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Abstract

We present an inference method for Gaussian graphical models when only pair-
wise distances of n objects are observed. Formally, this is a problem of esti-
mating an n× n covariance matrix from the Mahalanobis distances dMH(xi,xj),
where object xi lives in a latent feature space. We solve the problem in fully
Bayesian fashion by integrating over the Matrix-Normal likelihood and a Matrix-
Gamma prior; the resulting Matrix-T posterior enables network recovery even
under strongly correlated features. Hereby, we generalize TiWnet [19], which as-
sumes Euclidean distances with strict feature independence. In spite of the greatly
increased flexibility, our model neither loses statistical power nor entails more
computational cost. We argue that the extension is highly relevant as it yields
significantly better results in both synthetic and real-world experiments, which is
successfully demonstrated for a network of biological pathways in cancer patients.

1 Introduction

In this paper we introduce the Translation-invariant Matrix-T process (TiMT) for estimating Gaus-
sian graphical models (GGMs) from pairwise distances. The setup is particularly interesting, as
many applications only allow distances to be observed in the first place. Hence, our approach is
capable of inferring a network of probability distributions, of strings, graphs or chemical structures.
We begin by stating the setup of classical GGMs: The basic building block is matrix X̃ ∈ Rn×d
which follows the Matrix-Normal distribution [8]

X̃ ∼ N (M, Ψ⊗ Id). (1)

The goal is to identify Ψ−1, which encodes the desired dependence structure. More specifically, two
objects (= rows) are conditionally independent given all others if and only if Ψ−1 has a correspond-
ing zero element. This is often depicted as an undirected graph (see Figure 1), where the objects are
vertices and (missing) edges represent their conditional (in)dependencies.
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Figure 1: Precision matrix Ψ−1 and its interpretation as a graph (self-loops are typically omitted).

Prabhakaran et al. [19] formulated the Translation-invariant Wishart Network (TiWnet), which treats
X̃ as a latent matrix and only requires their squared Euclidean distances Dij = dE(x̃i, x̃j)

2, where
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x̃i ∈ Rd is the ith row of X̃ . Also, SE = X̃X̃> refers to the n × n inner-product matrix, which is
linked via Dij = SE,ii + SE,jj − 2SE,ij . Importantly, the transition to distances implies that means
of the form M = 1nw

> with w ∈ Rd are not identifiable anymore. In contrast to the above, we
start off by assuming a matrix

X := X̃Σ
1
2 ∼ N (M, Ψ⊗ Σ), (2)

where the columns (= features) are correlated as defined by Σ ∈ Rd×d. Due to this change, the
inner-product becomes SMH = XX> = X̃ΣX̃>. If we directly observed X as in classical GGMs,
then Σ could be removed to recover X̃ , however, in the case of distances, the impact of Ψ and Σ is
inevitably mixed. A suitable assumption is therefore the squared Mahalanobis distance

Dij = dMH(xi,xj)
2 = (x̃i − x̃j)

>Σ(x̃i − x̃j), (3)

which dramatically increases the degree of freedom for inference about Ψ. Recall that in our setting
only D is observed and the following is latent: d, X , X̃ , S := SMH, Σ and M = 1nw

>.

The main difficulty comes from the inherent mixture effect of Ψ and Σ in the distances, which blurs
or obscures what is relevant in GGMs. For example, if we naively enforce Σ = Id, then all of the
information is solely attributed to Ψ. However, in applications where the true Σ 6= Id, we would
consequently infer false structure, up to a degree where the result is completely mislead by feature
correlation.

In pure Bayesian fashion, we specify a prior belief for Σ and average over all realizations weighted
by the Gaussian likelihood. For a conjugate prior, this leads to the Matrix-T distribution, which
forms the core part of our approach. The resulting model generalizes TiWnet and is flexible enough
to account for arbitrary feature correlation.

In the following, we briefly describe a practical application with all the above properties.

Example: A Network of Biological Pathways Using DNA microarrays, it is possible to mea-
sure the expression levels of thousands of genes in a patient simultaneously, however, each gene is
highly prone to noise and only weakly informative when analyzed on its own. To solve this problem,
the focus is shifted towards pathways [5], which can be seen as (non-disjoint) groups of genes that
contribute to high-level biological processes. The underlying idea is that genes exhibit visible pat-
terns only when paired with functionally related entities. Hence, every pathway has a characteristic
distribution of gene expression values, which we compare via the so-called Bhattacharyya distance
[2, 11]. Our goal is then to derive a network between pathways, but what if the patients (= features)
from whom we obtained the cells were correlated (sex, age, treatment, . . .)?

