
Delay-Tolerant Algorithms for
Asynchronous Distributed Online Learning

H. Brendan McMahan
Google, Inc.
Seattle, WA

mcmahan@google.com

Matthew Streeter
Duolingo, Inc.∗
Pittsburgh, PA

matt@duolingo.com

Abstract

We analyze new online gradient descent algorithms for distributed systems with
large delays between gradient computations and the corresponding updates. Us-
ing insights from adaptive gradient methods, we develop algorithms that adapt not
only to the sequence of gradients, but also to the precise update delays that occur.
We first give an impractical algorithm that achieves a regret bound that precisely
quantifies the impact of the delays. We then analyze AdaptiveRevision, an
algorithm that is efficiently implementable and achieves comparable guarantees.
The key algorithmic technique is appropriately and efficiently revising the learn-
ing rate used for previous gradient steps. Experimental results show when the
delays grow large (1000 updates or more), our new algorithms perform signifi-
cantly better than standard adaptive gradient methods.

1 Introduction

Stochastic and online gradient descent methods have proved to be extremely useful for solving large-
scale machine learning problems [1, 2, 3, 4]. Recently, there has been much work on extending these
algorithms to parallel and distributed systems [5, 6, 7, 8, 9]. In particular, Recht et al. [10] and Duchi
et al. [11] have shown that standard stochastic algorithms essentially “work” even when updates are
applied asynchronously by many threads. Our experiments confirm this for moderate amounts of
parallelism (say 100 threads), but show that for large amounts of parallelism (as in a distributed
system, with say 1000 threads spread over many machines), performance can degrade significantly.
To address this, we develop new algorithms that adapt to both the data and the amount of parallelism.

Adaptive gradient (AdaGrad) methods [12, 13] have proved remarkably effective for real-world
problems, particularly on sparse data (for example, text classification with bag-of-words features).
The key idea behind these algorithms is to prove a general regret bound in terms of an arbi-
trary sequence of non-increasing learning rates and the full sequence of gradients, and then to
define an adaptive method for choosing the learning rates as a function of the gradients seen so
far, so as to minimize the final bound when the learning rates are plugged in. We extend this
idea to the parallel setting, by developing a general regret bound that depends on both the gradi-
ents and the exact update delays that occur (rather than say an upper bound on delays). We then
present AdaptiveRevision, an algorithm for choosing learning rates and efficiently revising
past learning-rate choices that strives to minimize this bound. In addition to providing an adaptive
regret bound (which recovers the standard AdaGrad bound in the case of no delays), we demonstrate
excellent empirical performance.

Problem Setting and Notation We consider a computation model where one or more computation
units (a thread in a parallel implementation or a full machine in a distributed system) store and
∗Work performed while at Google, Inc.

1

update the model x ∈ Rn, and another larger set of computation units perform feature extraction
and prediction. We call the first type the Updaters (since they apply the gradient updates) and
the second type the Readers (since they read coefficients stored by the Updaters). Because
the Readers and Updaters may reside on different machines, perhaps located in different parts
of the world, communication between them is not instantaneous. Thus, when making a prediction,
a Reader will generally be using a coefficient vector that is somewhat stale relative to the most
recent version being served by the Updaters.

As one application of this model, consider the problem of predicting click-through rates for spon-
sored search ads using a generalized linear model [14, 15]. While the coefficient vector may be
stored and updated centrally, predictions must be available in milliseconds in any part of the world.
This leads naturally to an architecture in which a large number of Readers maintain local copies
of the coefficient vector, sending updates to the Updaters and periodically requesting fresh coef-
ficients from them. As another application, this model encompasses the Parameter Server/ Model
Replica split of Downpour SGD [16].

