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Abstract

Sparse signal recovery addresses the problem of solving underdetermined
linear inverse problems subject to a sparsity constraint. We propose a novel
prior formulation, the structured spike and slab prior, which allows to in-
corporate a priori knowledge of the sparsity pattern by imposing a spatial
Gaussian process on the spike and slab probabilities. Thus, prior informa-
tion on the structure of the sparsity pattern can be encoded using generic
covariance functions. Furthermore, we provide a Bayesian inference scheme
for the proposed model based on the expectation propagation framework.
Using numerical experiments on synthetic data, we demonstrate the bene-
fits of the model.

1 Introduction

Consider a linear inverse problem of the form:

y = Ax+ e, (1)

where A ∈ RN×D is the measurement matrix, y ∈ RN is the measurement vector, x ∈ RD
is the desired solution and e ∈ RN is a vector of corruptive noise. The field of sparse
signal recovery deals with the task of reconstructing the sparse solution x from (A,y) in
the ill-posed regime where N < D. In many applications it is beneficial to encourage a
structured sparsity pattern rather than independent sparsity. In this paper we consider a
model for exploiting a priori information on the sparsity pattern, which has applications
in many different fields, e.g., structured sparse PCA [1], background subtraction [2] and
neuroimaging [3].

In the framework of probabilistic modelling sparsity can be enforced using so-called sparsity
promoting priors, which conventionally has the following form

p(x
∣∣λ) =

D∏
i=1

p(xi
∣∣λ), (2)

where p(xi
∣∣λ) is the marginal prior on xi and λ is a fixed hyperparameter controlling the

degree of sparsity. Examples of such sparsity promoting priors include the Laplace prior
(LASSO [4]), and the Bernoulli-Gaussian prior (the spike and slab model [5]). The main
advantage of this formulation is that the inference schemes become relatively simple due to
the fact that the prior factorizes over the variables xi. However, this fact also implies that
the models cannot encode any prior knowledge of the structure of the sparsity pattern.

One approach to model a richer sparsity structure is the so-called group sparsity ap-
proach, where the set of variables x has been partitioned into groups beforehand. This
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approach has been extensively developed for the `1 minimization community, i.e. group
LASSO, sparse group LASSO [6] and graph LASSO [7]. Let G be a partition of the set of
variables into G groups. A Bayesian equivalent of group sparsity is the group spike and
slab model [8], which takes the form

p(x
∣∣z) =

G∏
g=1

[
(1− zg) δ (xg) + zgN

(
xg
∣∣0, τIg] , p(z

∣∣λ) =

G∏
g=1

Bernoulli
(
zg
∣∣λg) , (3)

where z ∈ [0, 1]
G

are binary support variables indicating whether the variables in different
groups are active or not. Other relevant work includes [9] and [10]. Another more flexible
approach is to use a Markov random field (MRF) as prior for the binary variables [2].

Related to the MRF-formulation, we propose a novel model called the Structured Spike and
Slab model. This model allows us to encode a priori information of the sparsity pattern into
the model using generic covariance functions rather than through clique potentials as for
the MRF-formulation [2]. Furthermore, we provide a Bayesian inference scheme based on
expectation propagation for the proposed model.

2 The structured spike and slab prior

We propose a hierarchical prior of the following form:

p(x
∣∣γ) =

D∏
i=1

p(xi
∣∣g(γi)), p(γ) = N

(
γ
∣∣µ0,Σ0

)
, (4)

where g : R → R is a suitable injective transformation. That is, we impose a Gaussian
process [11] as a prior on the parameters γi. Using this parametrization, prior knowledge
of the structure of the sparsity pattern can be encoded using µ0 and Σ0. The mean value
µ0 controls the prior belief of the support and the covariance matrix determines the prior
correlation of the support. In the remainder of this paper we restrict p(xi|g(γi)) to be a
spike and slab model, i.e.

p(xi
∣∣zi) = (1− zi)δ(xi) + ziN

(
xi
∣∣0, τ0) , zi ∼ Ber (g(γi)) . (5)

