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Abstract

We consider logistic regression with arbitrary outliers in the covariate matrix. We
propose a new robust logistic regression algorithm, called RoLR, that estimates
the parameter through a simple linear programming procedure. We prove that
RoLR is robust to a constant fraction of adversarial outliers. To the best of our
knowledge, this is the first result on estimating logistic regression model when the
covariate matrix is corrupted with any performance guarantees. Besides regres-
sion, we apply RoLR to solving binary classification problems where a fraction of
training samples are corrupted.

1 Introduction

Logistic regression (LR) is a standard probabilistic statistical classification model that has been
extensively used across disciplines such as computer vision, marketing, social sciences, to name a
few. Different from linear regression, the outcome of LR on one sample is the probability that it is
positive or negative, where the probability depends on a linear measure of the sample. Therefore,
LR is actually widely used for classification. More formally, for a sample z; € RP whose label is
denoted as y;, the probability of y; being positive is predicted to be P{y; = +1} = ﬁ given
the LR model parameter 3. In order to obtain a parameter that performs well, often a set of labeled
samples {(21,91),...,(@n,yn)} are collected to learn the LR parameter S which maximizes the
induced likelihood function over the training samples.

However, in practice, the training samples z, ..., x, are usually noisy and some of them may
even contain adversarial corruptions. Here by “adversarial”, we mean that the corruptions can be
arbitrary, unbounded and are not from any specific distribution. For example, in the image/video
classification task, some images or videos may be corrupted unexpectedly due to the error of sen-
sors or the severe occlusions on the contained objects. Those corrupted samples, which are called
outliers, can skew the parameter estimation severely and hence destroy the performance of LR.

To see the sensitiveness of LR to outliers more intuitively, consider a simple example where all
the samples z;’s are from one-dimensional space R, as shown in Figure [I} Only using the inlier
samples provides a correct LR parameter (we here show the induced function curve) which explains
the inliers well. However, when only one sample is corrupted (which is originally negative but now
closer to the positive samples), the resulted regression curve is distracted far away from the ground
truth one and the label predictions on the concerned inliers are completely wrong. This demonstrates
that LR is indeed fragile to sample corruptions. More rigorously, the non-robustness of LR can be
shown via calculating its influence function [7]] (detailed in the supplementary material).
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Figure 1: The estimated logistic regression curve (red solid) is far away from the correct one (blue
dashed) due to the existence of just one outlier (red circle).

As Figure [I|demonstrates, the maximal-likelihood estimate of LR is extremely sensitive to the pres-
ence of anomalous data in the sample. Pregibon also observed this non-robustness of LR in [14].
To solve this important issue of LR, Pregibon [14], Cook and Weisberg [4] and Johnson [9] pro-
posed procedures to identify observations which are influential for estimating 5 based on certain
outlyingness measure. Stefanski et al. [16,/10] and Bianco et al. [2] also proposed robust estimators
which, however, require to robustly estimating the covariate matrix or boundedness on the outliers.
Moreover, the breakdown poin of those methods is generally inversely proportional to the sample
dimensionality and diminishes rapidly for high-dimensional samples.

We propose a new robust logistic regression algorithm, called RoLR, which optimizes a robustified
linear correlation between response y and linear measure (3, ) via an efficient linear programming-
based procedure. We demonstrate that the proposed RoLR achieves robustness to arbitrarily covari-
ate corruptions. Even when a constant fraction of the training samples are corrupted, RoLR is still
able to learn the LR parameter with a non-trivial upper bound on the error. Besides this theoretical
guarantee of RoLR on the parameter estimation, we also provide the empirical and population risks
bounds for RoLR. Moreover, RoLR only needs to solve a linear programming problem and thus is
scalable to large-scale data sets, in sharp contrast to previous LR optimization algorithms which typ-
ically resort to (computationally expensive) iterative reweighted method [11]. The proposed RoLR
can be easily adapted to solving binary classification problems where corrupted training samples
are present. We also provide theoretical classification performance guarantee for RoLR. Due to the
space limitation, we defer all the proofs to the supplementary material.

