Computing Nash Equilibria in Generalized
Interdependent Security Games

Hau Chan Luis E. Ortiz
Department of Computer Science, Stony Brook University
{hauchan, leortiz}@cs.stonybrook.edu

Abstract

We study the computational complexity of computing Nash equilibria in gener-
alized interdependent-security (IDS) games. Like traditional IDS games, origi-
nally introduced by economists and risk-assessment experts Heal and Kunreuther
about a decade ago, generalized IDS games model agents’ voluntary investment
decisions when facing potential direct risk and transfer-risk exposure from other
agents. A distinct feature of generalized IDS games, however, is that full invest-
ment can reduce transfer risk. As a result, depending on the transfer-risk reduc-
tion level, generalized IDS games may exhibit strategic complementarity (SC)
or strategic substitutability (SS). We consider three variants of generalized IDS
games in which players exhibit only SC, only SS, and both SC+SS. We show that
determining whether there is a pure-strategy Nash equilibrium (PSNE) in SC+SS-
type games is NP-complete, while computing a single PSNE in SC-type games
takes worst-case polynomial time. As for the problem of computing all mixed-
strategy Nash equilibria (MSNE) efficiently, we produce a partial characterization.
Whenever each agent in the game is indiscriminate in terms of the transfer-risk ex-
posure to the other agents, a case that Kearns and Ortiz originally studied in the
context of traditional IDS games in their NIPS 2003 paper, we can compute all
MSNE that satisfy some ordering constraints in polynomial time in all three game
variants. Yet, there is a computational barrier in the general (transfer) case: we
show that the computational problem is as hard as the Pure-Nash-Extension prob-
lem, also originally introduced by Kearns and Ortiz, and that it is NP-complete
for all three variants. Finally, we experimentally examine and discuss the practi-
cal impact that the additional protection from transfer risk allowed in generalized
IDS games has on MSNE by solving several randomly-generated instances of
SC+SS-type games with graph structures taken from several real-world datasets.

1 Introduction

Interdependent Security (IDS) games [1] model the interaction among multiple agents where each
agent chooses whether to invest in some form of security to prevent a potential loss based on both
direct and indirect (transfer) risks. In this context, an agent’s direct risk is that which is not the result
of the other agents’ decisions, while indirect (transfer) risk is that which does.

Let us be more concrete and consider an application of IDS games. Imagine that you are an owner
of an apartment. One day, there was a fire alarm in the apartment complex. Luckily, it was nothing
major: nobody got hurt. As a result, you realize that your apartment can be easily burnt down
because you do not have any fire extinguishing mechanism such as a sprinkler system. However, as
you wonder about the cost and the effectiveness of the fire extinguishing mechanism, you notice that
the fire extinguishing mechanism can only protect your apartment if a small fire originates in your
apartment. If a fire originates in the floor below, or above, or even the apartment adjacent to yours,
then you are out of luck: by the time the fire gets to your apartment, the fire would be fierce enough

RN

"’;{{Q«

a~N(0.8,0.2)

a~N(0.4,0.2)

a~N(0.6,0.2)

Figure 1: a-IDS Game of Zachary Karate Club at a Nash Equilibrium. Legend: Square = SC player,
Circle = SS player, Colored = Invest, and Non-Colored = No Invest

Table 1: Complexity of a-IDS Games

Game type One PSNE All MSNE Pure-Nash Extension
SC Always Exists Uniform Transfers (UT)
(n SC players) O(n?) O(n*) NP-Complete
SS Maybe Not Exist UT wrt Ordering]|
(n SS players) O(n*)
SC +SS NP-complete UT wrt Ordering |1
(Nge + Ngs = M) O(nt.n3, +n3.ni,

already. You realize that if other apartment owners invest in the fire extinguishing mechanism, the
likelihood of their fires reaching you decreases drastically. As a result, you debate whether or not
to invest in the fire extinguishing mechanism given whether or not the other owners invest in the
fire extinguishing mechanism. Indeed, making things more interesting, you are not the only one
going through this decision process; assuming that everybody is concerned about their safety in the
apartment complex, everybody in the apartment complex wants to decide on whether or not to invest
in the fire extinguishing mechanism given the individual decision of other owners.