This formulation clearly fits into eq. (4) when zi is marginalized out. Furthermore, we will
assume that g is the standard Normal CDF, i.e. g(x) = φ(x). Using this formulation, the
marginal prior probability of the i’th weight being active is given by:

p(zi = 1) =

∫
p(zi = 1

∣∣γi)p(γi)dγi =

∫
φ(γi)N

(
γi
∣∣µi,Σii)dγi = φ

(
µi√

1 + Σii

)
. (6)

This implies that the probability of zi = 1 is 0.5 when µi = 0 as expected. In contrast
to the `1-based methods and the MRF-priors, the Gaussian process formulation makes
it easy to generate samples from the model. Figures 1(a), 1(b) each show three real-
izations of the support from the prior using a squared exponential kernel of the form:
Σij = 50 exp(− (i− j)2 /2s2) and µi is fixed such that the expected level of sparsity is
10%. It is seen that when the scale, s, is small, the support consists of scattered spikes.
As the scale increases, the support of the signals becomes more contiguous and clustered,
where the sizes of the clusters increase with the scale.

To gain insight into the relationship between γ and z, we consider the two dimensional
system with µi = 0 and the following covariance structure

Σ0 = κ

[
1 ρ
ρ 1

]
, κ > 0. (7)

The correlation between z1 and z2 is then computed as a function of ρ and κ by sampling.
The resulting curves in Figure 1(c) show that the desired correlation is an increasing function
of ρ as expected. However, the figure also reveals that for ρ = 1, i.e. 100% correlation
between the γ parameters, does not imply 100% correlation of the support variables z. This
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Figure 1: (a,b) Realizations of the support z from the prior distribution using a squared
exponential covariance function for γ, i.e. Σij = 50 exp(−(i − j)2/2s2) and µ is fixed to
match an expected sparsity rate K/D of 10%. (c) Correlation of z1 and z2 as a function
of ρ for 5 different values of A obtained by sampling. This prior mean function is fixed at
µi = 0 for all i.

is due to the fact that there are two levels of uncertainty in the prior distribution of the
support. That is, first we sample γ, and then we sample the support z conditioned on γ.

The proposed prior formulation extends easily to the multiple measurement vector (MMV)
formulation [12, 13, 14], in which multiple linear inverse problems are solved simultaneously.
The most straightforward way is to assume all problem instances share the same support
variable, commonly known as joint sparsity [14]

p
(
X
∣∣z) =

T∏
t=1

D∏
i=1

[
(1− zi)δ(xti) + ziN

(
xti
∣∣0, τ)] , (8)

p(zi
∣∣γi) = Ber

(
zi
∣∣φ(γi)

)
, (9)

p(γ) = N
(
γ
∣∣µ0,Σ0

)
, (10)

where X =
[
x1 . . . xT

]
∈ RD×T . The model can also be extended to problems, where

the sparsity pattern changes in time

p
(
X
∣∣z) =

T∏
t=1

D∏
i=1

[
(1− zti)δ(xti) + ztiN

(
xti
∣∣0, τ)] , (11)

p(zti
∣∣γti ) = Ber

(
zti
∣∣φ(γti )

)
, (12)

p(γ1, ...,γT ) = N
(
γ1
∣∣µ0,Σ0

) T∏
t=2

N
(
γt
∣∣(1− α)µ0 + αγt−1, βΣ0

)
, (13)

where the parameters 0 ≤ α ≤ 1 and β ≥ 0 controls the temporal dynamics of the support.