2 Related Works

Several previous works have investigated multiple approaches to robustify the logistic regression
(LR) 15011301170 (164 110]. The majority of them are M-estimator based: minimizing a complicated
and more robust loss function than the standard loss function (negative log-likelihood) of LR. For
example, Pregiobon [15] proposed the following M-estimator:

§ = argmin 3 p(6(9)),
=1

where ¢;(-) is the negative log-likelihood of the ith sample z; and p(-) is a Huber type function [§]]
such as

t, ift <g,
p(t) = :
2y/tc—c, ift>c,
with ¢ a positive parameter. However, the result from such estimator is not robust to outliers with
high leverage covariates as shown in [3]].

'Tt is defined as the percentage of corrupted points that can make the output of an algorithm arbitrarily bad.



Recently, Ding et al [6] introduced the T-logistic regression as a robust alternative to the standard
LR, which replaces the exponential distribution in LR by ¢-exponential distribution family. However,
T-logistic regression only guarantees that the output parameter converges to a local optimum of the
loss function instead of converging to the ground truth parameter.

Our work is largely inspired by following two recent works [3} |13] on robust sparse regression.
In [3], Chen ef al. proposed to replace the standard vector inner product by a trimmed one, and
obtained a novel linear regression algorithm which is robust to unbounded covariate corruptions. In
this work, we also utilize this simple yet powerful operation to achieve robustness. In [13], a convex
programming method for estimating the sparse parameters of logistic regression model is proposed:

max Y yife B), st 18 < V5. 18] < 1,
=1

where s is the sparseness prior parameter on 8. However, this method is not robust to corrupted
covariate matrix. Few or even one corrupted sample may dominate the correlation in the objective
function and yield arbitrarily bad estimations. In this work, we propose a robust algorithm to remedy
this issue.

3 Robust Logistic Regression

3.1 Problem Setup

We consider the problem of logistic regression (LR). Let SP~! denote the unit sphere and B denote
the Euclidean unit ball in RP. Let 5* be the groundtruth parameter of the LR model. We assume
the training samples are covariate-response pairs {(z;,y;)}1=/" C RP x {—1,+1}, which, if not
corrupted, would obey the following LR model:

Py = +1} = 7((8%, =) + vi), (D
where the function 7(+) is defined as: 7(z) = 1+i—z . The additive noise v; ~ N(0,02) is an i.i.d.

Gaussian random variable with zero mean and variance of ag. In particular, when we consider the
noiseless case, we assume o2 = 0. Since LR only depends on (3*,z;), we can always scale the
samples z; to make the magnitude of 8* less than 1. Thus, without loss of generality, we assume
that 8* € SP~1.

Out of the n + n; samples, a constant number (1) of the samples may be adversarially corrupted,
and we make no assumptions on these outliers. Throughout the paper, we use A\ £ ~L to denote the
outlier fraction. We call the remaining n non-corrupted samples “authentic” samples, which obey
the following standard sub-Gaussian design [[12} 3]

Definition 1 (Sub-Gaussian design). We say that a random matrix X = [x1,...,x,] € RP*" is
sub-Gaussian with parameter (%Zx, %03) if: (1) each column x; € RP is sampled independently
from a zero-mean distribution with covariance + %, and (2) for any unit vector u € RP, the random
variable u" x; is sub-Gaussian with paramete ﬁaz.

The above sub-Gaussian random variables have several nice concentration properties, one of which
is stated in the following Lemma [12].

Lemma 1 (Sub-Gaussian Concentration [12]). Let Xi,...,X, be n iid. zero-mean sub-
Gaussian random variables with parameter o, /~/n and variance at most o2 /n. Then we have

|Z?:1 X2 — O’?E| < 1024/ 82 with probability of at least 1 — p~2 for some absolute constant c1.

=&,
Based on the above concentration property, we can obtain following bound on the magnitude of a
collection of sub-Gaussian random variables [3].

