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Abstract

In many classification problems, the input is represented as a set of features, e.g.,
the bag-of-words (BoW) representation of documents. Support vector machines
(SVMs) are widely used tools for such classification problems. The performance
of the SVMs is generally determined by whether kernel values between data points
can be defined properly. However, SVMs for BoW representations have a major
weakness in that the co-occurrence of different but semantically similar words
cannot be reflected in the kernel calculation. To overcome the weakness, we pro-
pose a kernel-based discriminative classifier for BoW data, which we call the la-
tent support measure machine (latent SMM). With the latent SMM, a latent vector
is associated with each vocabulary term, and each document is represented as a
distribution of the latent vectors for words appearing in the document. To repre-
sent the distributions efficiently, we use the kernel embeddings of distributions that
hold high order moment information about distributions. Then the latent SMM
finds a separating hyperplane that maximizes the margins between distributions of
different classes while estimating latent vectors for words to improve the classi-
fication performance. In the experiments, we show that the latent SMM achieves
state-of-the-art accuracy for BoW text classification, is robust with respect to its
own hyper-parameters, and is useful to visualize words.

1 Introduction

In many classification problems, the input is represented as a set of features. A typical example of
such features is the bag-of-words (BoW) representation, which is used for representing a document
(or sentence) as a multiset of words appearing in the document while ignoring the order of the words.
Support vector machines (SVMs) [1], which are kernel-based discriminative learning methods, are
widely used tools for such classification problems in various domains, e.g., natural language pro-
cessing [2], information retrieval [3, 4] and data mining [5]. The performance of SVMs generally
depends on whether the kernel values between documents (data points) can be defined properly.
The SVMs for BoW representation have a major weakness in that the co-occurrence of different but
semantically similar words cannot be reflected in the kernel calculation. For example, when dealing
with news classification, ‘football’ and ‘soccer’ are semantically similar and characteristic words for
football news. Nevertheless, in the BoW representation, the two words might not affect the compu-
tation of the kernel value between documents, because many kernels, e.g., linear, polynomial and
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Gaussian RBF kernels, evaluate kernel values based on word co-occurrences in each document, and
‘football’ and ‘soccer’ might not co-occur.

To overcome this weakness, we can consider the use of the low rank representation of each doc-
ument, which is learnt by unsupervised topic models or matrix factorization. By using the low
rank representation, the kernel value can be evaluated properly between documents without shared
vocabulary terms. Blei et al. showed that an SVM using the topic proportions of each document
extracted by latent Dirichlet allocation (LDA) outperforms an SVM using BoW features in terms
of text classification accuracy [6]. Another naive approach is to use vector representation of words
learnt by matrix factorization or neural networks such as word2vec [7]. In this approach, each doc-
ument is represented as a set of vectors corresponding to words appearing in the document. To
classify documents represented as a set of vectors, we can use support measure machines (SMMs),
which are a kernel-based discriminative learning method on distributions [8]. However, these low
dimensional representations of documents or words might not be helpful for improving classifica-
tion performance because the learning criteria for obtaining the representation and the classifiers are
different.

In this paper, we propose a kernel-based discriminative learning method for BoW representation
data, which we call the latent support measure machine (latent SMM). The latent SMMs assume
that a latent vector is associated with each vocabulary term, and each document is represented as a
distribution of the latent vectors for words appearing in the document. By using the kernel embed-
dings of distributions [9], we can effectively represent the distributions without density estimation
while preserving necessary distribution information. In particular, the latent SMMs map each dis-
tribution into a reproducing kernel Hilbert space (RKHS), and find a separating hyperplane that
maximizes the margins between distributions from different classes on the RKHS. The learning pro-
cedure of the latent SMMs is performed by alternately maximizing the margin and estimating the
latent vectors for words. The learnt latent vectors of semantically similar words are located close
to each other in the latent space, and we can obtain kernel values that reflect the semantics. As a
result, the latent SMMs can classify unseen data using a richer and more useful representation than
the BoW representation. The latent SMMs find the latent vector representation of words useful for
classification. By obtaining two- or three-dimensional latent vectors, we can visualize relationships
between classes and between words for a given classification task.