Our bounds apply to general online convex optimization [4], which encompasses the problem of
predicting with a generalized linear model (models where the prediction is a function of at · xt,
where at is a feature vector and xt are model coefficients). We analyze the algorithm on a sequence
of τ = 1, ..., T rounds; for the moment, we index rounds based on when each prediction is made. On
each round, a convex loss function fτ arrives at a Reader, the Reader predicts with xτ ∈ Rn and
incurs loss fτ (xτ). The Reader then computes a subgradient gτ ∈ ∂fτ (xτ). For each coordinate
i where gτ,i is nonzero, the Reader sends an update to the Updater(s) for those coefficients. We
are particularly concerned with sparse data, where n is very large, say 106 − 109, but any particular
training example has only a small fraction of the features at,i that take non-zero values.

The regret against a comparator x∗ ∈ Rn is

Regret(x∗) ≡
T∑
τ=1

fτ (xτ)− fτ (x∗). (1)

Our primary theoretical contributions are upper bounds on the regret of our algorithms.

We assume a fully asynchronous model, where the delays in the read requests and update requests
can be different for different coefficients even for the same training event. This leads to a combina-
torial explosion in potential interleavings of these operations, making fine-grained adaptive analysis
quite difficult. Our primary technique for addressing this will be the linearization of loss functions,
a standard tool in online convex optimization which takes on increased importance in the parallel
setting. An immediate consequence of convexity is that given a general convex loss function fτ ,
with gτ ∈ ∂fτ (xτ), for any x∗, we have fτ (xτ)− fτ (x∗) ≤ gτ · (xτ − x∗). One of the key obser-
vations of Zinkevich [1] is that by plugging this inequality into (1), we see that if we can guarantee
low regret against linear functions, we can provide the same guarantees against arbitrary convex
functions. Further, expanding the dot products and re-arranging the sum, we can write

Regret(x∗) ≡
n∑
i=1

Regreti(x
∗
i) where Regreti(x

∗
i) =

T∑
τ=1

gτ,i(xτ,i − x∗i). (2)

If we consider algorithms where the updates are also coordinate decomposable (that is, the update
to coordinate i can be applied independently of the update of coordinate j), then we can bound
Regret(x∗) by proving a per-coordinate bound for linear functions and then summing across coor-
dinates. In fact, our computation architecture already assumes a coordinate decomposable algorithm
since this lets us avoid synchronizing the Updates, and so in addition to leading to more efficient
algorithms, this approach will greatly simplify the analysis. The proofs of Duchi et al. [11] take a
similar approach.

Bounding per-coordinate regret Given the above, we will design and analyze asynchronous one-
dimensional algorithms which can be run independently on each coordinate of the true learning
problem. For each coordinate, each Read and Update is assumed to be an atomic operation.
It will be critical to adopt an indexing scheme different than the prediction-based indexing τ used
above. The net result will be bounding the sum of (2), but we will actually re-order the sum to
make the analysis easier. Critically, this ordering could be different for different coordinates, and

2

so considering one coordinate at a time simplifies the analysis considerably.1 We index time by the
order of the Updates, so the index t is such that gt is the gradient associated with the tth update
applied and xt is the value of the coefficient immediately before the update for gt is applied. Then,
the Online Gradient Descent (OGD) update consists of exactly the assumed-atomic operation

xt+1 = xt − ηtgt, (3)

where ηt is a learning-rate. Let r(t) ∈ {1, . . . , t} be the index such that xr(t) was the value of the
coefficient used by the Reader to compute gt (and to predict on the corresponding example). That
is, update r(t) − 1 completed before the Read for gt, but update r(t) completed after. Thus, our
loss (for coordinate i) is gtxr(t), and we desire a bound on

Regreti(x
∗) =

T∑
t=1

gt(xr(t) − x∗).