To be more specific, in the IDS games, the agents are the apartment owners, each apartment owner
needs to make a decision as to whether or not to invest in the fire extinguishing mechanism based on
cost, potential loss, as well as the direct and indirect (transfer) risks. The direct risk here is the chance
that an agent will start a fire (e.g., forgetting to turn off gas burners or overloading electrical outlets).
The transfer risk here is the chance that a fire from somebody else’s (unprotected) apartment will
spread to other apartments. Moreover, transfer risk comes from the direct neighbors and cannot be
re-transferred. For example, if a fire from your neighbors is transferred to you, then, in this model,
this fire cannot be re-transferred to your neighbors. Of course, IDS games can be used to model
other practical real-world situations such as airline security [2], vaccination [3]], and cargo shipment
[4]]. See Laszka et al. [S]] for a survey on IDS games.

Note that in the apartment complex example, the fire extinguishing mechanism does not protect an
agent from fires that originate from other apartments. In this work, we consider a more general,
and possibly also more realistic, framework of IDS games where investment can partially protect
the indirect risk (i.e., investment in the fire extinguishing mechanism can partially extinguish some
fires that originate from others). To distinguish the naming scheme, we will call these generalized
IDS games as a-IDS games where « is a vector of probabilities, one for each agent, specifying the
probability that the transfer risk will not be protected by the investment. In other words, agent ¢’s
investment can reduce indirect risk by probability (1-a;). Given an «, the players can be partitioned
into two types: the SC type and the SS type. The SC players behave strategic complementarily:
they invest if sufficiently many people invest. On the other hand, the SS players behave strategic
substitutability: they do not invest if too many people invest.

As a preview of how the « can affect the number of SC and SS players and Nash equilibria, which is
the solution concept used here (formally defined in the next section), Figure|l| presents the result of
our simulation of an instance of SC+SS «-IDS games using the Zachary Karate Club network [6].
The nodes are the players, and the edge between nodes u and v represents the potential transfers
from v to v and v to u. As we increase a’s value, the number of SC players increases while the

number of SS players decreases. Interestingly, almost all of the SC players invest, and all of the SS
players are “free riding” as they do not invest at the NE.

Our goal here is to understand the behavior of the players in a-IDS games. Achieving this goal will
depend on the type of players, as characterized by the a, and our ability to efficiently compute NE,
among other things. While Heal and Kunreuther [1]] and Chan et al. [7] previously proposed similar
models, we are unaware of any work on computing NE in «-IDS games and analyzing agents’
equilibrium behavior. The closest work to ours is Kearns and Ortiz [8], where they consider the
standard/traditional IDS model in which one cannot protect against the indirect risk (i.e., o = 1).
In particular, we study the computational aspects of computing NE of a-IDS games in cases of
all game players being (1) SC, (2) SS, and (3) both SC and SS. Our contributions, summarized in
Table[T] follow.

e We show that determining whether there is a PSNE in (3) is NP-complete. However, there
is a polynomial-time algorithm to compute a PSNE for (1). We identify some instances for
(2) where PSNE does and does not exist.

e We study the instances of a-IDS games where we can compute all NE. We show that
if the transfer probabilities are uniform (independent of the destination), then there is a
polynomial-time algorithm to compute all NE in case (1). Cases (2) and (3) may still take
exponential time to compute all NE. However, based on some ordering constraints, we are
able to efficiently compute all NE that satisfy the ordering constraints.

e We consider the general-transfer case and show that the pure-Nash-extension problem [8]],
which, roughly, is the problem of determining whether there is a PSNE consistent with
some partial assignments of actions to some players, is NP-complete for cases (1), (2), and
(3). This implies that computing all NE is likely as hard.

e We perform experiments on several randomly-generated instances of SC+SS a-IDS games
using various real-world graph structures to show a’s effect on the number of SC and SS
players and on the NE of the games .

2 «o-IDS games: preliminaries, model definition, and solution concepts

In this section, we borrow definitions and notations of (graphical) IDS games from Kearns et al.
[9l], Kearns and Ortiz [8], and Chan et al. [7]. In an a-IDS game, we have an underlying (directed)
graph G = (V,E) where V' = {1,2, ..., n} represents the n players and E = {(t,j)|¢;; > 0} such
that g;; is the transfer probability that player ¢ will transfer the bad event to player j. As such, we
define Pa(i) and Ch(%) as the set of parents and children of player i in G, respectively.