In our experiments, we demonstrate the quantitative and qualitative effectiveness of the latent SMM
on standard BoW text datasets. The experimental results first indicate that the latent SMM can
achieve state-of-the-art classification accuracy. Therefore, we show that the performance of the
latent SMM is robust with respect to its own hyper-parameters, and the latent vectors for words in
the latent SMM can be represented in a two dimensional space while achieving high classification
performance. Finally, we show that the characteristic words of each class are concentrated in a single
region by visualizing the latent vectors.

The latent SMMs are a general framework of discriminative learning for BoW data. Thus, the idea
of the latent SMMs can be applied to various machine learning problems for BoW data, which have
been solved by using SVMs: for example, novelty detection [10], structure prediction [11], and
learning to rank [12].

2 Related Work

The proposed method is based on a framework of support measure machines (SMMs), which are
kernel-based discriminative learning on distributions [8]. Muandet et al. showed that SMMs are
more effective than SVMs when the observed feature vectors are numerical and dense in their exper-
iments on handwriting digit recognition and natural scene categorization. On the other hand, when
observations are BoW features, the SMMs coincide with the SVMs as described in Section 3.2.
To receive the benefits of SMMs for BoW data, the proposed method represents each word as a
numerical and dense vector, which is estimated from the given data.

The proposed method aims to achieve a higher classification performance by learning a classifier
and feature representation simultaneously. Supervised topic models [13] and maximum margin
topic models (MedLDA) [14] have been proposed based on a similar motivation but using differ-
ent approaches. They outperform classifiers using features extracted by unsupervised LDA. There
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are two main differences between these methods and the proposed method. First, the proposed
method plugs the latent word vectors into a discriminant function, while the existing methods plug
the document-specific vectors into their discriminant functions. Second, the proposed method can
naturally develop non-linear classifiers based on the kernel embeddings of distributions. We demon-
strate the effectiveness of the proposed model by comparing the topic model based classifiers in our
text classification experiments.

3 Preliminaries

In this section, we introduce the kernel embeddings of distributions and support measure machines.
Our method in Section 4 will build upon these techniques.

3.1 Representations of Distributions via Kernel Embeddings

Suppose that we are given a set of n distributions {Pi}ni=1, where Pi is the ith distribution on space
X ⊂ Rq . The kernel embeddings of distributions are to embed any distribution Pi into a reproducing
kernel Hilbert space (RKHS) Hk specified by kernel k [15], and the distribution is represented as
element µPi in the RKHS. More precisely, the element of the ith distribution µPi is defined as
follows:

µPi := Ex∼Pi [k(·,x)] =
∫
X
k(·,x)dPi ∈ Hk, (1)

where kernel k is referred to as an embedding kernel. It is known that element µPi preserves the
properties of probability distribution Pi such as mean, covariance and higher-order moments by
using characteristic kernels (e.g., Gaussian RBF kernel) [15]. In practice, although distribution Pi

is unknown, we are given a set of samples Xi = {xim}Mi
m=1 drawn from the distribution. In this

case, by interpreting sample set Xi as empirical distribution P̂i =
1
Mi

∑Mi

m=1 δxim(·), where δx(·)
is the Dirac delta function at point x ∈ X , empirical kernel embedding µ̂Pi is given by

µ̂Pi =
1

Mi

Mi∑
m=1

k(·,xim) ∈ Hk, (2)

which can be approximated with an error rate of ||µ̂Pi − µPi ||Hk
= Op(M

− 1
2

i ) [9].

3.2 Support Measure Machines

Now we consider learning a separating hyper-plane on distributions by employing support measure
machines (SMMs). An SMM amounts to solving an SVM problem with a kernel between empirical
embedded distributions {µ̂Pi}ni=1, called level-2 kernel. A level-2 kernel between the ith and jth
distributions is given by

K(P̂i, P̂j) = ⟨µ̂Pi , µ̂Pj ⟩Hk
=

1

MiMj

Mi∑
g=1

Mj∑
h=1

k(xig,xjh), (3)

where kernel k indicates the embedding kernel used in Eq. (2). Although the level-2 kernel Eq.(3) is
linear on the embedded distributions, we can also consider non-linear level-2 kernels. For example,
a Gaussian RBF level-2 kernel with bandwidth parameter λ > 0 is given by

Krbf(P̂i, P̂j) = exp

(
−λ

2
||µ̂Pi − µ̂Pj ||

2
Hk

)
= exp

(
−λ

2
(⟨µ̂Pi , µ̂Pi⟩Hk − 2⟨µ̂Pi , µ̂Pj ⟩Hk + ⟨µ̂Pj , µ̂Pj ⟩Hk )

)
.