Main result and related work We say an update s is outstanding at time t if the Read for
Update s occurs before update t, but the Update occurs after: precisely, s is outstanding at t
if r(s) ≤ t < s. We let Ft ≡ {s | r(s) ≤ t < s} be the set of updates outstanding at time t. We
call the sum of these gradients the forward gradient sum, gfwd

t ≡
∑
s∈Ft

gs. Then, ignoring con-
stant factors and terms independent of T , we show that AdaptiveRevision has a per-coordinate
bound of the form

Regret ≤

√√√√ T∑
t=1

g2t + gtgfwd
t . (4)

Theorem 3 gives the precise result as well as the n-dimensional version. Observe that without any
delays, gfwd

t = 0, and we arrive at the standard AdaGrad-style bound. To prove the bound for
AdaptiveRevision, we require an additional InOrder assumption on the delays, namely that
for any indexes s1 and s2, if r(s1) < r(s2) then s1 < s2. This assumption should be approximately
satisfied most of the time for realistic delay distributions, and even under a more pathological delay
distributions (delays uniform on {0, . . . ,m} rather than more tightly grouped around a mean delay),
our experiments show excellent performance for AdaptiveRevision.

The key challenge is that unlike in the AdaGrad case, conceptually we need to know gradients that
have not yet been computed in order to calculate the optimal learning rate. We surmount this by
using an algorithm that not only chooses learning rates adaptively, but also revises previous gradient
steps. Critically, these revisions require only moderate additional storage and network cost: we store
a sum of gradients along with each coefficient, and for each Read, we remember the value of this
gradient sum at the time of the Read until the corresponding Update occurs. This later storage
can essentially be implemented on the network, if the gradient sum is sent from the Updater to the
Reader and back again, ensuring it is available exactly when needed. This is the approach taken
in the pseudocode of Algorithm 1.

Against a true adversary and a maximum delay of m, in general we cannot do better than just
training synchronously on a single machine using a 1/m fraction of the data. Our results sur-
mount this issue by producing strongly data-dependent bounds: we do not expect fully adversarial
gradients and delays in practice, and so on real data the bound we prove still gives interesting re-
sults. In fact, we can essentially recover the guarantees for AsyncAdaGrad from Duchi et al. [11],
which rely on stochastic assumptions on the sparsity of the data, by applying the same assumptions
to our bound. To simplify the comparison, WLOG we consider a 1-dimensional problem where
‖x∗‖2 = 1, ‖gt‖2 ≤ 1, and we have the stochastic assumption that each gt is exactly 0 indepen-
dently with probability p (implying Mj = 1, M = 1, and M2 = p in their notation). Then, simple
calculations (given in Appendix B) show our bound for AdaptiveRevision implies a bound on
expected regret of O

(√
(1 +mp)pT

)
without knowledge of p or m, ignoring terms independent of

T .2 AsyncAdaGrad achieves the same bound, but critically this requires knowledge of both p and

1Our analysis could be extended to non-coordinate-decomposable algorithms, but then the full gradient
update across all coordinates would need to be atomic. This case is less interesting due to the computational
overhead.

2In the analysis, we choose the parameterG0 based on an upper boundm on the delay, but this only impacts
an additive term independent of T .

3

m in advance in order to tune the learning rate appropriately (in the general n-dimensional case, this
would mean knowing not just one parameter p, but a separate sparsity parameter pj for each coor-
dinate, and then using an appropriate per-coordinate scaling of the learning rate depending on this);
without such knowledge, AsyncAdaGrad only obtains the much worse bound O

(
(1 +mp)

√
pT
)
.

AdaptiveRevision will also provide significantly better guarantees if most of the delays are
much less than the maximum, or if the data is only approximately sparse (e.g., many gt = 10−6

rather than exactly 0). The above analysis also makes a worst-case assumption on the gtgfwd
t terms,

but in practice many gradients in gfwd
t are likely to have opposite signs and cancel out, a fact our

algorithm and bounds can exploit.