Σ = Id Σ = Id Σ = IdΣ Σ

X D

M = 1nw
t

S XX= t

M = v1t M = 0n×dd

TiWnet TiMTgLmodel

input

means

feature
correlation

gLTRCM

Figure 2: The big picture. Different assumptions about M and Σ lead to different models.

Related work Inference in GGMs is generally aimed at Ψ−1 and therefore every approach relies
on Eq. (1) or (2), however, they differ in their assumptions about M and Σ. Figure 2 puts our setting
into a larger context and describes all possible configurations in a single scheme. Throughout the
paper, we assume there are n objects and an unknown number of d latent features. Since our inputs
are pairwise distances D, the mean is of the form M = 1nw

>, but at the same time, we do not
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impose any restriction on Σ. A complementary assumption is made in TiWnet [19], which enforces
strict feature independence.

For the models based on matrix X , the mean matrix is defined as M = v1>d with v ∈ Rn. This
choice is neither better nor worse—it does not rely on pairwise distances and hence addresses a
different question. By further assuming Σ = Id, we arrive at the graphical LASSO (gL) [7] that
optimizes the likelihood under an L1 penalty. The Transposable Regularized Covariance Model
(TRCM) [1] is closely related, but additionally allows arbitrary Σ and alternates between estimating
Ψ−1 and Σ−1. The basic configuration for S, M = 0n×d and Σ = Id, also leads to the model of
gL, however this rarely occurs in practice.

2 Model

On the most fundamental level, our task deals with incorporating invariances into the Gaussian
model, meaning it must not depend on any unrecoverable feature information, i.e. Σ, M = 1nw

>

(vanishes for distances) and d. The starting point is the log-likelihood of Eq. (2)

`(W,Σ,M ;X) = d
2 log |W | − n

2 log |Σ| − 1
2 tr
(
W (X −M)Σ−1(X −M)>

)
, (4)

where we used the shorthand W := Ψ−1. In the literature, there exist two conceptually different
approaches to achieve invariances: the first is the classical marginal likelihood [12], closely related
to the profile likelihood [16], where a nuisance parameter is either removed by a suitable statistic
or replaced by its corresponding maximum likelihood estimate [9]. The second approach follows
the Bayesian marginal likelihood by introducing a prior and integrating over the product. Hereby,
the posterior is a weighted average, where the weights are distributed according to prior belief. The
following sections will discuss the required transformations of Eq. (4).

2.1 Marginalizing the Latent Feature Correlation

2.1.1 Classical Marginal Likelihood

Let us begin with the attempt to remove Σ by explicit reconstruction, as done in McCullagh [13].
Computing the derivative of Eq. (4) with respect to Σ and setting it to zero, we arrive at the maximum
likelihood estimate Σ̂ = 1

n (X −M)>W (X −M), which leads to

`(W,M ;X, Σ̂) = d
2 log |W | − n

2 log |Σ̂| − 1
2 tr(W (X −M)Σ̂−1(X −M)>) (5)

= d
2 log |W | − n

2 log |W (X −M)(X −M)>|. (6)

Eq. (6) does not depend on Σ anymore, however, note that there is a hidden implication in Eq. (5):
Σ̂−1 only exists if Σ̂ has full rank, or equivalently, if d ≤ n. Further, even d = n must be excluded,
since Eq. (6) would become independent of X otherwise. McCullagh [13] analyzed the Fisher
information for varying d and concluded that this model is “a complete success” for d � n, but “a
spectacular failure” if d → n. Since distance matrices typically require d ≥ n, the approach does
not qualify.

