrix. We approximate the complexity penalty as

log |KM +DM | =
M∑
i=1

log(λMi + σ2) ≈
M∑
i=1

log(λ̃Mi + σ2) , (3)

for noise variance σ2. We approximate the eigenvalues λMi ofKM using the eigenvalues ofKN such
that λ̃Mi = M

N λ
N
i for i = 1, . . . ,M , which is particularly effective for large M (e.g. M > 1000)
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[7]. [21] proves this eigenvalue approximation is asymptotically consistent (e.g., converges in the
limit of large M ), and [22] shows how one can bound the true eigenvalues by their approximation
using PCA. Notably, only the log determinant (complexity penalty) term in the marginal likelihood
undergoes a small approximation, and inference remains exact.

All remaining terms in the marginal likelihood can be computed exactly and efficiently using PCG.
The total runtime cost of hyperparameter learning and exact inference with an incomplete grid is thus
O(PN P+1

P ). In image problems, for example, P = 2, and so the runtime complexity reduces to
O(N1.5). Although the proposed inference can handle non-grid data, this inference is most suited
to inputs where there is some grid structure – images, video, spatial statistics, etc. If there is no
such grid structure (e.g., none of the training data fall onto a grid), then the computational expense
necessary to augment the data with imaginary grid observations can be prohibitive. Although in-
complete grids have been briefly considered in, e.g. [23], such approaches generally involve costly
and numerically unstable rank 1 updates, inducing inputs, and separate (and restricted) treatments
of ‘missing’ and ‘extra’ data. Moreover, the marginal likelihood, critical for kernel learning, is not
typically considered in alternate approaches to incomplete grids.

3 Experiments

In our experiments we combine the SMP kernel of Eq. (2) with the fast exact inference and learning
procedures of section 2.1, in a GP method we henceforth call GPatt1,2.

We contrast GPatt with many alternative Gaussian process kernel methods. We are particularly
interested in kernel methods, since they are considered to be general purpose regression methods, but
conventionally have difficulty with large scale multidimensional pattern extrapolation. Specifically,
we compare to the recent sparse spectrum Gaussian process regression (SSGP) [6] method, which
provides fast and flexible kernel learning. SSGP models the kernel spectrum (spectral density)
as a sum of point masses, such that SSGP is a finite basis function (parametric) model, with as
many basis functions as there are spectral point masses. SSGP is similar to the recent models of
Le et al. [8] and Rahimi and Recht [9], except it learns the locations of the point masses through
marginal likelihood optimization. We use the SSGP implementation provided by the authors at
http://www.tsc.uc3m.es/˜miguel/downloads.php.

To further test the importance of the fast inference (section 2.1) used in GPatt, we compare to a GP
which uses the SMP kernel of section 2 but with the popular fast FITC [10, 24] inference, which
uses inducing inputs, and is implemented in GPML (http://www.gaussianprocess.org/
gpml). We also compare to GPs with the popular squared exponential (SE), rational quadratic (RQ)
and Matérn (MA) (with 3 degrees of freedom) kernels, catalogued in Rasmussen and Williams [1],
respectively for smooth, multi-scale, and finitely differentiable functions. Since GPs with these
kernels cannot scale to the large datasets we consider, we combine these kernels with the same fast
inference techniques that we use with GPatt, to enable a comparison.3 Moreover, we stress test each
of these methods in terms of speed and accuracy, as a function of available data and extrapolation
range, and number of components. All of our experiments contain a large percentage of non-grid
data, and we test accuracy and efficiency as a function of the percentage of missing data.

In all experiments we assume Gaussian noise, to express the marginal likelihood of the data p(y|θ)
solely as a function of kernel hyperparameters θ. To learn θ we optimize the marginal likelihood
using BFGS. We use a simple initialisation scheme: any frequencies {µa} are drawn from a uniform
distribution from 0 to the Nyquist frequency (1/2 the sampling rate), length-scales {1/σa} from a
truncated Gaussian distribution, with mean proportional to the range of the data, and weights {wa}
are initialised as the empirical standard deviation of the data divided by the number of components
used in the model. In general, we find GPatt is robust to initialisation, particularly for N > 104

datapoints. We show a representative initialisation in the experiments.