Lemma 2. Suppose X1, ..., X,, are n independent sub-Gaussian random variables with parameter

oz/v/n. Then we have max;—1 .. n|X;| < 4oy+/(logn + logp)/n with probability of at least
1—p2

Here, the parameter means the sub-Gaussian norm of the random variable Y, ||Y|y, =
sup,s, g P (E[Y )M



Also, this lemma provides a rough bound on the magnitude of inlier samples, and this bound serves
as a threshold for pre-processing the samples in the following RoLR algorithm.

3.2 RoLR Algorithm

We now proceed to introduce the details of the proposed Robust Logistic Regression (RoLR) algo-
rithm. Basically, RoLR first removes the samples with overly large magnitude and then maximizes
a trimmed correlation of the remained samples with the estimated LR model. The intuition behind
the RoLR maximizing the trimmed correlation is: if the outliers have too large magnitude, they will
not contribute to the correlation and thus not affect the LR parameter learning. Otherwise, they have
bounded affect on the LR learning (which actually can be bounded by the inlier samples due to our
adopting the trimmed statistic). Algorithm|I] gives the implementation details of RoLR.

Algorithm 1 RoLR

Input: Contaminated training samples {(z1,¥y1),- .-, (n4nys Yntn, ) }> an upper bound on the
number of outliers n1, number of inliers n and sample dimension p.

Initialization: Set 7' = 4./log p/n + log n/n.

Preprocessing: Remove samples (x;, y;) whose magnitude satisfies ||z;|| > T

Solve the following linear programming problem (see Eqn. (3)):

B = argmaxZ[Mﬁa 2)]0)-

BEB;

Output: 8.

Note that, within the RoLR algorithm, we need to optimize the following sorted statistic:
max y(B,x)](i)- 2)
max i:l[ (B 7))
where [](;) is a sorted statistic such that [2]1) < [2](2) < ... < [2](n), and z denotes the involved
variable. The problem in Eqn. (2 is equivalent to minimizing the summation of top n variables,
which is a convex one and can be solved by an off-the-shelf solver (such as CVX). Here, we note that
it can also be converted to the following linear programming problem (with a quadratic constraint),
which enjoys higher computational efficiency. To see this, we first introduce auxiliary variables
t; € {0, 1} as indicators of whether the corresponding terms y; {3, —z;) fall in the smallest n ones.
Then, we write the problem in Eqn. (2) as
n+mny n+ni
max min ti - yi(B,x;), s.t. t; <n,0<¢t <1
peB; b o < > ;

Here the constraints of 31" t; < n,0 < t; < 1 are from standard reformulation of 3" ¢, =

n,t; € {0,1}. Now, the above problem becomes a max-min linear programming. To decouple the
variables (5 and t;, we turn to solving the dual form of the inner minimization problem. Let v, and
&; be the Lagrange multipliers for the constraints Z?:lnl t; < nandt; < 1 respectively. Then the
dual form w.r.t. ¢; of the above problem is:
n+ny

max —v - n — Z &, stoyi(Byxi) +v+&>0,8€ By, v>0,§ > 0. (3)

B,v,&i Py
Reformulating logistic regression into a linear programming problem as above significantly en-
hances the scalability of LR in handling large-scale datasets, a property very appealing in practice,
since linear programming is known to be computationally efficient and has no problem dealing with
up to 1 x 106 variables in a standard PC.

3.3 Performance Guarantee for RoLR

In contrast to traditional LR algorithms, RoLR does not perform a maximal likelihood estimation.
Instead, RoOLR maximizes the correlation y; (3, ;) . This strategy reduces the computational com-
plexity of LR, and more importantly enhances the robustness of the parameter estimation, using



the fact that the authentic samples usually have positive correlation between the y; and (3, z;), as
described in the following lemma.

Lemma 3. Fix 3 € SP~'. Suppose that the sample (x,vy) is generated by the model described in
(1. The expectation of the product y{3, ) is computed as:

Ey(f,x) = Esech®(g/2),

where g € N'(0,02 + 02) is a Gaussian random variable and o2 is the noise level in (). Further-
more, the above expectation can be bounded as follows,

(P+(Uz’o':%) < Ey<5ax> < 90_(0370325)'

,02) and p~(02,02) are positive. In particular, they can take the form of
s

2 2 2 2
sech? (—H_;e> and = (02,02) = % + %= sech? (—H';e )
The following lemma shows the difference of correlations is an effective surrogate for the difference
of the LR parameters. Thus we can always minimize the difference of || 5 — 5*|| through maximizing
Zi Yi <5 , L 7,> .