In an o-IDS game, each player ¢ has to make a decision as to whether or not to invest in protection.
Therefore, the action or pure-strategy of player ¢ is binary, denoted here by a;, with a; = 1 if ¢
decides to invest and a; = 0 otherwise. We denote the joint-action or joint-pure-strategy of all
players by the vector a = (aq,...,a,). For convenience, we denote by a_; all components of a
except that for player <. Similarly, given S C V, we denote by ag and a_g all components of a
corresponding to players in S and V' — S, respectively. We also use the notation a = (a;,a_;) =
(ag,a_g) when clear from context.

In addition, in an o-IDS game, there is a cost of investment C; and loss L; associated with the bad
event occurring, either through direct or indirect (transfered) contamination. For convenience, we
denote the cost-to-loss ratio of player i by R; = C;/L;. We can parametrize the direct risk as p;,
the probability that player ¢ will experience the bad event from direct contamination.

Specific to a-IDS games, the parameter «; denotes the probability of ineffectiveness of full invest-
ment in security (i.e., a; = 1) against player i’s transfer risk. Said differently, the parameter o;; mod-
els the degree to which investment in security can potentially reduce player ¢’s transfer risk. Player
i’s transfer-risk function vi(apy(;)) = 1 — s;(apa()), Where si(apai)) = [1;epaciy[l — (1 — a;)gjil,
is a function of joint-actions of Pa(i) because of the potential overall transfer probability (and thus
risk) from Pa(¢) to ¢ given Pa(i)’s actions. One can think of the function s; as the transfer-safety
function of player i. The expression of s; makes explicit the implicit assumption that the transfers
of the bad event are independent. Putting the above together, the cost function of player i is

M;i(ai, apag)) =ai[Ci + iri(apags)) L] + (1 — as)[pi + (1 — pi)ri(a_i)|L; .

Note that the safety function describes the situation where a player j can only be “risky” to player
1 if and only if j does not invest in protection. We assume, without loss of generality (wlog), that
C; < L;, or equivalently, that R; < 1; otherwise, not investing would be a dominant strategy.

While a syntactically minor addition to the traditional IDS model, the parameter « introduces a
major semantic difference and an additional complexity over the traditional model. The semantic
difference is perhaps clearer from examining the best response of the players: player ¢ invests if

Ci + ajri(apy)) Li < pi+(1— pi)ri(aPa(i))]Li & Ry —pi < (1 —pi — ai)ri(ap) -

The expression (1 — p; — ;) is positive when «; < 1 — p; and negative when «; > 1 — p;. The best
response condition flips when the expression is negative. (When «; = 1 — p;, player ¢’s investment
decision simplifies because the player’s internal risk fully determines the optimal choice.)

In fact, the parameter « induces a partition of the set of players based on whether the corresponding
«; value is higher or lower than 1 — p;. We will call the set of players with a; > 1 — p; the
set of strategic complementarity (SC) players. SC players exhibit as optimal behavior that their
preference for investing increases as more players invest: they are “followers.” The set of players
with o; < 1 — p; is the set of strategic substitutability (SS) players. In this case, SS players’
preference for investing decreases as more players invest: they are “free riders.”

Foralli € SC, let Af* =1 — Bi—ps

1-pi—oy

; similarly for A$®, for ¢ € SS. We can define the best-

response correspondence for player i € SC as
0, A3 > si(apy(y),
BR;“(apaiy) = 4 1, A3 < si(apa(iy),

[Oa 1}7 A;sc = Si(aPa(i)) .

The best-response correspondence BRS? for player i € SS is similar, except that we replace A?° by
A?° and “reverse” the strict inequalities above. We use the best-response correspondence to define
NE (i.e., both PSNE and MSNE). We introduce randomized strategies: in a joint-mixed-strategy x €
[0, 1]™, each component z; corresponds to player ¢’s probability of invest (i.e. Pr(a; = 1) = ;).
Player i’s decision depends on expected cost, and, with abuse of notation, we denote it by M;(x).