This range of tests allows us to separately understand the effects of the SMP kernel, a non-parametric
representation, and the proposed inference methods of section 2.1; we will show that all are required
for good extrapolation performance.

1We write GPatt-A when GPatt uses an SMP-A kernel.
2Experiments were run on a 64bit PC, with 8GB RAM and a 2.8 GHz Intel i7 processor.
3We also considered the model of [25], but this model is intractable for the datasets we considered and is

not structured for the fast inference of section 2.1.
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3.1 Extrapolating Metal Tread Plate and Pores Patterns

We extrapolate the missing region, shown in Figure 1a, on a real metal tread plate texture. There
are 12675 training instances (Figure 1a), and 4225 test instances (Figure 1b). The inputs are pixel
locations x ∈ R2 (P = 2), and the outputs are pixel intensities. The full pattern is shown in Figure
1c. This texture contains shadows and subtle irregularities, no two identical diagonal markings, and
patterns that have correlations across both input dimensions.

 

 

(a) Train
 

 

(b) Test (c) Full (d) GPatt (e) SSGP (f) FITC

(g) GP-SE (h) GP-MA (i) GP-RQ (j) GPatt Initialisation

(k) Train (l) GPatt (m) GP-MA (n) Train (o) GPatt (p) GP-MA

Figure 1: (a)-(j): Extrapolation on a Metal Tread Plate Pattern. Missing data are shown in black. a)
Training region (12675 points), b) Testing region (4225 points), c) Full tread plate pattern, d) GPatt-
30, e) SSGP with 500 basis functions, f) FITC with 500 inducing (pseudo) inputs, and the SMP-30
kernel, and GPs with the fast exact inference in section 2.1, and g) squared exponential (SE), h)
Matérn (MA), and i) rational quadratic (RQ) kernels. j) Initial and learned hyperparameters using
GPatt using simple initialisation. During training, weights of extraneous components automatically
shrink to zero. (k)-(h) and (n)-(p): Extrapolation on tread plate and pore patterns, respectively, with
added artifacts and non-stationary lighting changes.

To reconstruct the missing and training regions, we use GPatt-30. The GPatt reconstruction shown
in Fig 1d is as plausible as the true full pattern shown in Fig 1c, and largely automatic. Without hand
crafting of kernel features to suit this image, exposure to similar images, or a sophisticated initiali-
sation, GPatt has automatically discovered the underlying structure of this image, and extrapolated
that structure across a large missing region, even though the structure of this pattern is not indepen-
dent across the two spatial input dimensions. Indeed the separability of the SMP kernel represents
only a soft prior assumption, and does not rule out posterior correlations between input dimensions.

The reconstruction in Figure 1e was produced with SSGP, using 500 basis functions. In principle
SSGP can model any spectral density (and thus any stationary kernel) with infinitely many compo-
nents (basis functions). However, since these components are point masses (in frequency space),
each component has highly limited expressive power. Moreover, with many components SSGP ex-
periences practical difficulties regarding initialisation, over-fitting, and computation time (scaling
quadratically with the number of basis functions). Although SSGP does discover some interesting
structure (a diagonal pattern), and has equal training and test performance, it is unable to capture
enough information for a convincing reconstruction, and we did not find that more basis functions
improved performance. Likewise, FITC with an SMP-30 kernel and 500 inducing (pseudo) inputs
cannot capture the necessary information to interpolate or extrapolate. On this example, FITC ran
for 2 days, and SSGP-500 for 1 hour, compared to GPatt which took under 5 minutes.