Lemma 4. Fix 3 € SP~1 as the groundtruth parameter in (I) and 3’ € BY. Denote 1 = Ey(3, z).

Then
Ey(6',z) = n(B,8'),
and thus,

E [y{8,2) —y(8', )] = n(1 = (8,8)) = 7118 - Bl

Based on these two lemmas, along with some concentration properties of the inlier samples (shown
in the supplementary material), we have the following performance guarantee of RoLR on LR model
parameter recovery.

Theorem 1 (RoLR for recovering LR parameter). Let A = "L be the outlier fraction, B be the
output of Algorithm[I} and 3* be the ground truth parameter. Suppose that there are n authentic
samples generated by the model described in (I). Then we have, with probability larger than 1 —
4exp(—can/8),

. ~(02,02) 2\ +4+5VA 8\ 1 1
18- <& o) 2ATALSVN) fp,  BA , flogp, logn,

Here c5 is an absolute constant.

Remark 1. To make the above results more explicit, we consider the asymptotic case where p/n —
0. Thus the above bounds become
A * © (ng 0—37)
18— 8% < Dm,
which holds with probability larger than 1 — 4 exp(—can/8). In the noiseless case, i.e., 0. = 0, and
assuming o2 = 1, we have o (02) = % sech? (1) ~ 0.2622 and ¢~ (02 +1) = $+3 sech” (1) ~
0.4644. The ratio is 0~ /T =~ 1.7715. Thus the bound is simplified to:

18 = 87| < 3.54A.

Recall that 3, 3* € SP~1 and the maximal value of ||B — B*|| is 2. Thus, for the above result to be
non-trivial, we need 3.54)\ < 2, namely A < 0.56. In other words, in the noiseless case, the RoLR
is able to estimate the LR parameter with a non-trivial error bound (also known as a “breakdown
point”) with up to 0.56/1.56 x 100% = 36% of the samples being outliers.

4 Empirical and Population Risk Bounds of RoLR

Besides the parameter recovery, we are also concerned about the prediction performance of the
estimated LR model in practice. The standard prediction loss function £(-, -) of LR is a non-negative
and bounded function, and is defined as:

(i), B) !

1+ exp{—y:BTx;}

“4)



The goodness of an LR predictor 3 is measured by its population risk:

R(ﬂ) = EP(X,Y)K((‘Ta y)7 B)a
where P(X,Y") describes the joint distribution of covariate X and response Y. However, the pop-
ulation risk rarely can be calculated directly as the distribution P(X,Y") is usually unknown. In

practice, we often consider the empirical risk, which is calculated over the provided training sam-
ples as follows:

Remp(ﬂ) = ZE((l‘zayz)’ﬁ)

Note that the empirical risk is computed only over the authentic samples, hence cannot be directly
optimized when outliers exist.

3=

Based on the bound of || 3— 3*| provided in Theorem we can easily obtain the following empirical
risk bound for RoLR as the LR loss function given in Eqn. (4)) is Lipschitz continuous.

Corollary 1 (Bound on the empirical risk). LetB be the output ofAlgorithm and B* be the optimal
parameter minimizing the empirical risk. Suppose that there are n authentic samples generated by

the model described in (T). Define X = 40,+/(logn + logp)/n. Then we have, with probability
larger than 1 — 4 exp(—can/8), the empirical risk of B is bounded by,

— (42 42 2 4
P (0208) 20+ +5ﬁ)\/§

pt(o2,02)  ¢t(og03)

er~x

8\o2 /1o logn
+ - 2w2 gp+ g }
pt(o2, o)V n n

Given the empirical risk bound, we can readily obtain the bound on the population risk by referring
to standard generalization results in terms of various function class complexities. Some widely used
complexity measures include the VC-dimension [18]] and the Rademacher and Gaussian complex-
ity [1]]. Compared with the Rademacher complexity which is data dependent, the VC-dimension is
more universal although the resulting generalization bound can be slightly loose. Here, we adopt the
VC-dimension to measure the function complexity and obtain the following population risk bound.