(4)
Note that the inner-product ⟨·, ·⟩Hk

in Eq. (4) can be calculated by Eq. (3). By using these kernels,
we can measure similarities between distributions based on their own moment information.

The SMMs are a generalization of the standard SVMs. For example, suppose that a word is rep-
resented as a one-hot representation vector with vocabulary length, where all the elements are zero
except for the entry corresponding to the vocabulary term. Then, a document is represented by
adding the one-hot vectors of words appearing in the document. This operation is equivalent to
using a linear kernel as its embedding kernel in the SMMs. Then, by using a non-linear kernel
as a level-2 kernel like Eq. (4), the SMM for the BoW documents is the same as an SVM with a
non-linear kernel.
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4 Latent Support Measure Machines

In this section, we propose latent support measure machines (latent SMMs) that are effective for
BoW data classification by learning latent word representation to improve classification perfor-
mance.

The SMM assumes that a set of samples from distribution Pi, Xi, is observed. On the other hand, as
described later, the latent SMM assumes that Xi is unobserved. Instead, we consider a case where
BoW features are given for each document. More formally, we are given a training set of n pairs
of documents and class labels {(di, yi)}ni=1, where di is the ith document that is represented by a
multiset of words appearing in the document and yi ∈ Y is a class variable. Each word is included
in vocabulary set V . For simplicity, we consider binary class variable yi ∈ {+1,−1}. The proposed
method is also applicable to multi-class classification problems by adopting one-versus-one or one-
versus-rest strategies as with the standard SVMs [16].

With the latent SMM, each word t ∈ V is represented by a q-dimensional latent vector xt ∈ Rq ,
and the ith document is represented as a set of latent vectors for words appearing in the document
Xi = {xt}t∈di . Then, using the kernel embeddings of distributions described in Section 3.1, we
can obtain a representation of the ith document from Xi as follows: µ̂Pi =

1
|di|

∑
t∈di

k(·,xt).

Using latent word vectors X = {xt}t∈V and document representation {µ̂Pi}ni=1, the primal opti-
mization problem for the latent SMM can be formulated in an analogous but different way from the
original SMMs as follows:

min
w,b,ξ,X,θ

1

2
||w||2+C

n∑
i=1

ξi+
ρ

2

∑
t∈V

||xt||22 subject to yi (⟨w, µPi
⟩H − b) ≥ 1− ξi, ξi ≥ 0, (5)

where {ξi}ni=1 denotes slack variables for handling soft margins. Unlike the primal form of the
SMMs, that of the latent SMMs includes a ℓ2 regularization term with parameter ρ > 0 with respect
to latent word vectors X. The latent SMM minimizes Eq. (5) with respect to the latent word vectors
X and kernel parameters θ, along with weight parameters w, bias parameter b and {ξi}ni=1.

It is extremely difficult to solve the primal problem Eq. (5) directly because the inner term ⟨w, µPi⟩H
in the constrained conditions is in fact calculated in an infinite dimensional space. Thus, we solve
this problem by converting it into an another optimization problem in which the inner term does not
appear explicitly. Unfortunately, due to its non-convex nature, we cannot derive the dual form for
Eq. (5) as with the standard SVMs. Thus we consider a min-max optimization problem, which is
derived by first introducing Lagrange multipliers A = {a1, a2, · · · , an} and then plugging w =∑n

i=1 aiµ̂Pi into Eq (5), as follows:

min
X,θ

max
A

L(A,X, θ) subject to 0 ≤ ai ≤ C,
n∑

i=1

aiyi = 0, (6a)

where L(A,X, θ) =

n∑
i=1

ai −
1

2

n∑
i=1

n∑
j=1

aiajyiyjK(P̂i, P̂j ;X, θ) +
ρ

2

∑
t∈V

||xt||22, (6b)

where K(P̂i, P̂j ;X, θ) is a kernel value between empirical distributions P̂i and P̂j specified by
parameters X and θ as is shown in Eq. (3).