GPs with SE, MA, and RQ kernels are all truly Bayesian nonparametric models – these kernels
are derived from infinite basis function expansions. Therefore, as seen in Figure 1 g), h), i), these
methods are completely able to capture the information in the training region; however, these kernels
do not have the proper structure to reasonably extrapolate across the missing region – they simply
act as smoothing filters. Moreover, this comparison is only possible because we have implemented
these GPs using the fast exact inference techniques introduced in section 2.1.
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(a) Runtime Stress Test (b) Accuracy Stress Test
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(c) Recovering Sophisticated Kernels

Figure 2: Stress Tests. a) Runtime Stress Test. We show the runtimes in seconds, as a function
of training instances, for evaluating the log marginal likelihood, and any relevant derivatives, for a
standard GP with SE kernel (as implemented in GPML), FITC with 500 inducing (pseudo) inputs
and SMP-25 and SMP-5 kernels, SSGP with 90 and 500 basis functions, and GPatt-100, GPatt-25,
and GPatt-5. Runtimes are for a 64bit PC, with 8GB RAM and a 2.8 GHz Intel i7 processor, on the
cone pattern (P = 2), shown in the supplement. The ratio of training inputs to the sum of imaginary
and training inputs for GPatt is 0.4 and 0.6 for the smallest two training sizes, and 0.7 for all other
training sets. b) Accuracy Stress Test. MSLL as a function of holesize on the metal pattern of
Figure 1. The values on the horizontal axis represent the fraction of missing (testing) data from
the full pattern (for comparison Fig 1a has 25% missing data). We compare GPatt-30 and GPatt-15
with GPs with SE, MA, and RQ kernels (and the inference of section 2.1), and SSGP with 100 basis
functions. The MSLL for GPatt-15 at a holesize of 0.01 is −1.5886. c) Recovering Sophisticated
Kernels. A product of three kernels (shown in green) was used to generate a movie of 112,500
training points. From this data, GPatt-20 reconstructs these component kernels (the learned SMP-20
kernel is shown in blue). All kernels are a function of τ = x− x′ and have been scaled by k(0).

Overall, these results indicate that both expressive nonparametric kernels, such as the SMP kernel,
and the specific fast inference in section 2.1, are needed to extrapolate patterns in these images.

We note that the SMP-30 kernel used with GPatt has more components than needed for this problem.
However, as shown in Fig. 1j, if the model is overspecified, the complexity penalty in the marginal
likelihood shrinks the weights ({wa} in Eq. (1)) of extraneous components, as a proxy for model
selection – an effect similar to automatic relevance determination [26]. Components which do not
significantly contribute to model fit are automatically pruned, as shrinking the weights decreases the
eigenvalues ofK and thus minimizes the complexity penalty (a sum of log eigenvalues). The simple
GPatt initialisation in Fig 1j is used in all experiments and is especially effective for N > 104.

In Figure 1 (k)-(h) and (n)-(p) we use GPatt to extrapolate on treadplate and pore patterns with added
artifacts and lighting changes. GPatt still provides a convincing extrapolation – able to uncover both
local and global structure. Alternative GPs with the inference of section 2.1 can interpolate small
artifacts quite accurately, but have trouble with larger missing regions.

3.2 Stress Tests and Recovering Complex 3D Kernels from Video

We stress test GPatt and alternative methods in terms of speed and accuracy, with varying data-
sizes, extrapolation ranges, basis functions, inducing (pseudo) inputs, and components. We assess
accuracy using standardised mean square error (SMSE) and mean standardized log loss (MSLL) (a
scaled negative log likelihood), as defined in Rasmussen and Williams [1] on page 23. Using the
empirical mean and variance to fit the data would give an SMSE and MSLL of 1 and 0 respectively.
Smaller SMSE and more negative MSLL values correspond to better fits of the data.