3 Bayesian inference using expectation propagation

In this section we combine the structured spike and slab prior as given in eq. (5) with
an isotropic Gaussian noise model and derive an inference algorithm based on expectation
propagation. The likelihood function is p(y

∣∣x) = N
(
y
∣∣Ax, σ2

0I
)

and the joint posterior
distribution of interest thus becomes

p(x, z,γ
∣∣y) =

1

Z
p(y
∣∣x)p(x

∣∣z)p(z
∣∣γ)p(γ) (14)

=
1

Z
N
(
y
∣∣Ax, σ2

0I
)︸ ︷︷ ︸

f1

D∏
i=1

[
(1− zi)δ(xi) + ziN

(
xi
∣∣0, τ0)]︸ ︷︷ ︸

f2

D∏
i=1

Ber
(
zi
∣∣φ (γi)

)
︸ ︷︷ ︸

f3

N
(
γ
∣∣µ0,Σ0

)︸ ︷︷ ︸
f4

,
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where Z is the normalization constant independent of x, z and γ. Unfortunately, the true
posterior is intractable and therefore we have to settle for an approximation. In particular,
we apply the framework of expectation propagation (EP) [15, 16], which is an iterative
deterministic framework for approximating probability distributions using distributions from
the exponential family. The algorithm proposed here can be seen as an extension of the
work in [8].

As shown in eq. (14), the true posterior is a composition of 4 factors, i.e. fa for a = 1, .., 4.
The terms f2 and f3 are further decomposed into D conditionally independent factors

f2(x, z) =

D∏
i=1

f2,i(xi, zi) =

D∏
i=1

[
(1− zi)δ(xi) + ziN

(
xi
∣∣0, τ0)] , (15)

f3(z,γ) =

D∏
i=1

f3,i(zi, γi) =

D∏
i=1

Ber
(
zi
∣∣φ (γi)

)
(16)

The idea is then to approximate each term in the true posterior density, i.e. fa, by simpler
terms, i.e. f̃a for a = 1, .., 4. The resulting approximation Q (x, z,γ) then becomes

Q (x, z,γ) =
1

ZEP

4∏
a=1

f̃a (x, z,γ) . (17)

The terms f̃1 and f̃4 can be computed exact. In fact, f̃4 is simply equal to the prior over
γ and f̃1 is a multivariate Gaussian distribution with mean m̃1 and covariance matrix
Ṽ1 determined by Ṽ −11 m̃1 = 1

σ2A
Ty and Ṽ −11 = 1

σ2A
TA. Therefore, we only have to

approximate the factors f̃2 and f̃3 using EP. Note that the exact term f1 is a distribution
of y conditioned on x, whereas the approximate term f̃1 is a function of x that depends
on y through m̃1 and Ṽ1 etc. In order to take full advantage of the structure of the true
posterior distribution, we will further assume that the terms f̃2 and f̃3 also are decomposed
into D independent factors.

The EP scheme provides great flexibility in the choice of the approximating factors. This
choice is a trade-off between analytical tractability and sufficient flexibility for capturing the
important characteristics of the true density. Due to the product over the binary support
variables {zi} for i = 1, .., D, the true density is highly multimodal. Finally, f2 couples the
variables x and z, while f3 couples the variables z and γ. Based on these observations, we
choose f̃2 and f̃3 to have the following forms

f̃2 (x, z) ∝
D∏
i=1

N
(
xi
∣∣m̃2,i, ṽ2,i

) D∏
i=1

Ber
(
zi
∣∣φ (γ̃2,i)

)
= N

(
x
∣∣m̃2, Ṽ2

) D∏
i=1

Ber
(
zi
∣∣φ (γ̃2,i)

)
,

f̃3 (z,γ) ∝
D∏
i=1

Ber
(
zi
∣∣φ (γ̃3,i)

) D∏
i=1

N
(
γi
∣∣µ̃3,i, σ̃3,i

)
= N

(
γ
∣∣µ̃3, Σ̃3

) D∏
i=1

Ber
(
zi
∣∣φ (γ̃2,i)

)
,

where m̃2 = [m̃2,1, .., m̃2,D]
T

, Ṽ2 = diag (ṽ2,1, ..., ṽ2,D) and analogously for µ̃3 and Σ̃3.
These choices lead to a joint variational approximation Q(x, z,γ) of the form

Q (x, z,γ) = N
(
x
∣∣m̃, Ṽ

) D∏
i=1

Ber
(
zi
∣∣g (γ̃i)

)
N
(
γ
∣∣µ̃, Σ̃) , (18)

where the joint parameters are given by

Ṽ =
(
Ṽ −11 + Ṽ −12

)−1
, m̃ = Ṽ

(
Ṽ −11 m̃1 + Ṽ −12 m̃2

)
(19)