2 Algorithms and Analysis

We first introduce some additional definitions. Let o(t) ≡ maxFt ∪ {t}, the index of the highest
update outstanding at time t, or t itself if nothing is outstanding. The sets Ft fully specify the
delay pattern. In light of (4), we further define Gfwd

t ≡ g2t + 2gtg
fwd
t . We also define Bt, the set

of updates applied while update t was outstanding. Under our notation, this set is easily defined
as Bt = {r(t), . . . , t− 1} (or the empty set if r(t) = t, so in particular B1 = ∅). We will also
frequently use the backward gradient sum, gbckt ≡

∑t−1
s=r(t) gs. These vectors most often appear in

the products Gbck
t ≡ g2t + 2gtg

bck
t . Figure 3 in Appendix A shows a variety of delay patterns and

gives a visual representation of the sums Gfwd and Gbck. We say the delay is (upper) bounded by m
if t− r(t) ≤ m for all t, which implies |Ft| ≤ m and |Bt| ≤ m. Note that if m = 0 then r(t) = t.
We use the compressed summation notation c1:t ≡

∑t
s=1 cs for vectors, scalars, and functions.

Our analysis builds on the following simple but fundamental result (Appendix C contains all proofs
and lemmas omitted here).
Lemma 1. Given any non-increasing learning-rate schedule ηt, define σt where σ1 = 1/η1 and
σt = 1/ηt − 1/ηt−1 for t > 1, so ηt = 1/σ1:t. Then, for any delay schedule, unprojected online
gradient descent achieves, for any x∗ ∈ R,

Regret(x∗) ≤ (2RT)
2

2ηT
+

1

2

T∑
t=1

ηtG
fwd
t where (2RT)

2 ≡
T∑
t=1

σt
σ1:T
|x∗ − xt|2.

Proof. Given how we have indexed time, we can consider the regret of a hypothetical online gradient
descent algorithm that plays xt and then observes gt, since this corresponds exactly to the update
(3). We can then bound regret for this hypothetical setting using a simple modification to standard
bound for OGD [1],

T∑
t=1

gt · xt − g1:T · x∗ ≤
T∑
t=1

σt
2
|x∗ − xt|2 +

1

2

T∑
t=1

ηtg
2
t .

The actual algorithm used xr(t) to predict on gt, not xt, so we can bound its Regret by

Regret ≤ (2RT)
2

2ηT
+

1

2

T∑
t=1

ηtg
2
t +

T∑
t=1

gt(xr(t) − xt). (5)

Recalling xt+1 = xt − ηtgt, observe that xr(t) − xt =
∑t−1
s=r(t) ηsgs,=

∑
s∈Bt

ηsgs and so

T∑
t=1

gt(xr(t) − xt) =
T∑
t=1

gt
∑
s∈Bt

ηsgs =

T∑
s=1

ηsgs
∑
t∈Fs

gt =

T∑
s=1

ηsgsg
fwd
s ,

using Lemma 4(E) from the Appendix to re-order the sum. Plugging into (5) completes the proof.

For projected online gradient descent, by projecting onto a feasible set of radius R and assuming
x∗ is in this set, we immediately get |x∗ − xt| ≤ 2R. Without projecting, we get a more adaptive
bound which depends on the weighted quadratic mean 2RT . Though less standard, we choose to

4

analyze the unprojected variant of the algorithm for two reasons. First, our analysis rests heavily on
the ability to represent points played by our algorithms exactly as weighted sums of past gradients, a
property not preserved when projection is invoked. More importantly, we know of no experiments on
real-world prediction problems (where any x ∈ Rn is a valid model) where the projected algorithm
actually performs better. In our experience, once the learning-rate schedule is tuned appropriately,
the resulting RT values will not be more than a constant factor of ‖x∗‖. This makes intuitive sense
in the stochastic case, where it is known that averages of the xt should in fact converge to x∗.3

For learning rate tuning we assume we know in advance a constant R̃ such that RT ≤ R̃; again,
in practice this is roughly equivalent to assuming we know ‖x∗‖ in advance in order to choose the
feasible set.