The runtime stress test in Figure 2a shows that the number of components used in GPatt does not
significantly affect runtime, and that GPatt is much faster than FITC (using 500 inducing inputs) and
SSGP (using 90 or 500 basis functions), even with 100 components (601 kernel hyperparameters).
The slope of each curve roughly indicates the asymptotic scaling of each method. In this experiment,
the standard GP (with SE kernel) has a slope of 2.9, which is close to the cubic scaling we expect. All
other curves have a slope of 1± 0.1, indicating linear scaling with the number of training instances.
However, FITC and SSGP are used here with a fixed number of inducing inputs and basis functions.
More inducing inputs and basis functions should be used when there are more training instances –
and these methods scale quadratically with inducing inputs and basis functions for a fixed number
of training instances. GPatt, on the other hand, can scale linearly in runtime as a function of training
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Table 1: We compare the test performance of GPatt-30 with SSGP (using 100 basis functions), and
GPs using SE, MA, and RQ kernels, combined with the inference of section 3.2, on patterns with a
train test split as in the metal treadplate pattern of Figure 1. We show the results as SMSE (MSLL).

Rubber mat Tread plate Pores Wood Chain mail
train, test 12675, 4225 12675, 4225 12675, 4225 14259, 4941 14101, 4779

GPatt 0.31 (−0.57) 0.45 (−0.38) 0.0038 (−2.8) 0.015 (−1.4) 0.79 (−0.052)
SSGP 0.65 (−0.21) 1.06 (0.018) 1.04 (−0.024) 0.19 (−0.80) 1.1 (0.036)
SE 0.97 (0.14) 0.90 (−0.10) 0.89 (−0.21) 0.64 (1.6) 1.1 (1.6)
MA 0.86 (−0.069) 0.88 (−0.10) 0.88 (−0.24) 0.43 (1.6) 0.99 (0.26)
RQ 0.89 (0.039) 0.90 (−0.10) 0.88 (−0.048) 0.077 (0.77) 0.97 (−0.0025)

size, without any deterioration in performance. Furthermore, the fixed 2-3 orders of magnitude
GPatt outperforms the alternatives is as practically important as asymptotic scaling.

The accuracy stress test in Figure 2b shows extrapolation (MSLL) performance on the metal tread
plate pattern of Figure 1c with varying holesizes, running from 0% to 60% missing data for testing
(for comparison the hole in Fig 1a has 25% missing data). GPs with SE, RQ, and MA kernels (and
the fast inference of section 2.1) all steadily increase in error as a function of holesize. Conversely,
SSGP does not increase in error as a function of holesize – with finite basis functions SSGP cannot
extract as much information from larger datasets as the alternatives. GPatt performs well relative to
the other methods, even with a small number of components. GPatt is particularly able to exploit the
extra information in additional training instances: only when the holesize is so large that over 60%
of the data are missing does GPatt’s performance degrade to the same level as alternative methods.

In Table 1 we compare the test performance of GPatt with SSGP, and GPs using SE, MA, and RQ
kernels, for extrapolating five different patterns, with the same train test split as for the tread plate
pattern in Figure 1. All patterns are shown in the supplement. GPatt consistently has the lowest
SMSE and MSLL. Note that many of these datasets are sophisticated patterns, containing intricate
details which are not strictly periodic, such as lighting irregularities, metal impurities, etc. Indeed
SSGP has a periodic kernel (unlike the SMP kernel which is not strictly periodic), and is capable of
modelling multiple periodic components, but does not perform as well as GPatt on these examples.

We also consider a particularly large example, where we use GPatt-10 to perform learning and exact
inference on the Pores pattern, with 383,400 training points, to extrapolate a large missing region
with 96,600 test points. The SMSE is 0.077, and the total runtime was 2800 seconds. Images of the
successful extrapolation are shown in the supplement.

We end this section by showing that GPatt can accurately recover a wide range of kernels, even using
a small number of components. To test GPatt’s ability to recover ground truth kernels, we simulate
a 50 × 50 × 50 movie of data (e.g. two spatial input dimensions, one temporal) using a GP with
kernel k = k1k2k3 (each component kernel in this product operates on a different input dimension),
where k1 = kSE +kSE×kPER, k2 = kMA×kPER +kMA×kPER, and k3 = (kRQ +kPER)×kPER +kSE.
(kPER(τ) = exp[−2 sin2(π τ ω)/`2], τ = x − x′). We use 5 consecutive 50 × 50 slices for testing,
leaving a large numberN = 112500 of training points, providing much information to learn the true
generating kernels. Moreover, GPatt-20 reconstructs these complex out of class kernels in under 10
minutes, as shown in Fig 2c. In the supplement, we show true and predicted frames from the movie.