Σ̃ =
(
Σ̃−13 + Σ̃−14

)−1
, µ̃ = Σ̃

(
Σ̃−13 µ̃3 + Σ̃−14 µ̃4

)
(20)

γ̃j = φ−1

[(
(1− φ(γ̃2,j)) (1− φ(γ̃3,j))

φ(γ̃2,j)φ(γ̃3,j)
+ 1

)−1]
, ∀j ∈ {1, .., D} . (21)

where φ−1(x) is the probit function. The function in eq. (21) amounts to computing the
product of two Bernoulli densities parametrized using φ (·).
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• Initialize approximation terms f̃a for a = 1, 2, 3, 4 and Q

• Repeat until stopping criteria

– For each f̃2,i:

∗ Compute cavity distribution: Q\2,i ∝ Q

f̃2,i

∗ Minimize: KL
(
f2,iQ

\2,i
∣∣∣∣Q2,new

)
w.r.t. Qnew

∗ Compute: f̃2,i ∝ Q2,new

Q\2,i to update parameters m̃2,i, ṽ2,i and γ̃2,i.

– Update joint approximation parameters: m̃, Ṽ and γ̃

– For each f̃3,i:

∗ Compute cavity distribution: Q\3,i ∝ Q

f̃3,i

∗ Minimize: KL
(
f3,iQ

\3,i
∣∣∣∣Q3,new

)
w.r.t. Qnew

∗ Compute: f̃3,i ∝ Q3,new

Q\3,i to update parameters µ̃3,i, σ̃3,i and γ̃3,i

– Update joint approximation parameters: µ̃, Σ̃ and γ̃

Figure 2: Proposed algorithm for approximating the joint posterior distribution over x, z
and γ.

3.1 The EP algorithm

Consider the update of the term f̃a,i for a given a and a given i, where f̃a =
∏
i f̃a,i. This

update is performed by first removing the contribution of f̃a,i from the joint approximation
by forming the so-called cavity distribution

Q\a,i ∝ Q

f̃a,i
(22)

followed by the minimization of the Kullbach-Leibler [17] divergence between fa,iQ
\a,i and

Qa,new w.r.t. Qa,new. For distributions within the exponential family, minimizing this form
of KL divergence amounts to matching moments between fa,iQ

\2,i and Qa,new [15]. Finally,

the new update of f̃a,i is given by

f̃a,i ∝
Qa,new

Q\a,i
. (23)

After all the individual approximation terms f̃a,i for a = 1, 2 and i = 1, .., D have been
updated, the joint approximation is updated using eq. (19)-(21). To minimize the compu-

tational load, we use parallel updates of f̃2,i [8] followed by parallel updates of f̃3,i rather

than the conventional sequential update scheme. Furthermore, due to the fact that f̃2 and
f̃3 factorizes, we only need the marginals of the cavity distributions Q\a,i and the marginals
of the updated joint distributions Qa,new for a = 2, 3.

Computing the cavity distributions and matching the moments are tedious, but straight-
forward. The moments of fa,iQ

\2,i require evaluation of the zeroth, first and second order
moment of the distributions of the form φ(γi)N

(
γi
∣∣µi,Σii). Derivation of analytical ex-

pressions for these moments can be found in [11]. See the supplementary material for more
details. The proposed algorithm is summarized in figure 2. Note, that the EP framework
also provides an approximation of the marginal likelihood [11], which can be useful for
learning the hyperparameters of the model. Furthermore, the proposed inference scheme
can easily be extended to the MMV formulation eq. (8)-(10) by introducing a f̃ t2,i for each
time step t = 1, .., T .
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3.2 Computational details

Most linear inverse problems of practical interest are high dimensional, i.e. D is large. It is
therefore of interest to simplify the computational complexity of the algorithm as much as
possible. The dominating operations in this algorithm are the inversions of the two D ×D
covariance matrices in eq. (19) and eq. (20), and therefore the algorithm scales as O

(
D3
)
.