Our first algorithm, HypFwd (for Hypothetical-Forward), assumes it has knowledge of all the gra-
dients, so it can optimize its learning rates to minimize the above bound. If there are no delays, that
is, gfwd

t = 0 for all t, then this immediately gives rise to a standard AdaGrad-style online gradient
descent method. If there are delays, the Gfwd

t terms could be large, implying the optimal learning
rates should be smaller. Unfortunately, it is impossible for a real algorithm to know gfwd

t when ηt is
chosen. To work toward a practical algorithm, we introduce HypBack, which achieves similar guar-
antees (but is still impractical). Finally, we introduce AdaptiveRevision, which plays points
very similar to HypBack, but can be implemented efficiently. Since we will need non-increasing
learning rates, it will be useful to define G̃bck

1:t ≡ maxs≤tG
bck
1:s and G̃fwd

1:t ≡ maxs≤tG
fwd
1:s . In prac-

tice, we expect G̃bck
1:T to be close to Gbck

1:T . We assume WLOG that Gfwd
1 > 0, which at worst adds a

negligible additive constant to our regret.

Algorithm HypFwd This algorithm “cheats” by using the forward sum gfwd
t to choose ηt,

ηt =
α√
G̃fwd

1:t

(6)

for an appropriate scaling parameter α > 0. Then, Lemma 1 combined with the technical inequality
of Corollary 10 (given in Appendix D) gives

Regret ≤ 2
√
2R̃

√
G̃fwd

1:T . (7)

when we take α =
√
2R̃ (recalling R̃ ≥ RT). If there are no delays, this bound reduces to the

standard bound 2
√
2R̃
√∑T

t=1 g
2
t . With delays, however, this is a hypothetical algorithm, because

it is generally not possible to know gfwd
t when update t is applied. However, we can implement

this algorithm efficiently in a single-machine simulation, and it performs very well (see Section 3).
Thus, our goal is to find an efficiently implementable algorithm that achieves comparable results in
practice and also matches this regret bound.

Algorithm HypBack The next step in the analysis is to show that a second hypothetical algorithm,
HypBack, approximates the regret bound of (7). This algorithm plays

x̂t+1 = −
t∑

s=1

η̂sgs where η̂t =
α√

G̃bck
1:o(t) +G0

(8)

is a learning rate with parameters α and G0. This is a hypothetical algorithm, since we also can’t
(efficiently) know Gbck

1:o(t) on round t. We prove the following guarantee:

Lemma 2. Suppose delays bounded by m and |gt| ≤ L. Then when the InOrder property holds,
HypBack with α =

√
2R̃ and G0 = m2L2 has

Regret ≤ 2
√
2R̃

√
G̃fwd

1:T + 2R̃mL.

3For example, the arguments of Nemirovski et al. [17, Sec 2.2] hold for unprojected gradient descent.

5

Algorithm 1 Algorithm AdaptiveRevision

Procedure Read(loss function f):
Read (xi, ḡi) from the Updaters for all necessary coordinates
Calculate a subgradient g ∈ ∂f(x)
for each coordinate i with a non-zero gradient do

Send an update tuple (g ← gi, ḡ
old ← ḡi) to the Updater for coordinate i

Procedure Update(g, ḡold): The Updater initializes state (ḡ ← 0, z ← 1, z′ ← 1, x← 0) per coordinate.
Do the following atomically:
gbck← ḡ − ḡold For analysis, assign index t to the current update.
ηold ← α√

z′
Invariant: effective η for all gbck.

z ← z + g2 + 2g · gbck; z′ ← max(z, z′) Maintain z = Gbck
1:t and z′ = G̃bck

1:t , to enforce non-increasing η.
η ← α√

z′
New learning rate.

x ← x− ηg The main gradient-descent update.
x ← x+ (ηold − η)gbck Apply adaptive revision of some previous steps.
ḡ ← ḡ + g Maintain ḡ = g1:t.