Definition A joint-action a € {0, 1}" is a pure-strategy Nash equilibrium (PSNE) of an IDS game
if a; € BRi(apy(;)) for each player 7. Replacing a with a joint mixed-strategy x € [0, 1]" in the
equilibrium condition and the respective functions it depends on leads to the condition for x being a
mixed-strategy Nash equilibrium (MSNE). Note that the set of PSNE C MSNE. Hence, we use NE
and MSNE interchangably.

For general (and graphical) games, determining the existence of PSNE is NP-complete [10]. MSNE
always exist [1L1]], but computing a MSNE is PPAD-complete [12H14].

3 Computational results for o-IDS games

Clause i Clause j Clause k

In this section, we present and discuss the
results of our computational study of a-IDS
games. We begin by considering the problem
of computing PSNE, then moving to the more
general problem of computing MSNE.

3.1 Finding a PSNE in o-IDS games

9

Xy =X,

Figure 2: 3-SAT-induced o-IDS game graph In this subsection, we look at the complexity
of determining a PSNE in «a-IDS games, and
finding it if one exists. Our first result follows.

Theorem 1 Determining whether there is a PSNE in n-player SC+SS a-IDS games is NP-complete.

Proof (Sketch) We are going to reduce an instance of a 3-SAT variant into our problem. Each clause
of the 3-SAT variant contains either only negated variables or only un-negated variables [15]. We

have an SC player for each clause and two SS players for each variable. The clause players invest
if there exists a neighbor (its literal) that invests. For each variable v;, we introduce two players
v; and v; with preference for mutually opposite actions. They invest if there exists a neighbor
(its clause and v;) that does not invest. Figure [2] depicts the basic structure of the game. Nodes
at the botton-row of the graph correspond to a variable, where the un-negated-variables-clauses
and negated-variables-clauses are connected to their corresponding un-negated-variable and negated
variable with bidirectional transfer probability q.

Setting the parameters of the clause players. Wlog, we can set the parameters to be identical
for all clause players i: find R; > 0 and a; > 1 — p; such that (1 — ¢)? > A > (1 — q)3.
Setting the parameters of the variables players. Wlog, we can set the parameters to be identical
for all variable players ¢: find R; > 0 and a;; < 1 — p; such that 1 > A$* > (1 — g).

We now show that there exists a satisfiable assignment if and only if there exists a PSNE.

Satisfiable assignment —- PSNE. Suppose that we have a satisfiable assignment of the variant
3-SAT. This implies that every clause player is playing invest. Moreover, for each clause player,
there must be some corresponding variable players that play invest. Given a satisfiable assignment,
negated and un-negated variable players cannot play the same action. One of them must be playing
invest and the other must be playing no-invest. The investing variable is best-responding because
at least one of the players (namely its negation) is playing not invest. The not investing variable is
best-responding because all of its neighbors are investing. Hence, all the players are best-responding
to each other and thus we have a PSNE.

PSNE — satisfiable assignment. (a) First we show that at every PSNE, all of the clause
players must play invest. For the sake of contradiction, suppose that there is a PSNE in which there
are some clause players that play no-invest. For the no-invest clause players, all of their variables
must play no-invest at PSNE. However, by the best-response conditions of the variable players, if
there exists a clause player that plays no-invest, then at least one of the variable players must play
invest, which contradicts the fact that we have a PSNE. (b) We now show that at every PSNE, the un-
negated variable player and the corresponding negated variable player must play different actions.
Suppose that there is a PSNE, in which both of the players play the same action (i) no-invest or (ii)
invest. In the case of no-invest (i), by their best-response conditions (given that at every PSNE all
clause players play invest), none of the variables are best-responding so one of them must switch
from playing no-invest to invest. In the case of invest (ii), again by the best-response condition,
one of them must play no-invest. (c) Finally, we need to show that at every PSNE there must be
a variable player that makes every clause player play invest. To see this, note that, by the clause’s
best-response condition, there must be at least one variable player playing invest. If there is a clause
that plays invest when none of its variable players play invest, then the clause player would not be
best-responding. a

3.1.1 SC a-IDS games

What is the complexity of determining whether a PSNE exists in SC a-IDS games (i.e. a; > 1—p;)?
It turns out that SC players have the characteristics of following the actions of other agents. If there
are enough SC players who invest, then some remaining SC player(s) will follow suit. This is
evident from the safety function and the best-response condition. Consider the dynamics in which
everybody starts off with no-invest. If there are some players that are not best-responding, then their
best (dominant) strategy is to invest. We can safely change the actions of those players to invest.
Then, for the remaining players, we continue to check to see if any of them is not best-responding.
If not, we have a PSNE, otherwise, we change the strategy of the not best-responding players to
invest. The process continues until we have reached a PSNE.