Corollary 2 (Bound on the population risk). Let B be the output of Algorithm and [3* be the opti-
mal parameter. Suppose the parameter space SP~' > 3 has finite VC dimension d. There are n au-
thentic samples are generated by the model described in (). Define X = 40,+/(logn + logp)/n.
Then we have, with high probability larger larger than 1 — 4 exp(—can/8) — 0, the population risk

of B is bounded by,

Reunp(B) = Remp(B7) < X{

er-x

A . o (02,02) 200+4+5VN) [p 8\o2 logp logn
_ < g £
R(B) - R(F") = X {2/\@+(J2 o2) pt(o2,02) n  @t(c2,02) n + n

e’ x e’ x e’ x

e[ 4F 12(1/5) } .

Here both co and c3 are absolute constants.

5 Robust Binary Classification

5.1 Problem Setup

Different from the sample generation model for LR, in the standard binary classification setting,
the label y; of a sample x; is deterministically determined by the sign of the linear measure of the
sample (0*, z;). Namely, the samples are generated by the following model:

y; = sign ((B%, @) +v;) . )
Here v; is a Gaussian noise as in Eqn. (I). Since y; is deterministically related to (3*,z;), the
expected correlation Ey(3, ) achieves the maximal value in this setup (ref. Lemma , which
ensures that the RoLR also performs well for classification. We again assume that the training
samples contain n authentic samples and at most n; outliers.



5.2 Performance Guarantee for Robust Classification

Lemma 5. Fix 3 € SP~1. Suppose the sample (z,vy) is generated by the model described in ().
The expectation of the product y{8, x) is computed as:

[ 20
Ey(8,x) = m~

Comparing the above result with the one in Lemma |3| here for the binary classification, we can
exactly calculate the expectation of the correlation, and this expectation is always larger than that of
the LR setting. The correlation depends on the signal-noise ratio o,,/o.. In the noiseless case, o, =
0 and the expected correlation is o,+/2/m, which is well known as the half-normal distribution.
Similarly to analyzing RoLR for LR, based on Lemma 5] we can obtain the following performance
guarantee for RoLR in solving classification problems.

Theorem 2. Let B be the output of Algorithm |1} and B* be the optimal parameter minimizing the
empirical risk. Suppose there are n authentic samples generated by the model described by ().
Then we have, with large probability larger than 1 — 4 exp(—can/8),

R 2 2 2 2 1 1
16— B*]l2 < 22X +2(A + 4+ 5VN) (02 +0u)mp +er)7rp + 8/\\/(06 + U”’”)ﬂ\/ oep , 08h
205n 2 n n

The proof of Theorem E] is similar to that of Theorem E} Also, similar to the LR case, based on
the above parameter error bound, it is straightforward to obtain the empirical and population risk
bounds of RoLR for classification. Due to the space limitation, here we only sketch how to obtain
the risk bounds.

For the classification problem, the most natural loss function is the 0 — 1 loss. However, 0 — 1
loss function is non-convex, non-smooth, and we cannot get a non-trivial function value bound in
terms of ||3 — 3*|| as we did for the logistic loss function. Fortunately, several convex surrogate
loss functions for 0 — 1 loss have been proposed and achieve good classification performance, which
include the hinge loss, exponential loss and logistic loss. These loss functions are all Lipschitz
continuous and thus we can bound their empirical and then population risks as for logistic regression.

6 Simulations

In this section, we conduct simulations to verify the robustness of RoLR along with its applicability
for robust binary classification. We compare RoLR with standard logistic regression which estimates
the model parameter through maximizing the log-likelihood function.