3.3 Wallpaper and Scene Reconstruction and Long Range Temperature Forecasting

Although GPatt is a general purpose regression method, it can also be used for inpainting: image
restoration, object removal, etc. We first consider a wallpaper image stained by a black apple mark,
shown in Figure 3. To remove the stain, we apply a mask and then separate the image into its
three channels (red, green, and blue), resulting in 15047 pixels in each channel for training. In each
channel we ran GPatt using SMP-30. We then combined the results from each channel to restore the
image without any stain, which is impressive given the subtleties in the pattern and lighting.

In our next example, we wish to reconstruct a natural scene obscured by a prominent rooftop, shown
in the second row of Figure 3a). By applying a mask, and following the same procedure as for
the stain, this time with 32269 pixels in each channel for training, GPatt reconstructs the scene
without the rooftop. This reconstruction captures subtle details, such as waves, with only a single
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(a) Inpainting
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(b) Learned GPatt Kernel for Temperatures
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(c) Learned GP-SE Kernel for Temperatures

Figure 3: a) Image inpainting with GPatt. From left to right: A mask is applied to the original image,
GPatt extrapolates the mask region in each of the three (red, blue, green) image channels, and the
results are joined to produce the restored image. Top row: Removing a stain (train: 15047 × 3).
Bottom row: Removing a rooftop to restore a natural scene (train: 32269×3). We do not extrapolate
the coast. (b)-(c): Kernels learned for land surface temperatures using GPatt and GP-SE.

training image. In fact this example has been used with inpainting algorithms which were given
access to a repository of thousands of similar images [27]. The results emphasized that conventional
inpainting algorithms and GPatt have profoundly different objectives, which are sometimes even at
cross purposes: inpainting attempts to make the image look good to a human (e.g., the example in
[27] placed boats in the water), while GPatt is a general purpose regression algorithm, which simply
aims to make accurate predictions at test input locations, from training data alone. For example,
GPatt can naturally learn temporal correlations to make predictions in the video example of section
3.2, for which standard patch based inpainting methods would be inapplicable [16].

Similarly, we use GPatt to perform long range forecasting of land surface temperatures. After train-
ing on 108 months (9 years) of temperature data across North America (299,268 training points; a
71 × 66 × 108 completed grid, with missing data for water), we forecast 12 months (1 year) ahead
(33,252 testing points). The runtime was under 30 minutes. The learned kernels using GPatt and GP-
SE are shown in Figure 3 b) and c). The learned kernels for GPatt are highly non-standard – both
quasi periodic and heavy tailed. These learned correlation patterns provide insights into features
(such as seasonal influences) which affect how temperatures vary in space and time. Indeed learning
the kernel allows us to discover fundamental properties of the data. The temperature forecasts using
GPatt and GP-SE, superimposed on maps of North America, are shown in the supplement.

4 Discussion
Large scale multidimensional pattern extrapolation problems are of fundamental importance in ma-
chine learning, where we wish to develop scalable models which can make impressive generalisa-
tions. However, there are many obstacles towards applying popular kernel methods, such as Gaus-
sian processes, to these fundamental problems. We have shown that a combination of expressive
kernels, truly Bayesian nonparametric representations, and inference which exploits model struc-
ture, can distinctly enable a kernel approach to these problems. Moreover, there is much promise
in further exploring Bayesian nonparametric kernel methods for large scale pattern extrapolation.
Such methods can be extremely expressive, and expressive methods are most needed for large scale
problems, which provide relatively more information for automatically learning a rich statistical
representation of the data.
Acknowledgements AGW thanks ONR grant N000141410684 and NIH grant R01GM093156. JPC
thanks Simons Foundation grants SCGB #325171, #325233, and the Grossman Center at Columbia.
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