We solve this min-max problem by separating it into two partial optimization problems: 1) maxi-
mization over A given current estimates X̄ and θ̄, and 2) minimization over X and θ given current
estimates Ā. This approach is analogous to wrapper methods in multiple kernel learning [17].

Maximization over A. When we fix X and θ in Eq. (6) with current estimate X̄ and θ̄, the maxi-
mization over A becomes a quadratic programming problem as follows:

max
A

n∑
i=1

ai −
1

2

n∑
i=1

n∑
j=1

aiajyiyjK(P̂i, P̂j ; X̄, θ̄) subject to 0 ≤ ai ≤ C,
n∑

i=1

aiyi = 0, (7)

which is identical to solving the dual problem of the standard SVMs. Thus, we can obtain optimal
A by employing an existing SVM package.
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Table 1: Dataset specifications.
# samples # features # classes

WebKB 4,199 7,770 4
Reuters-21578 7,674 17,387 8

20 Newsgroups 18,821 70,216 20

Minimization over X and θ. When we fix A in Eq. (6) with current estimate Ā, the min-max
problem can be replaced with a simpler minimization problem as follows:

min
X,θ

l(X, θ), where l(X, θ) = −1

2

n∑
i=1

n∑
j=1

āiājyiyjK(P̂i, P̂j ;X, θ) +
ρ

2

∑
t∈V

||xt||22. (8)

To solve this problem, we use a quasi-Newton method [18]. The quasi-Newton method needs the
gradient of parameters. For each word m ∈ V , the gradient of latent word vector xm is given by

∂l(X, θ)

∂xm
= −1

2

n∑
i=1

n∑
j=1

āiājyiyj
∂K(P̂i, P̂j ;X, θ)

∂xm
+ ρxm, (9)

where the gradient of the kernel with respect to xm depends on the choice of kernels. For example,
when choosing a embedding kernel as a Gaussian RBF kernel with bandwidth parameter γ > 0:
kγ(xs,xt) = exp(−γ

2 ||xs−xt||2Hk
), and a level-2 kernel as a linear kernel, the gradient is given by

∂K(P̂i, P̂j ;X, θ)

∂xm
=

1

|di||dj |
∑
s∈di

∑
t∈dj

kγ(xs,xt)×

{
γ(xt − xs) (m = s ∧m ̸= t)
γ(xs − xt) (m = t ∧m ̸= s)
0 (m = t ∧m = s).

As with the estimation of X, kernel parameters θ can be obtained by calculating gradient ∂l(X,θ)
∂θ .

By alternately repeating these computations until dual function Eq. (6) converges, we can find a
local optimal solution to the min-max problem.

The parameters that need to be stored after learning are latent word vectors X, kernel parameters
θ and Lagrange multipliers A. Classification for new document d∗ is performed by computing
y(d∗) =

∑n
i=1 aiyiK(P̂i, P̂∗;X, θ), where P̂∗ is the distribution of latent vectors for words included

in d∗.

5 Experiments with Bag-of-Words Text Classification

Data description. For the evaluation, we used the following three standard multi-class text classi-
fication datasets: WebKB, Reuters-21578 and 20 Newsgroups. These datasets, which have already
been preprocessed by removing short and stop words, are found in [19] and can be downloaded
from the author’s website1. The specifications of these datasets are shown in Table 1. For our
experimental setting, we ignored the original training/test data separations.

Setting. In our experiments, the proposed method, latent SMM, uses a Gaussian RBF embedding
kernel and a linear level-2 kernel. To demonstrate the effectiveness of the latent SMM, we compare
it with several methods: MedLDA, SVD+SMM, word2vec+SMM and SVMs. MedLDA is a method
that jointly learns LDA and a maximum margin classifier, which is a state-of-the-art discriminative
learning method for BoW data [14]. We use the author’s implementation of MedLDA2. SVD+SMM
is a two-step procedure: 1) extracting low-dimensional representations of words by using a singular
value decomposition (SVD), and 2) learning a support measure machine using the distribution of
extracted representations of words appearing in each document with the same kernels as the latent
SMM. word2vec+SMM employs the representations of words learnt by word2vec [7] and uses them
for the SMM as in SVD+SMM. Here we use pre-trained 300 dimensional word representation vec-
tors from the Google News corpus, which can be downloaded from the author’s website3. Note that
word2vec+SMM utilizes an additional resource to represent the latent vectors for words unlike the

1http://web.ist.utl.pt/acardoso/datasets/
2http://www.ml-thu.net/˜jun/medlda.shtml
3https://code.google.com/p/word2vec/

5



(a) WebKB (b) Reuters-21578 (c) 20 Newsgroups

Figure 1: Classification accuracy over number of training samples.