2.1.2 Bayesian Marginal Likelihood

Iranmanesh et al. [10] analyzed the Matrix-Normal likelihood in Eq. (4) in conjunction with an
Inverse Matrix-Gamma (IMG) prior—the latter being a generalization of an inverse Wishart prior. It
is denoted by Σ ∼ IMG(α, β,Ω), where α > 1

2 (d − 1) and β > 0 are shape and scale parameters,
respectively. Ω is a d× d positive-definite matrix reflecting the expectation of Σ. This combination
leads to the so-called (Generalized) Matrix T-distribution1 X ∼ T (α, β,M,W,Ω) with likelihood

`(W,M ;α, β,X,Ω) = d
2 log |W | − (α+ n

2 ) log |In + β
2W (X −M)Ω−1(X −M)>|. (7)

Compared to the classical marginal likelihood, the obvious differences are In and scalar β, which
can be seen as regularization. The limit of β → ∞ implies that no regularization takes place

1Choosing an inverse Wishart prior for Σ results in the standard Matrix T-distribution, however its variance
can only be controlled by an integer. This is why the Generalized Matrix T-distribution is preferred.
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and, interestingly, this likelihood resembles Eq. (6). The other extreme β → 0 leads to a likeli-
hood that is independent of X . Another observation is that the regularization ensures full rank of
In + β

2W (X −M)Ω−1(X −M)>, hence any d ≥ 1 is valid.

At this point, the Bayesian approach reveals a fundamental advantage: For TiWnet, the distance
matrix enforced independent features, but now, we are in a position to maintain the full model while
adjusting the hyperparameters instead. We propose Ω ≡ Id, meaning the prior of Σ will be centered
at independent latent features, which is a common and plausible choice before observing any data.
The flexibility ultimately comes from α and β when defining a flat prior, which means deviations
from independent features are explicitly allowed.

2.2 Marginalizing the Latent Means

The fact that we observe a distance matrix D implies that information about the (feature) coordinate
system is irrevocably lost, namely M = 1w>, which is why the means must be marginalized. We
briefly discuss the necessary steps, but for an in-depth review please refer to [19, 14, 17]. Following
the classical marginalization, it suffices to define a projection L ∈ R(n−1)×n with property L1n =
0n−1. In other words, all biases of the form 1nw

> are mapped to the nullspace of L. The Matrix
T-distribution under affine transformations [10, Theorem 3.2] reads LX ∼ T (α, β, LM,LΨL>,Ω)
and in our case (Ω = Id, LM = L1nw

> = 0(n−1)×d), we have

`(Ψ ;α, β, LX) = −d2 log |LΨL>| − (α+ n−1
2 ) log |In + β

2L
>(LΨL>)−1LXX>|. (8)

Note that due to the statistic LX , the likelihood is constant over allX (or S) mapping to the sameD.
As we are not interested in any specifics about L other than its nullspace, we replace the image with
the kernel of the projection and define matrix Q := In − (1>nW1n)−11n1>nW . Using the identity
QSQ> = − 1

2QDQ
> and Q>WQ = WQ, we can finally write the likelihood as

`(W ;α, β,D,1n) = d
2 log |W | − d

2 log(1>nW1n)− (α+ n−1
2 ) log |In − β

4WQD|, (9)

which accounts for arbitrary latent feature correlation Σ and all mean matrices M = 1nw
>.

In hindsight, the combination of Bayesian and classical marginal likelihood might appear arbitrary,
but both strategies have their individual strengths. Mean matrixM , for example, is limited to a single
direction in an n dimensional space, therefore the statistic LX represents a convenient solution. In
contrast, the rank-d matrix Σ affects a much larger spectrum that cannot be handled in the same
fashion—ignoring this leads to a degenerate likelihood as previously shown. The problem is only
tractable when specifying a prior belief for Bayesian marginalization. On a side note, the Bayesian
posterior includes the classical marginal likelihood for the choice of an improper prior [4], which
could be seen in the Matrix-T likelihood, Eq. (7), in the limit of β →∞.

3 Inference

The previous section developed a likelihood for GGMs that conforms to all aspects of information
loss inherent to distance matrices. As our interest lies in the network-defining W , the following will
discuss Bayesian inference using a Markov chain Monte Carlo (MCMC) sampler.

Hyperparameters α, β and d At some point in every Bayesian analysis, all hyperparameters
need to be specified in a sensible manner. Currently, the occurrence of d in Eq. (9) is particularly
problematic, since (i) the number of latent features is unknown and (ii) it critically affects the balance
between determinants. To resolve this issue, recall that α must satisfy α > 1

2 (d− 1), which can
alternatively be expressed as α = 1

2 (vd− n+ 1) with v > 1 + n−2
d . Thereby, we arrive at

`(W ; v, β,D,1n) = d
2 log |W | − d

2 log(1>nW1n)− vd
2 log |In − β

4WQD|, (10)

where d now influences the likelihood on a global level and can be used as temperature reminiscent
of simulated annealing techniques for optimization. In more detail, we initialize the MCMC sampler
with a small value of d and increase it slowly, until the acceptance ratio is below, say, 1 percent. After
that event, all samples of W are averaged to obtain the final network.