But Ṽ1 has low rank and Ṽ2 is diagonal, and therefore we can apply the Woodbury matrix
identity [18] to eq. (19) to get

Ṽ = Ṽ2 − Ṽ2A
T
(
σ2
oI +AṼ2A

T
)−1

AṼ2. (24)

For N < D, this scales as O
(
ND2

)
, where N is the number of observations. Unfortunately,

we cannot apply the same identity to the inversion in eq. (20) since Σ̃4 has full rank and
is non-diagonal in general. The eigenvalue spectrum of many prior covariance structures of
interest, i.e. simple neighbourhoods etc., decay relatively fast. Therefore, we can approx-
imate Σ0 with a low rank approximation Σ0 ≈ PΛP T , where Λ ∈ RR×R is a diagonal
matrix of the R largest eigenvalues and P ∈ RD×R is the corresponding eigenvectors. Using
the R-rank approximation, we can now invoke the Woodbury matrix identity again to get:

Σ̃ = Σ̃3 + Σ̃3P
(

Λ + P T Σ̃3P
)−1

P T Σ̃3. (25)

Similarly, for R < D, this scales as O
(
RD2

)
. Another better approach that preserves the

total variance would be to use probabilistic PCA [19] to approximate Σ0. A third alternative
is to consider other structures for Σ0, which facilitate fast matrix inversions such as block
structures and Toeplitz structures. Numerical issues can arise in EP implementations and
in order to avoid this, we use the same precautions as described in [8].

4 Numerical experiments

This section describes a series of numerical experiments that have been designed and con-
ducted in order to investigate the properties of the proposed algorithm.

4.1 Experiment 1

The first experiment compares the proposed method to the LARS algorithm [20] and to
the BG-AMP method [21], which is an approximate message passing-based method for the
spike and slab model. We also compare the method to an ”oracle least squares estimator”
that knows the true support of the solutions. We generate 100 problem instances from
y = Ax0 + e, where the solutions vectors have been sampled from the proposed prior using
the kernel Σi,j = 50 exp(−||i− j||22/(2 · 102)), but constrained to have a fixed sparsity level
of the K/D = 0.25. That is, each solution x0 has the same number of non-zero entries,
but different sparsity patterns. We vary the degree of undersampling from N/D = 0.05 to
N/D = 0.95. The elements of A ∈ RN×250 are i.i.d Gaussian and the columns of A have
been scaled to unit `2-norm. The SNR is fixed at 20dB. We apply the four methods to each
of the 100 problems, and for each solution we compute the Normalized Mean Square Error
(NMSE) between the true signal x0 and the estimated signal x̂ as well as the F -measure:

NMSE =
||x0 − x̂||2
||x0||2

F = 2
precision · recall

precision + recall
, (26)

where precision and recall are computed using a MAP estimate of the support. For the
structured spike and slab method, we consider three different covariance structures: Σij =
κ · δ(i − j), Σij = κ exp(−||i − j||2/s) and Σij = κ exp(−||i − j||22/(2s2)) with parameters
κ = 50 and s = 10. In each case, we use a R = 50 rank approximation of Σ. The average
results are shown in figures 3(a)-(f). Figure (a) shows an example of one of the sampled
vectors x0 and figure (b) shows the three covariance functions.

From figure 3(c)-(d), it is seen that the two EP methods with neighbour correlation are
able to improve the phase transition point. That is, in order to obtain a reconstruction
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Figure 3: Illustration of the benefit of modelling the additional structure of the sparsity
pattern. 100 problem instances are generated using the linear measurement model y =
Ax + e, where elements of A ∈ RN×250 are i.i.d Gaussian and the columns are scaled to
unit `2-norm. The solutions x0 are sampled from the prior in eq. (5) with hyperparameters
Σij = 50 exp

[
− ||i− j||2 /

(
2 · 102

)]
and a fixed level of sparsity of K/D = 0.25. For EP

methods, the Σ0 matrix is approximated using a rank 50 matrix. SNR is fixed at 20dB.