Algorithm AdaptiveRevision Now that we have shown that HypBack is effective, we can
describe AdaptiveRevision, which efficiently approximates HypBack. We then analyze this
new algorithm by showing its loss is close to the loss of HypBack. Pseudo-code for the algorithm
as implemented for the experiments is given in Algorithm 1; we now give an equivalent expression
for the algorithm under the InOrder assumption. Let βt be the learning rate based on G̃bck

1:t ,

βt = α/
√
G̃bck

1:t +G0. Then, AdaptiveRevision plays the points

xt+1 =

t∑
s=1

ηtsgs where ηts = βmin(t,o(s)). (9)

When s << t then we will usually have min(t, o(s)) = o(s), and so we see that ηts = βo(s) = η̂s,
and so the effective learning rate applied to gradient gs is the same one HypBack would have used
(namely η̂s); thus, the only difference between AdaptiveRevision and HypBack is on the
leading edge, where o(s) > t. See Figure 4 in Appendix A for an example. When InOrder holds,
Lemma 6 (in Appendix C) shows Algorithm 1 plays the points specified by (9).

Given Lemma 2, it is sufficient to show that the difference between the loss of HypBack and the
loss of AdaptiveRevision is small. Lemma 8 (in the appendix) accomplishes this, showing
that under the InOrder assumption and with G0 = m2L2 the difference in loss is at most 2αLm
(a quantity independent of T). Our main theorem is then a direct consequence of Lemma 2 and
Lemma 8:

Theorem 3. Under an InOrder delay pattern with a maximum delay of at most m, the

AdaptiveRevision algorithm guarantees Regret ≤ 2
√
2R̃
√
G̃fwd

1:T + (2
√
2 + 2)R̃mL when

we take G0 = m2L2 and α =
√
2R̃. Applied on a per-coordinate basis to an n-dimensional

problem, we have

Regret ≤ 2
√
2R̃

n∑
i=1

√√√√ T∑
t=1

(
g2t,i + 2

∑
s∈Ft,i

gs,igs,i

)
+ n(2

√
2 + 2)R̃mL.

We note the n-dimensional guarantee is at most O
(
nR̃L

√
Tm

)
, which matches the lower bound

for the feasible set [−R,R]n and gt ∈ [−L,L]n up to the difference between R̃ and R (see, for
example, Langford et al. [18]).4 Our point, of course, is that for real data our bound will often be
much much better.

4To compare to regret bounds stated in terms of L2 bounds on the feasible set and the gradients, note for
gt ∈ [−L,L]n we have ‖gt‖2 ≤

√
nL, and similarly for x ∈ [−R,R]n we have ‖x‖2 ≤

√
nR, so the

dependence on n is a necessary consequence of using these norms, which are quite natural for sparse problems.

6

Figure 1: Accuracy as a function of update delays, with learning rate scale factors optimized for each
algorithm and dataset for the zero delay case. The x-axis is non-linear. The results are qualitatively
similar across the plots, but note the differences in the y-axis ranges. In particular, the random delay
pattern appears to hurt performance significantly less than either the minibatch or constant delay
patterns.

Figure 2: Accuracy as a function of update delays, with learning rate scale factors optimized as
a function of the delay. The lower plot in each group shows the best learning rate scale α on a
log-scale.

3 Experiments

We study the performance of both hypothetical algorithms and AdaptiveRevision on two real-
world medium-sized datasets. We simulate the update delays using an update queue, which allows
us to implement the hypothetical algorithms and also lets us precisely control both the exact de-
lays as well as the delay pattern. We compare to the dual-averaging AsyncAdaGrad algorithm of
Duchi et al. [11] (AsyncAda-DA in the figures), as well as asynchronous AdaGrad gradient descent
(AsyncAda-GD), which can be thought of as AdaptiveRevision with all gbck set to zero and
no revision step. As analyzed, AdaptiveRevision stores an extra variable (z′) in order to en-
force a non-increasing learning rate. In practice, we found this had a negligible impact; in the plots
above, AdaptiveRevision∗ denotes the algorithm without this check. With this improvement
AdaptiveRevision stores three numbers per coefficient, versus the two stored by AsyncAda-
grad DA or GD.