We randomly generated the samples according to the model in Eqn. for the logistic regression
problem. In particular, we first sample the model parameter 3 ~ N(0, I,) and normalize it as
B := B/]|B]|2. Here p is the dimension of the parameter, which is also the dimension of samples.
The samples are drawn i.i.d. from z; ~ N(0,%,) with 3, = 1I,,, and the Gaussian noise is sampled
as v; ~ N(0, o.). Then, the sample label y; is generated according to P{y; = +1} = 7((3, z;)+v;)
for the LR case. For the classification case, the sample labels are generated by y; = sign ({83, ;)+v;)
and additional n, = 1, 000 authentic samples are generated for testing. The entries of outliers z,, are
i.i.d. random variables from uniform distribution [—c,, o,] with o, = 10. The labels of outliers are
generated by y, = sign((—0, x,)). That is, outliers follow the model having opposite sign as inliers,
which according to our experiment, is the most adversarial outlier model. The ratio of outliers over
inliers is denoted as A = n/n, where n; is the number of outliers and n is the number of inliers.
We fix n = 1,000 and the A varies from 0 to 1.2, with a step of 0.1.

We repeat the simulations under each outlier fraction setting for 10 times and plot the performance
(including the average and the variance) of RoLR and ordinary LR versus the ratio of outliers to
inliers in Figure [2| In particular, for the task of logistic regression, we measure the performance
by the parameter prediction error || B — B ||. For classification, we use the classification error rate
on test samples — #(§; # vi)/n¢ — as the performance measure. Here §; = sign(3 z;) is the
predicted label for sample z; and y; is the ground truth sample label. The results, shown in Figure|2]
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Figure 2: Performance comparison between RoLR, ordinary LR and LR with the thresholding pre-
processing as in RoLR (LR+P) for (a) regression parameter estimation and (b) classification, under
the setting of o, = 0.5, 0, = 10, p = 20 and n = 1, 000. The simulation is repeated for 10 times.

clearly demonstrate that RoLR performs much better than standard LR for both tasks. Even when
the outlier fraction is small (A = 0.1), RoLR already outperforms LR with a large margin. From
Figure [2(a)l we observe that when A > 0.3, the parameter estimation error of LR reaches around

1.3, which is pretty unsatisfactory since simply outputting a trivial solution B = 0 has an error of
1 (recall ||B*|]2 = 1). In contrast, ROLR guarantees the estimation error to be around 0.5, even
though A = 0.8, i.e., around 45% of the samples are outliers. To see the role of preprocessing in
RoLR, we also apply such preprocessing to LR and plot its performance as “LR+P” in the figure. It
can be seen that the preprocessing step indeed helps remove certain outliers with large magnitudes.
However, when the fraction of outliers increases to A = 0.5, more outliers with smaller magnitudes
than the pre-defined threshold enter the remained samples and increase the error of “LR+P” to be
larger than 1. This demonstrates maximizing the correlation is more essential than the thresholding
for the robustness gain of RoLR. From results for classification, shown in Figure 2(b)] we observe
that again from A = 0.2, LR starts to breakdown. The classification error rate of LR achieves 0.8,
which is even worse than random guess. In contrast, RoLR still achieves satisfactory classification
performance with classification error rate around 0.4 even with A — 1. But when A > 1, RoLR also
breaks down as outliers dominate in the training samples.

When there is no outliers, with the same inliers (n = 1 x 103 and p = 20), the error of LR in logistic
regression estimation is 0.06 while the error of RoLR is 0.13. Such performance degradation in
RoLR is due to that RoLR maximizes the linear correlation statistics instead of the likelihood as in
LR in inferring the regression parameter. This is the price RoLR needs to pay for the robustness.
We provide more investigations and also results for real large data in the supplementary material.

7 Conclusions

We investigated the problem of logistic regression (LR) under a practical case where the covariate
matrix is adversarially corrupted. Standard LR methods were shown to fail in this case. We proposed
a novel LR method, RoLR, to solve this issue. We theoretically and experimentally demonstrated
that RoLR is robust to the covariate corruptions. Moreover, we devised a linear programming algo-
rithm to solve RoLR, which is computationally efficient and can scale to large problems. We further
applied RoLR to successfully learn classifiers from corrupted training samples.
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