Theorem 2 There is an O(n?)-time algorithm to compute a PSNE of any n-player SC a-IDS game.
Note that once a player plays invest, other players will either stay no-invest or move to invest. The

no-investing players do not affect the strategy of the players that already have decided to invest.
Players that have decided to invest will continue to invest because only more players will invest.

3.1.2 SS o-IDS games

Unlike the SC case, an SS a-IDS game may not have a PSNE when n > 2.

Proposition 1 Suppose we have an n-player SS a-IDS game with 1 > A$* > (1 — q;;) where j is
the parent of i. (a) If the game graph is a directed tree, then the game has a PSNE. (b) If the game
graph is a a directed cycle, then the game has a PSNE if and only if n is even.

Proof (a) The root of the tree will always play no-invest while the immediate children of the root
will always play invest at a PSNE. Moreover, assigning the action invest or no-invest to any node
that has an odd or even (undirected) distance to the root, respectively, completes the PSNE.

(b) For even n, an assignment in which any independent set of 3 players play invest form a PSNE.
For odd n, suppose there is a PSNE in which I players invest and N players do not invest, such
that I + N = n. The investing players must have I parents that do not invest and the non-investing
players must have N parents that play invest. Moreover, I < N and N < I implies that [= N.
Hence, an odd n cycle cannot have a PSNE. g

We leave the computational complexity of determining whether SS a-IDS games have PSNE open.

3.2 Computing all NE in o-IDS games

We now study whether we can compute al/l MSNE of a-IDS games. We prove that we can compute
all MSNE in polynomial time in the case of uniform-transfer SC a-IDS games, and a subset of all
MSNE in the case of SS and SC+SS games. A uniform transfer a-IDS game is an a-IDS game
where the transfer probability to another players from a particular player is the same regardless of
the destination. More formally, ¢;; = J; for all players 4 and j (¢ # j). Hence, we have a complete
graph with bidirectional transfer probabilities. We can express the overall safety function given joint
mixed-strategy x € [0, 1]™ as s(x) = [, [1—(1—x;)d;]. Now, we can determine the best response
of SC or SS player exactly based solely on the values of Af°(1 — (1 — a;)J;), for SC, relative to
s(x); similarly for SS.

We assume, wlog, that for all players i, R; > 0, §; > 0, p; > 0, and «; > 0. Given a joint mixed-
strategy x, we partition the players by type wrt x: let [= I(x) = {i | ; = 1}, N = N(x) =
{i|z; =0},and P = P(x) = {i | 0 < z; < 1} be the set of players that, wrt x, fully invest in
protection, do not invest in protection, and partially invest in protection, respectively.

3.2.1 Uniform-transfer SC a-IDS games

The results of this section are non-trivial extensions of those of Kearns and Ortiz [8]. In particu-
lar, we can construct a polynomial-time algorithm to compute all MSNE of a uniform-transfer SC
«a-IDS game, along the same lines of Kearns and Ortiz [8], by extending their Ordering Lemma
(their Lemma 3) and Partial-Ordering Lemma (their Lemma 4). ['| Appendixes andof the sup-
plementary material contain our versions of the lemmas and detailed pseudocode for the algorithm,
respectively. A running-time analysis similar to that for traditional uniform-transfer IDS games done
by Kearns and Ortiz [8] yields our next algorithmic result.

Theorem 3 There exists an O(n*)-time algorithm to compute all MSNE of an uniform-transfer
n-player SC a-IDS game.

The significance of the theorem lies in its simplicity. That we can extend almost the same computa-
tional results, and structural implications on the solution space, to a considerably more general, and
perhaps even more realistic, model, via what in hindsight were simple adaptations, is positive.