of the signal such that F ≈ 0.8, EP with diagonal covariance and BG-AMP need an un-
dersamplingratio of N/D ≈ 0.55, while the EP methods with neighbour correlation only
need N/D ≈ 0.35 to achieve F ≈ 0.8. For this specific problem, this means that utilizing
the neighbourhood structure allows us to reconstruct the signal with 50 fewer observations.
Note that, the reconstruction using the exponential covariance function does also improve
the result even if the true underlying covariance structure corresponds to a squared exponen-
tial function. Furthermore, we see similar performance of BG-AMP and EP with a diagonal
covariance matrix. This is expected for problems where Aij is drawn iid as assumed in
BG-AMP. However, the price of the improved phase transition is clear from figure 3(e). The
proposed algorithm has significantly higher computational complexity than BG-AMP and
LARS. Figure 4(a) shows the posterior mean of z for the signal shown in figure 3(a). Here
it is seen that the two models with neighbour correlation provide a better approximation
to the posterior activation probabilities. Figure 4(b) shows the posterior mean of γ for the
model with the squared exponential kernel along with ± one standard deviation.

4.2 Experiment 2

In this experiment we consider an application of the MMV formulation as given in eq. (8)-
(10), namely EEG source localization with synthetic sources [22]. Here we are interested in
localizing the active sources within a specific region of interest on the cortical surface (grey
area on figure 5(a)). To do this, we now generate a problem instance of Y = AEEGX0 +
E using the procedure as described in experiment 1, where AEEG ∈ R128×800 is now a
submatrix of a real EEG forward matrix corresponding to the grey area on the figure. The
condition number ofAEEG is ≈ 8·1015. The true sourcesX0 ∈ R800×20 are sampled from the
structured spike and slab prior in eq. (8) using a squared exponential kernel with parameters
A = 50, s = 10 and T = 20. The number of active sources is 46, i.e. x has 46 non-zero
rows. SNR is fixed to 20dB. The true sources are shown in figure 5(a). We now use the EP
algorithm to recover the sources using the true prior, i.e. squared exponential kernel and
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Figure 4: (a) Marginal posterior means over z obtained using the structured spike and slab
model for the signal in figure 3(a). The experiment set-up is the as described in figure
3, except the undersamplingsratio is fixed to N/D = 0.5. (b) The posterior mean of γ
superimposed with ± one standard deviation. The green dots indicate the true support.

(a) True sources (b) EP, Sq. exponential (c) EP, Diagonal

Figure 5: Source localization using synthetic sources. The A ∈ R128×800 is a submatrix
(grey area) of a real EEG forward matrix. (a) True sources. (b) Reconstruction using the
true prior , Fsq = 0.78. (c) Reconstruction using a diagonal covariance matrix, Fdiag = 0.34.

the results are shown in figure 5(b). We see that the algorithm detects most of the sources
correctly, even the small blob on the right hand side. However, it also introduces a small
number of false positives in the neighbourhood of the true active sources. The resulting
F -measure is Fsq = 0.78. Figure 5(c) shows the result of reconstructing the sources using a
diagonal covariance matrix, where Fdiag = 0.34. Here the BG-AMP algorithm is expected
to perform poorly due to the heavy violation of the assumption of Aij being Gaussian iid.

4.3 Experiment 3

We have also recreated the Shepp-Logan Phantom experiment from [2] with D = 104 un-
knowns, K = 1723 non-zero weights, N = 2K observations and SNR = 10dB (see sup-
plementary material for more details). The EP method yields Fsq = 0.994 and NMSEsq
= 0.336 for this experiment, whereas BG-AMP yields F = 0.624 and NMSE = 0.717. For
reference, the oracle estimator yields NMSE = 0.326.

5 Conclusion and outlook

We introduced the structured spike and slab model, which allows incorporation of a priori
knowledge of the sparsity pattern. We developed an expectation propagation-based algo-
rithm for Bayesian inference under the proposed model. Future work includes developing
a scheme for learning the structure of the sparsity pattern and extending the algorithm to
the multiple measurement vector formulation with slowly changing support.
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