(a) WebKB (b) Reuters-21578 (c) 20 Newsgroups

Figure 2: Classification accuracy over the latent dimensionality.

latent SMM, and the learning of word2vec requires n-gram information about documents, which
is lost in the BoW representation. With SVMs, we use a Gaussian RBF kernel with parameter γ
and a quadratic polynomial kernel, and the features are represented as BoW. We use LIBSVM4 to
estimate Lagrange multipliers A in the latent SMM and to build SVMs and SMMs. To deal with
multi-class classification, we adopt a one-versus-one strategy [16] in the latent SMM, SVMs and
SMMs. In our experiments, we choose the optimal parameters for these methods from the following
variations: γ ∈ {10−3, 10−2, · · · , 103} in the latent SMM, SVD+SMM, word2vec+SMM and SVM
with a Gaussian RBF kernel, C ∈ {2−3, 2−1, · · · , 25, 27} in all the methods, regularizer parame-
ter ρ ∈ {10−2, 10−1, 100}, latent dimensionality q ∈ {2, 3, 4} in the latent SMM, and the latent
dimensionality of MedLDA and SVD+SMM ranges {10, 20, · · · , 50}.

Accuracy over number of training samples. We first show the classification accuracy when vary-
ing the number of training samples. Here we randomly chose five sets of training samples, and used
the remaining samples for each of the training sets as the test set. We removed words that occurred
in less than 1% of the training documents. Below, we refer to the percentage as a word occurrence
threshold. As shown in Figure 1, the latent SMM outperformed the other methods for each of the
numbers of training samples in the WebKB and Reuters-21578 datasets. For the 20 Newsgroups
dataset, the accuracies of the latent SMM, MedLDA and word2vec+SMM were proximate and bet-
ter than those of SVD+SMM and SVMs.

The performance of SVD+SMM changed depending on the datasets: while SVD+SMM was the
second best method with the Reuters-21578, it placed fourth with the other datasets. This result
indicates that the usefulness of the low rank representations by SVD for classification depends on
the properties of the dataset. The high classification performance of the latent SMM for all of the
datasets demonstrates the effectiveness of learning the latent word representations.

Robustness over latent dimensionality. Next we confirm the robustness of the latent SMM over
the latent dimensionality. For this experiment, we changed the latent dimensionality of the latent
SMM, MedLDA and SVD+SMM within {2, 4, · · · , 12}. Figure 2 shows the accuracy when varying
the latent dimensionality. Here the number of training samples in each dataset was 600, and the
word occurrence threshold was 1%. For all the latent dimensionality, the accuracy of the latent
SMM was consistently better than the other methods. Moreover, even with two-dimensional latent

4http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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Figure 3: Classification accuracy on WebKB
when varying word occurrence threshold.

Figure 4: Parameter sensitivity on Reuters-21578.

project course faculty student

Figure 5: Distributions of latent vectors for words appearing in documents of each class on WebKB.

vectors, the latent SMM achieved high classification performance. On the other hand, MedLDA
and SVD+SMM often could not display their own abilities when the latent dimensionality was low.
One of the reasons why the latent SMM with a very low latent dimensionality q achieves a good
performance is that it can use q|di| parameters to classify the ith document, while MedLDA uses
only q parameters. Since the latent word representation used in SVD+SMM is not optimized for the
given classification problem, it does not contain useful features for classification, especially when
the latent dimensionality is low.

Accuracy over word occurrence threshold. In the above experiments, we omit words whose
occurrence accounts for less than 1% of the training document. By reducing the threshold, low
frequency words become included in the training documents. This might be a difficult situation
for the latent SMM and SVD+SMM because they cannot observe enough training data to estimate
their own latent word vectors. On the other hand, it would be an advantageous situation for SVMs
using BoW features because they can use low frequency words that are useful for classification to
compute their kernel values. Figure 3 shows the classification accuracy on WebKB when varying
the word occurrence threshold within {0.4, 0.6, 0.8, 1.0}. The performance of the latent SMM did
not change when the thresholds were varied, and was better than the other methods in spite of the
difficult situation.