3.2.2 Uniform-transfer SS o-IDS games

Unlike the SC case, the ordering we get for the SS case does not yield an analogous lemma. Never-
theless, it turns out that we can still determine the mixed strategies of the partially-investing players
in P relative to a partition. The result is a Partial-Investment Lemma that is analogous to that
of Kearns and Ortiz [8] for traditional IDS games. E] For completeness, Appendix of the supple-
mentary material formally states the lemma. We remind the reader that the significance and strength

!Take their R; /p:’s and replace them with our corresponding A$¢’s.
’Take their Lemma 4 and replace R;/p; there by AS$* here, and replace the expression for V there by
V= [maxkeN(l — 6k)AZQ, miniel A;g}

of this non-trivial extension lies in its simplicity, and particularly when we note that the nature of
the SS case is the complete opposite of the version of IDS games studied by Kearns and Ortiz [S8]].

Indeed, a naive way to compute all NE is to consider all of the possible combinations of players
into the investment, partial investment, and not investment sets and apply the Partial-Investment
Lemma alluded to in the previous paragraph to compute the mixed strategies. However, this would
take O(n**3™"") worst-case time to compute any equilibrium. So, how can we efficiently perform
this computation? As mentioned earlier, SS players are less likely to invest when there is a large
number of players investing and have “opposite” behavior as the SC players (i.e., the best response
is flipped). Hence, imposing a “flip” ordering (Ordering [T)) that is opposite of the SC case seems
natural. If we assume such a specific ordering of the players at equilibrium, then we can compute all
NE consistent with that specific ordering efficiently, as we discuss earlier for the SC case. Mirroring
the SC a-IDS game, we settle for computing all NE that satisfy the following ordering.

Ordering 1 Foralli € I°°,j € P*%, and k € N*%,
(1=)AL < (1 0;)A5 < A
(1-3;)A7 <AF < AP
(1 — 6k)AZS S (1 _ 61)Afs S Afs

The first and last set of inequalities (ignoring the middle one) follow from the consistency constraint
imposed by the overall safety function. The middle set of inequalities restrict and reduce the number
of possible NE configurations we need to check. It is possible that the (1 —6;)A* > (1—4;)A3* or
(1—-0x)A% > (1—0;)Ag® at an NE, but we do not consider those types of NE. Our hardness results
presented in the upcoming Section [3.2.4] suggest that, in general, computing all MSNE without any
of the constraints above is likely hard. (See Algorithm [2]of the supplementary material.)

Theorem 4 There exists an O(n*)-time algorithm to compute all MSNE consistent with Ordering
of an uniform-transfer n-player SS a-IDS game.

3.2.3 Uniform-transfer SC+SS a-IDS games

For the uniform variant of the SC+SS «-IDS games, we could partition the players into either SC or
SS and modify the respective algorithms to compute all NE. Unfortunately, this is computationally
infeasible because we can only compute all NE in polynomial time in the SC case. Again, if we settle
for computing all NE consistent with Ordering [T] then we can devise an efficient algorithm. From
now on, the fact that we are only considering NE consistent with Ordering|I]is implicit, unless noted
otherwise. The idea is to partition the players into a class of SC and a class of SS players. From
the characterizations stated earlier, it is clear that there are only a polynomial number of possible
partitions we need to check for each class of players. Since the ordering results are based on the same
overall safety function, the orderings of SC and SS players do not affect each other. Hence, wlog,
starting with the algorithm described earlier as a based routine for SC players, we do the following.
For each possible equilibrium configuration of the SC players, we first run the algorithm described
in the previous section for SS players and then test whether the resulting joint mixed-strategy is a
NE. This guarantees that we check every possible equilibrium combination. A running-time analysis
yields our next result.

Theorem 5 There exists an O(n?.n3, + n3.nt,)-time algorithm to compute all NE consistent with

Ordering[I| of an uniform-transfer n-player SC+SS a-IDS game, where n. = n®¢ + n®s.

3.2.4 Computing all MSNE of arbitrary o-IDS games is intractable, in general

In this section, we prove that determining whether there exists a PSNE consistent with a partial-
assignment of the actions to some players is NP-complete, even if the transfer probability takes only
two values: d; € {0,q} for g € (0,1).