Parameter v and β still play a crucial role in the process of inference, as they distribute the probability
mass across all latent feature correlations and effectively control the scope of plausible Σ. Upon
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Algorithm 1 One loop of the MCMC sampler
Input: distance matrix D, temperature d and fixed v > 1 + n−2

d
for i = 1 to n do
W (p) ←W , (p) refers to proposal
Uniformly select node k 6= i and sample element W (p)

ik from {−1, 0,+1}
Set W (p)

ki ←W
(p)
ik and update W (p)

ii and W (p)
kk accordingly

Compute posterior in Eq. (12) and acceptance of W (p)

if u ∼ U(0, 1) < acceptance then
W ←W (p)

end if
end for
Sample proposal β(p) ∼ Γ(βshape, βscale)
Compute posterior in Eq. (12) and acceptance of β(p)

if u ∼ U(0, 1) < acceptance then
β ← β(p)

end if

closer inspection, we gain more insight by the variance of the Matrix-T distribution,

2(Ψ⊗ Ω)

β(v d− 2n+ 1)
, (11)

which is maximal when β and v are jointly small. We aim for the most flexible solution, thus v is
fixed at the smallest possible value and β is stochastically integrated out in a Metropolis-Hastings
step. A suitable choice is a Gamma prior β ∼ Γ(βshape, βscale); its shape and scale must be chosen to
be sufficiently flexible on the scale of the distance matrix at hand.

Priors for W The prior for W is first and foremost required to be sparse and flexible. There
are many valid choices, like spike and slab [15] or partial correlation [3], but we adapt the two-
component scheme of TiWnet, which has computational advantages and enables symmetric random
walks. The following briefly explains the construction:

Prior p1(W ) defines a symmetric random matrix, where off-diagonal elements Wij are uniform on
{−1, 0,+1}, i.e. an edge with positive/negative weight or no edge. The diagonal is chosen such that
W is positive definite: Wii ← ε+

∑
j 6=i |Wij |. Although this only allows 3 levels, it proved to be

sufficiently flexible in practice. Replacing it with more levels is possible, but conceptually identical.
The second component is a Laplacian p2(W |λ) ∝ exp

(
− λ

∑n
i=1(Wii − ε)

)
and induces sparsity.

Here, the total number of edges in the network is penalized by parameter λ > 0. Combining the
likelihood of Eq. (10) and the above priors, the final posterior reads:

p(W | • ) = p(D |W, β, 1n) p1(W ) p2(W |λ) p3(β |βshape, βscale). (12)

The full scheme of the MCMC sampler is reported in Algorithm 1.

Complexity Analysis The runtime of Algorithm 1 is primarily determined by the repeated evalu-
ation of the posterior in Eq. (12), which would requireO(n4) in the naive case of fully recomputing
the determinants. Every flip of an edge, however, only changes a maximum of 4 elements2 in W ,
which gives rise to an elegant update scheme building on the QR decomposition.
Theorem. One full loop in Algorithm 1 requires O(n3).
Proof. Due to the 3-level prior, there are only 6 possible flip configurations depending on the
current edge between object i and j (2 examples depicted here for i = 1, j = 3):

∆W := W (p) −W ⇔

{[−1 0 +1
0 0 0

+1 0 −1

]
, . . . ,

[
0 0 +2
0 0 0

+2 0 0

]}
(13)

An important observation is that ∆W can solely be expressed in terms of rank-1 matrices, in partic-
ular either uv> or uv> + ab>. If we know the QR decomposition of W , then the decomposition

2This also holds for more than 3 edge levels.
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of W (p) can be found inO(n2). Consequently, its determinant is obtained by det(QR) =
∏n
i=1Rii

inO(n). Our goal is to exploit this property and express both determinants of the posterior as rank-1
updates to their existing QR decompositions. Restating the likelihood, we have