We consider three different delay patterns, which we parameterize by D, the average delay; this
yields a more fair comparison across the delay patterns than using the the maximum delay m. We
consider: 1) constant delays, where all updates (except at the beginning and the end of the dataset)
have a delay of exactlyD (e.g., rows (B) and (C) in Figure 3 in the Appendix); 2) A minibatch delay
pattern5, where 2D+1 Reads occur, followed by 2D+1 Updates; and 3) a random delay pattern,
where the delays are chosen uniformly from the set {0, . . . , 2D}, so again the mean delay is D. The
first two patterns satisfy InOrder, but the third does not.

5It is straightforward to show that under this delay pattern, when we do not enforcing non-increasing learn-
ing rates, AdaptiveRevision and HypBack are in fact equivalent to standard AdaGrad run on the mini-
batches (that is, with one update per minibatch using the combined minibatch gradient sum).

7

We evaluate on two datasets. The first is a web search advertising dataset from a large search engine.
The dataset consists of about 3.1×106 training examples with a large number of sparse anonymized
features based on the ad and query text. Each example is labeled {−1, 1} based on whether or not
the person doing the query clicked on the ad. The second is a shuffled version of the malicious URL
dataset as described by Ma et al. [19] (2.4×106 examples, 3.2×106 features).6 For each of these
datasets we trained a logistic regression model, and evaluated using the logistic loss (LogLoss).
That is, for an example with feature vector a ∈ Rn and label y ∈ {−1, 1}, the loss is given by
`(x, (a, y)) = log(1 + exp(−y a · x)). Following the spirit of our regret bounds, we evaluate the
models online, making a single pass over the data and computing accuracy metrics on the predictions
made by the model immediately before it trained on each example (i.e., progressive validation). To
avoid possible transient behavior, we only report metrics for the predictions on the second half of
each dataset, though this choice does not change the results significantly.

The exact parametrization of the learning rate schedule is particularly important with delayed up-
dates. We follow the common practice of taking learning rates of the form ηt = α/

√
St + 1, where

St is the appropriate learning rate statistic for the given algorithm, e.g., G̃bck
1:o(t) for HypBack or∑t

s=1 g
2
s for vanilla AdaGrad. In the analysis, we use G0 = m2L2 rather than G0 = 1; we believe

G0 = 1 will generally be a better choice in practice, though we did not optimize this choice.7 When
we optimize α, we choose the best setting from a grid {α0(1.25)

i | i ∈ N}, where α0 is an initial
guess for each dataset.

All figures give the average delay D on the x-axis. For Figure 1, for each dataset and algorithm, we
optimized α in the zero delay (D = m = 0) case, and fixed this parameter as the average delay D
increases. This leads to very bad performance for standard AdaGrad DA and GD as D gets large.
In Figure 2, we optimized α individually for each delay level; we plot the accuracy as before, with
the lower plot showing the optimal learning rate scaling α on a log-scale. The optimal learning rate
scaling for GD and DA decrease by two orders of magnitude as the delays increase. However, even
with this tuning they do not obtain the performance of AdaptiveRevision. The performance of
AdaptiveRevision (and HypBack and HypFwd) is slightly improved by lowering the learning
rate as delays increase, but the effect is comparatively very minor. As anticipated, the performance
for AdaptiveRevision, HypBack, and HypFwd are closely grouped.

AdaptiveRevision’s delay tolerance can lead to enormous speedups in practice. For example,
the leftmost plot of Figure 2 shows that AdaptiveRevision achieves better accuracy with an
update delay of 10,000 than AsyncAda-DA achieves with a delay of 1000. Because update delays
are proportional to the number of Readers, this means that AdaptiveRevision can be used to
train a model an order of magnitude faster than AsyncAda-DA, with no reduction in accuracy. This
allows for much faster iteration when data sets are large and parallelism is cheap, which is the case
in important real-world problems such as ad click-through rate prediction [14].