We consider the pure-Nash-extension problem (8] for binary-action n-player games that takes as
input a description of the game and a partial assignment a € {0, 1, x}". We want to know whether
there is a complete assignment b € {0, 1}" consistent with a. Indeed, computing all NE is at least
as difficult as the pure-Nash extension problem. Appendix [C] presents proofs of our next results.

Table 2: Level of Investment of SC+SS a-IDS Games at Nash Equilibrium

High % a; ~ N(0.4,0.2) a; ~ N(0.8,0.2) a; €0,1]

Datasets %SS %SC Invest %SS Invest %SS %SC Invest %SS Invest %SS %SC Invest %SS Invest
Karate Club 76.18 100.00 21.37 12.35 100.00 0.00 56.18 100.00 14.88
ILes Miserables || 75.45 100.00 17.93 11.82 99.85 0.67 55.06 99.40 14.84
College Football|| 75.65 100.00 15.47 11.57 100.00 0.00 55.39 100.00 13.46
Power Grid 7547 97.76* 19.38%* 12.82 98.79%* 2.13% 55.01 97.31%* 15.90%*
'Wiki Vote 75.55 97.46%* 17.87* 12.78 98.92%* 2.06* 55.02 97.00%* 14.75%*
[Email Enron 75.29 95.97* 19.91* 12.53 97.92* 2.24% 54.78 94.39%* 16.84%*
Low &1 o ~ N(0.4,0.2) a; ~ N(0.8,0.2) a; €10,1]

Karate Club 99.41 100.00 49.64 60.59 100.00 23.19 86.18 100.00 41.34
ILes Miserables || 98.96 100.00 51.17 59.22 100.00 28.34 85.71 100.00 49.26
College Football|| 98.87 100.00 60.42 61.48 100.00 28.30 86.35 100.00 54.87
Power Grid 98.68 99.13* 49.45%* 59.41 98.81* 28.66* 85.20 99.13%* 45.07%*
'Wiki Vote 98.62 98.30%* 46.50* 59.89 97.38%* 27.54% 85.01 98.51%* 44.45%*
[Email Enron 98.73 97.96%* 49.80%* 59.85 96.48%* 29.32% 84.94 98.0%* 44.72%*

#=0.001-NE, **=0.005-NE, %SS (%SC) = Percentage of SS (SC) players, A (11, o2) =normal distribution with mean g and variance o>

Theorem 6 The pure-Nash extension problem for n-player SC a-IDS games is NP-complete.
A similar proof argument yields the following computational-complexity result.

Theorem 7 The pure-Nash extension problem for n-player SS a-IDS games is NP-complete.
Combining Theorems [6|and[7] yields the next corollary.

Corollary 1 The pure-Nash extension problem for n-player SC+SS a-IDS games is NP-complete.

4 Preliminary Experimental Results

To illustrate the impact of the « parameter on a-IDS games, we perform experiments on randomly-
generated instances of a-IDS games in which we compute a possibly approximate NE. Given € > 0,
in an approximate e-NE each individual’s unilateral deviation cannot reduce the individual’s ex-
pected cost by more than €. The underlying structures of the instances use network graphs from
publicly-available, real-world datasets [6l [16-20]. Appendix |D|of the supplementary material pro-
vides more specific information on the size of the different graphs in the real-world dataset. The
number of nodes/players ranges from 34 to ~ 37K while the number of edges ranges from 78 to
~ 368 K. The table lists the graphs in increasing size (from top to bottom). To generate each instance
we generate (1) C;/L; where C; = 103 (1+random(0, 1)) and L; = 10 (or L; = 10*/3) to obtain
a low (high) cost-to-loss ratio and «; values as specified in the experiments; (2) p; such that Aj¢ or
A#* is [0, 1]; and (3) g;;’s consistent with probabilistic constraints relative to the other parameters
(e pi+Y, jepPa(i) Gt < 1). On each instance, we initialize the players’ mixed strategies uniformly
at random and run a simple gradient-dynamics heuristic based on regret minimization [21H23]] until
we reach an (¢) NE. In short, we update the strategies of all non-e-best-responding players % at each