`(W (p) ; •) = d
2 log |W (p)|︸ ︷︷ ︸

=: det1

−d2 log(1>nW
(p)1n)− vd

2 log |In − β
4W

(p)QD|︸ ︷︷ ︸
=: det2

. (14)

Updating det1 corresponds to either W (p) = W + uv> or W (p) = W + uv> + ab> as explained
in Eq. (13), thus leading to O(n2). We reformulate det2 to follow the same scheme:

det2 =
∣∣∣In − β

4W
(
In − 1

1>
nW1n

1n1
>
nW

)
D

− β
4

[(
1

1>
nW1n

− γ
)
W1n − γ

((
v>1n

)
u +

(
b>1n

)
a
)] (

DW1n
)>

− β
4

[
u− γ

(
1>nu

) (
W1n +

(
v>1n

)
u +

(
b>1n

)
a
)] (

Dv
)>

− β
4

[
a− γ

(
1>na

) (
W1n +

(
v>1n

)
u +

(
b>1n

)
a
)] (

Db
)>∣∣∣.

(15)

For notational convenience, we defined the shorthand

γ :=
1

1>nW (p)1n
=

1

1>n (W + uv> + ab>)1n
=

1

1>nW1n + (1>nu)(v>1n) + (1>na)(b>1n)
.

Note that the determinant of the first line in Eq. (15) is already known (i.e. its QR decomposition)
and the following 3 lines are only rank-1 updates as indicated by parenthesis. Therefore, det2 is
computed in 3 steps, each consuming O(n2). For some of the 6 flip configurations, we even have
a = b = 0n, which renders the last line in Eq. (15) obsolete and simplifies the remaining terms.

Since the for loop covers n flips, all updates contribute as n ·O(n2). There is no shortcut to evaluate
proposal β(p) given β, thus its posterior is recomputed from scratch inO(n3). Therefore, Algorithm
1 has an overall complexity of O(n3), which is the same as TiWnet.

4 Experiments

4.1 Synthetic Data

We first look at synthetic data and compare how well the recovered network matches the true one.
Hereby, the accuracy is measured by the f-score using the edges (positive/negative/zero).

Independent Latent Features Since TiMT is a generalization for arbitrary Σ, it must also cover
Σ ≡ Id, thus, we generate a set of 100 Gaussian-distributed matrices X with known W and Σ = Id,
where n = 30 and d = 300. Next, we add column translations 1nw

> with elements in w ∈ Rd
being Gamma distributed, however these do not enter D by definition. As TRCM does not account
for column shifts, it is used in conjunction with the true, unshifted matrix X (hence TRCM.u).

All methods require a regularization parameter, which obviously determines the outcome. In par-
ticular, TiWnet and TiMT use the same, constant parameter throughout all 100 distance matrices
and obtain the final W via annealing. Concerning TRCM and gL, we evaluate each X on a set of
parameters and only report the highest f-score per data set. This is in strong favor of the competition.

Boxplots of the achieved f-scores and the false positive rates are depicted in Figure 3, left. As
can be seen, TiMT and TiWnet score as high as TRCM.u without knowledge of features or feature
translations. We omit gL from the comparison due to a model mismatch regarding M , meaning it
will naturally fall short. Instead, the interested reader is pointed to extensive results in [19].

The gist of this experiment is that all methods work well when the model requirements are met.
Also, translating the individual features and obscuring them does not impair TiWnet and TiMT.

Correlated Latent Features The second experiment is similar to the first one (n = 30, d =
300 and column shifts), but it additionally introduces feature correlation. Here, Σ is generated
by sampling a matrix G ∼ N (0d×5d, Id ⊗ I5d) and adding Gamma distributed vector a ∈ R5d to
randomly selected rows of G. The final feature covariance matrix is given by Σ = 1

5dGG
>.
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MODEL MISMATCH

TRCM.u TRCM TiWnetgL TiMT TRCM.u TRCM TiWnetgL TiMT

MODEL MISMATCH
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Figure 3: Results for synthetic data. Translations do not apply to TRCM.u. Models with violated
assumptions (M and/or Σ) are highlighted with gray bars.