Parameter sensitivity. Figure 4 shows how the performance of the latent SMM changes against
ℓ2 regularizer parameter ρ and C on a Reuters-21578 dataset with 1,000 training samples. Here
the latent dimensionality of the latent SMM was fixed at q = 2 to eliminate the effect of q. The
performance is insensitive to ρ except when C is too small. Moreover, we can see that the perfor-
mance is improved by increasing the C value. In general, the performance of SVM-based methods
is very sensitive to C and kernel parameters [20]. Since kernel parameters θ in the latent SMM are
estimated along with latent vectors X, the latent SMM can avoid the problem of sensitivity for the
kernel parameters. In addition, Figure 2 has shown that the latent SMM is robust over the latent
dimensionality. Thus, the latent SMM can achieve high classification accuracy by focusing only on
tuning the best C, and experimentally the best C exhibits a large value, e.g., C ≥ 25.

Visualization of classes. In the above experiments, we have shown that the latent SMM can
achieve high classification accuracy with low-dimensional latent vectors. By using two- or three-
dimensional latent vectors in the latent SMM, and visualizing them, we can understand the rela-
tionships between classes. Figure 5 shows the distributions of latent vectors for words appearing
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Complete view (50% sampling)

(a)

(c)

(b)

(d)

Figure 6: Visualization of latent vectors for words on WebKB. The font color of each word indicates
the class in which the word occurs most frequently, and ‘project’, ‘course’, ‘student’ and ‘faculty’
classes correspond to yellow, red, blue and green fonts, respectively.

in documents of each class. Each class has its own characteristic distribution that is different from
those of other classes. This result shows that the latent SMM can extract the difference between
the distributions of the classes. For example, the distribution of ‘course’ is separated from those
of the other classes, which indicates that documents categorized in ‘course’ share few words with
documents categorized in other classes. On the other hand, the latent words used in the ‘project’
class are widely distributed, and its distribution overlaps those of the ‘faculty’ and ‘student’ classes.
This would be because faculty and students work jointly on projects, and words in both ‘faculty’
and ‘student’ appear simultaneously in ‘project’ documents.

Visualization of words. In addition to the visualization of classes, the latent SMM can visualize
words using two- or three-dimensional latent vectors. Unlike unsupervised visualization methods
for documents, e.g., [21], the latent SMM can gather characteristic words of each class in a region.
Figure 6 shows the visualization result of words on the WebKB dataset. Here we used the same
learning result as that used in Figure 5. As shown in the complete view, we can see that highly-
frequent words in each class tend to gather in a different region. On the right side of this figure,
four regions from the complete view are displayed in closeup. Figures (a), (b) and (c) include words
indicating ‘course’, ‘faculty’ and ‘student’ classes, respectively. For example, figure (a) includes
‘exercise’, ’examine’ and ‘quiz’ which indicate examinations in lectures. Figure (d) includes words
of various classes, although the ‘project’ class dominates the region as shown in Figure 5. This
means that words appearing in the ‘project’ class are related to the other classes or are general
words, e.g., ‘occur’ and ‘differ’.

6 Conclusion
We have proposed a latent support measure machine (latent SMM), which is a kernel-based dis-
criminative learning method effective for sets of features such as bag-of-words (BoW). The latent
SMM represents each word as a latent vector, and each document to be classified as a distribution
of the latent vectors for words appearing in the document. Then the latent SMM finds a separating
hyperplane that maximizes the margins between distributions of different classes while estimating
latent vectors for words to improve the classification performance. The experimental results can be
summarized as follows: First, the latent SMM has achieved state-of-the-art classification accuracy
for BoW data. Second, we have shown experimentally that the performance of the latent SMM is
robust as regards its own hyper-parameters. Third, since the latent SMM can represent each word as
a two- or three- dimensional latent vector, we have shown that the latent SMMs are useful for un-
derstanding the relationships between classes and between words by visualizing the latent vectors.

Acknowledgment. This work was supported by JSPS Grant-in-Aid for JSPS Fellows (259867).
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