round ¢ according to ml(-tﬂ) — a;l(-t) —10 x (M;(1, xl()?(i)) — M;(0, xﬁ,?(i))). Note that for e-NE to be
well-defined, all M;s’ values are normalized. Given that our main interest is to study the structural
properties of arbitrary a-IDS games, our hardness results of computing NE in such games justify
the use of a heuristic as we do here. (Kearns and Ortiz [8] and Chan et al. [7] also used a similar
heuristic in their experiments.). Table [2| shows the average level of investment at NE over ten runs
on each graph instance. We observe that higher o values generate more SC players, consistent with
the nature of the game instances. Almost all of the SC players invest while most of the SS players
do not invest, regardless of the number of players in the games and the « values. This makes sense
because of the nature of the SC and SS players. Going from high to low cost-to-loss ratio, we see
that the number of SS players and the percentage of SS players investing at a NE increase across
all « values. In both high and low cost-to-loss ratio cases, we see a similar behavior in which the
majority of the SS players do not invest (= 50%).

Acknowledgments
This material is based upon work supported by an NSF Graduate Research Fellowship (first author)
and an NSF CAREER Award 1IS-1054541 (second author).

References

[1] Geoffrey Heal and Howard Kunreuther. Interdependent security: A general model. Working
Paper 10706, National Bureau of Economic Research, August 2004.

[2] Geoffrey Heal and Howard Kunreuther. IDS models of airline security. Journal of Conflict
Resolution, 49(2):201-217, April 2005.

[3] Geoftrey Heal and Howard Kunreuther. The vaccination game. Working paper, Wharton Risk
Management and Decision Processes Center, January 2005.

[4] Konstantinos Gkonis and Harilaos Psaraftis. Container transportation as an interdependent
security problem. Journal of Transportation Security, 3:197-211, 2010.

[5] Aron Laszka, Mark Felegyhazi, and Levente Buttyan. A survey of interdependent information
security games. ACM Comput. Surv., 47(2):23:1-23:38, August 2014.

[6] W.W. Zachary. An information flow model for conflict and fission in small groups. Journal of
Anthropological Research, 33:452-473, 1977.

[7] Hau Chan, Michael Ceyko, and Luis E. Ortiz. Interdependent defense games: Modeling inter-
dependent security under deliberate attacks. In Proceedings of the Conference on Uncertainty
in Artificial Intelligence, UAI *12, pages 152-162, 2012.

[8] Michael Kearns and Luis E. Ortiz. Algorithms for interdependent security games. In Advances
in Neural Information Processing Systems, NIPS *04, pages 561-568, 2004.

[9] Michael Kearns, Michael Littman, and Satinder Singh. Graphical models for game theory.
In Proceedings of the Conference on Uncertainty in Artificial Intelligence, UAI’ 01, pages
253-260, 2001.

[10] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Pure Nash equilibria: Hard and
easy games. In Proceedings of the 9th Conference on Theoretical Aspects of Rationality and
Knowledge, TARK ’03, pages 215-230, 2003.

[11] John F. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences of the United States of America, 35(1):48-49, Jan. 1950.

[12] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity of
computing a Nash equilibrium. In Proceedings of the Thirty-eighth Annual ACM Symposium
on Theory of Computing, STOC °06, pages 71-78, 2006.

[13] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player
Nash equilibria. J. ACM, 56(3):14:1-14:57, May 2009.

[14] Edith Elkind, Leslie Ann Goldberg, and Paul Goldberg. Nash equilibria in graphical games on
trees revisited. In Proceedings of the 7th ACM Conference on Electronic Commerce, EC 06,
pages 100-109, 2006.

[15] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[16] Donald E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing. ACM,
New York, NY, USA, 1993.

[17] M. Girvan and M. E. J. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12):7821-7826, 2002.

[18] D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ networks. Nature, 393:
440442, 1998.

[19] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in social media. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10,
pages 1361-1370, 2010.

[20] Bryan Klimt and Yiming Yang. Introducing the Enron corpus. In CEAS, 2004.

[21] Drew Fudenberg and David K. Levine. The Theory of Learning in Games, volume 1 of MIT
Press Books. The MIT Press, June 1998.

[22] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, editors. Algorithmic Game
Theory. Cambridge University Press, 2007.

[23] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic,
and Logical Foundations. Cambridge University Press, Cambridge, UK, 2009.