4 Conclusions and Future Work

We have demonstrated that adaptive tuning and revision of per-coordinate learning rates for dis-
tributed gradient descent can significantly improve accuracy as the update delays become large.
The key algorithmic technique is maintaining a sum of gradients, which allows the adjustment of
all learning rates for gradient updates that occurred between the current Update and its Read.
The analysis method is novel, but is also somewhat indirect; an interesting open question is find-
ing a general analysis framework for algorithms of this style. Ideally such an analysis would
also remove the technical need for the InOrder assumption, and also allow for the analysis of
AdaptiveRevision variants of OGD with Projection and Dual Averaging.

6We also ran experiments on the rcv1.binary training dataset (0.6×106 examples, 0.05×106 features)
from Chang and Lin [20]; results were qualitatively very similar to those for the URL dataset.

7The main purpose of choosing a larger G0 in the theorems was to make the performance of HypBack
and AdaptiveRevision provably close to that of HypFwd, even in the worst case. On real data, the
performance of the algorithms will typically be close even with G0 = 1.

8

References
[1] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In ICML,

2003.

[2] Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms.
In ICML 2004, 2004.

[3] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Advances in Neural Informa-
tion Processing Systems. 2008.

[4] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in Ma-
chine Learning, 2012.

[5] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction using
mini-batches. J. Mach. Learn. Res., 13(1), January 2012.

[6] Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data optimization.
arXiv:1212.0873 [math.OC], 2012. URL http://arxiv.org/abs/1212.0873.

[7] Martin Takáč, Avleen Bijral, Peter Richtárik, and Nati Srebro. Mini-batch primal and dual methods for
SVMs. In Proceedings of the 30th International Conference on Machine Learning, 2013.

[8] Daniel Hsu, Nikos Karampatziakis, John Langford, and Alexander J. Smola. Scaling Up Machine Learn-
ing, chapter Parallel Online Learning. Cambridge University Press, 2011.

[9] John C. Duchi, Alekh Agarwal, and Martin J. Wainwright. Dual averaging for distributed optimization:
Convergence analysis and network scaling. IEEE Trans. Automat. Contr., 57(3):592–606, 2012.

[10] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: a lock-free approach to
parallelizing stochastic gradient descent. In NIPS, 2011.

[11] John C. Duchi, Michael I. Jordan, and H. Brendan McMahan. Estimation, optimization, and parallelism
when data is sparse. In NIPS, 2013.

[12] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. In COLT, 2010.

[13] H. Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex optimiza-
tion. In COLT, 2010.

[14] H. Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner, Julian Grady, Lan
Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat Chikkerur, Dan Liu, Martin Wattenberg,
Arnar Mar Hrafnkelsson, Tom Boulos, and Jeremy Kubica. Ad click prediction: a view from the trenches.
In KDD, 2013.

[15] Thore Graepel, Joaquin Quiñonero Candela, Thomas Borchert, and Ralf Herbrich. Web-scale bayesian
click-through rate prediction for sponsored search advertising in microsoft’s bing search engine. In ICML,
2010.

[16] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao,
Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng. Large scale distributed
deep networks. In NIPS, 2012.

[17] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM J. on Optimization, 19(4):1574–1609, January 2009. ISSN 1052-6234.
doi: 10.1137/070704277.

[18] John Langford, Alex Smola, and Martin Zinkevich. Slow Learners are Fast. In Advances in Neural
Information Processing Systems 22. 2009.

[19] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Identifying suspicious urls: An
application of large-scale online learning. In Proceedings of the 26th Annual International Conference on
Machine Learning, ICML ’09, 2009.

[20] Chih-Chung Chang and Chih-Jen Lin. LIBSVM data sets. http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/

datasets/, 2010.

[21] Peter Auer, Nicolò Cesa-Bianchi, and Claudio Gentile. Adaptive and self-confident on-line learning
algorithms. Journal of Computer and System Sciences, 2002.

9