Due to the dramatically increased degree of freedom, all methods are impacted by lower f-scores
(see Figure 3, right). As expected, TRCM.u performs best in terms of f-score, which is based on
the unshifted full data matrix X with an individually optimized regularization parameter. TiMT,
however, follows by a slim margin. On the contrary, TiWnet explains the similarities exclusively
by adding more (unnecessary) edges, which is reflected in its increased, but strongly consistent
false positive rate. This issue leads to a comparatively low f-score that is even below the remaining
contenders. Finally, Figure 4 shows an example network and its reconstruction. Keeping in mind
the drastic information loss between true X30×300 and D30×30, TiMT performs extremely well.
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Figure 4: An example for synthetic data with feature correlation. The network inferred by TiMT
(center) is relatively close to ground truth (left), however TiWnet (right) is apparently mislead by Σ.
Black/red edges refer to +/− edge weight.

4.2 Real-World Data: A Network of Biological Pathways

In order to demonstrate the scalability of TiMT, we apply it to the publicly available colon cancer
dataset of Sheffer et al. [20], which is comprised of 13 437 genes measured across 182 patients.
Using the latest gene sets from the KEGG3 database, we arrive at n = 276 distinct pathways.
After learning the mean and variance of each pathway as the distribution of its gene expression
values across patients, the Bhattacharyya distances [11] are computed as a 276×276 matrix D. The
pathways are allowed to overlap via common genes, thus leading to similarities, however it is unclear
how and to what degree the correlation of patients affects the inferred network. For this purpose, we
run TiMT alongside TiWnet with identical parameters for 20 000 samples and report the annealed
networks in Figure 5. Again, the difference in topology is only due to latent feature correlation.
Runtime on a standard 3 GHz PC was 3:10 hours for TiMT, while a naive implementation in O(n4)
finished after ∼20 hours. TiWnet performed slightly better at around 3 hours, since the model does
not have hyperparameter β to control feature correlation.

3http://www.genome.jp/kegg/, accessed in May 2014
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Figure 5: A network of pathways in colon cancer patients, where each vertex represents one pathway.
From both results, we extract a subgraph of 3 pathways including all neighbors in reach of 2 edges.
The matrix on the bottom shows external information on pathway similarity based on their relative
number of protein-protein interactions. Black/red edges refer to +/− edge weight.

Without side information it is not possible to confirm either result, hence we resort to expert knowl-
edge for protein-protein interactions from the BioGRID4 database and compute the strength of con-
nection between pathways as the number of interactions relative to their theoretical maximum. Using
this, we can easily check subnetworks for plausibility (see Figure 5, center): The black vertices 96,
98 and 114 correspond to base excision repair, mismatch repair and cell cycle, which are particu-
larly interesting as they play a key role in DNA mutation. These pathways are known to be strongly
dysregulated in colon cancer and indicate an elevated susceptibility [18, 6]. The topology of these 3
pathways for TiMT is fully supported by protein interactions, i.e. 98 is the link between 114 and 96
and removing it renders 96 and 98 independent. TiWnet, on the contrary, overestimates the network
and produces a highly-connected structure contradicting the evidence. This is a clear indicator for
latent feature correlation.

5 Conclusion

We presented the Translation-invariant Matrix-T process (TiMT) as an elegant way to make in-
ference in Gaussian graphical models when only pairwise distances are available. Previously, the
inherent information loss about underlying features appeared to prevent any conclusive statement
about their correlation, however, we argue that neither assumed full independence nor maximum
likelihood estimation is reasonable in this context.

Our contribution is threefold: (i) A Bayesian relaxation solves the issue of strict feature indepen-
dence in GGMs. The assumption is now shifted into the prior, but flat priors are possible. (ii) The
approach generalizes TiWnet, but maintains the same complexity, thus, there is no reason to retain
the simplified model. (iii) TiMT for the first time accounts for all latent parameters of the Matrix
Normal without access to the latent data matrix X . The distances D are fully sufficient.

In synthetic experiments, we observed a substantial improvement over TiWnet, which highly over-
estimated the networks and falsly attributed all information to the topological structure. At the same
time, TiMT performed almost on par with TRCM(.u), which operates under hypothetical, optimal
conditions. This demonstrates that all aspects of information loss can be handled exceptionally well.

Finally, the network of biological pathways provided promising results for a domain of non-vectorial
objects, which effectively precludes all methods except for TiMT and TiWnet. Comparing these two,
the considerable difference in network topology only goes to show that invariance against latent
feature correlation is indispensable—especially pertaining to distances.

4http://thebiogrid.org, version 3.2
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