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Abstract

Analysis of non-asymptotic estimation error and structured statistical recovery
based on norm regularized regression, such as Lasso, needs to consider four as-
pects: the norm, the loss function, the design matrix, and the noise model. This
paper presents generalizations of such estimation error analysis on all four aspects.
We characterize the restricted error set, establish relations between error sets for
the constrained and regularized problems, and present an estimation error bound
applicable to any norm. Precise characterizations of the bound is presented for
a variety of noise models, design matrices, including sub-Gaussian, anisotropic,
and dependent samples, and loss functions, including least squares and general-
ized linear models. Gaussian width, a geometric measure of size of sets, and
associated tools play a key role in our generalized analysis.

1 Introduction

Over the past decade, progress has been made in developing non-asymptotic bounds on the esti-
mation error of structured parameters based on norm regularized regression. Such estimators are
usually of the form [16, 9, 3]:

0y, = argmin £(0; Z") + A\, R(6) , (1)

0cRP
where R(#) is a suitable norm, £(-) is a suitable loss function, Z" = {(y;, X;)}?_, where y; €
R, X; € RP is the training set, and A, > 0 is a regularization parameter. The optimal parameter
0* is often assumed to be ‘structured, usually characterized as low value according to some norm

R(-). Since 0 )\, 1s an estimate of the optimal structure *, the focus has been on bounding a suitable
function of the error vector A,, = (0, — 0*), e.g., the L norm || A, ||2.

To understand the state-of-the-art on non-asymptotic bounds on the estimation error for norm-
regularized regression, four aspects of (1) need to be considered: (i) the norm R(#), (ii) properties
of the design matrix X € R™*P, (iii) the loss function £L(-), and (iv) the noise model, typically in
terms of w = y — E[y|x]. Most of the literature has focused on a linear model: y = X6 + w,
and a squared-loss function: £(6;2") = |y — X0|3 = 13" (y; — (6, X;))?. Early work
on such estimators focussed on the L norm [21, 20, 8], and led to sufficient conditions on the
design matrix X, including the restricted-isometry properties (RIP) and restricted eigenvalue (RE)
conditions [2, 9, 13, 3]. While much of the development has focussed on isotropic Gaussian design
matrices, recent work has extended the analysis for L; norm to correlated Gaussian designs [13] as
well as anisotropic sub-Gaussian design matrices [14].

Building on such development, [9] presents a unified framework for the case of decomposable norms
and also considers generalized linear models (GLMs) for certain norms such as L. Two key insights
are offered in [9]: first, for suitably large \,, the error vector An lies in a restricted set, a cone or
a star, and second, on the restricted error set, the loss function needs to satisfy restricted strong
convexity (RSC), a generalization of the RE condition, for the analysis to work out.



For isotropic Gaussian design matrices, additional progress has been made. [4] considers a con-
strained estimation formulation for all atomic norms, where the gain condition, equivalent to the
RE condition, uses Gordons inequality [5, 7] and is succinctly represented in terms of the Gaussian
width of the intersection of the cone of the error set and a unit ball/sphere. [11] considers three
related formulations for generalized Lasso problems, establish recovery guarantees based on Gor-
dons inequality, and quantities related to the Gaussian width. Sharper analysis for recovery has been
considered in [1], yielding a precise characterization of phase transition behavior using quantities
related to the Gaussian width. [12] consider a linear programming estimator in a 1-bit compressed
sensing setting and, interestingly, the concept of Gaussian width shows up in the analysis. In spite
of the advances, most of these results are restricted to isotropic Gaussian design matrices.

In this paper, we consider structured estimation problems with norm regularization, which substan-
tially generalize existing results on all four pertinent aspects: the norm, the design matrix, the loss,
and the noise model. The analysis we present applies to all norms. We characterize the structure of
the error set for all norms, develop precise relationships between the error sets of the regularized and
constrained versions [2], and establish an estimation error bound in Section 2. The bound depends
on the regularization parameter \,, and a certain RSC condition constant . In Section 3, for both
Gaussian and sub-Gaussian noise w, we develop suitable characterizations for A, in terms of the
Gaussian width of the unit norm ball Qp = {u|R(u) < 1}. In Section 4, we characterize the RSC
condition for any norm, considering two families of design matrices X € R™*?: Gaussian and sub-
Gaussian, and three settings for each family: independent isotropic designs, independent anisotropic
designs where the rows are correlated as X, ,,, and dependent isotropic designs where the rows are
isotropic but columns are correlated as I';, x,, implying dependent samples. In Section 5, we show
how to extend the analysis to generalized linear models (GLMs) with sub-Gaussian design matrices
and any norm.

Our analysis techniques are simple and largely uniform across different types of noise and design
matrices. Parts of our analysis are geometric, where Gaussian widths, as a measure of size of
suitable sets, and associated tools play a key role [4, 7]. We also use standard covering arguments,
use Sudakov-Dudley inequality to switch from covering numbers to Gaussian widths [7], and use
generic chaining to upper bound ‘sub-Gaussian widths’ with Gaussian widths [15].

2 Restricted Error Set and Recovery Guarantees

In this section, we give a characterization of the restricted error set F, in which the error vector

A, lives, establish clear relationships between the error sets for the regularized and constrained
problems, and finally establish upper bounds on the estimation error. The error bound is determin-
istic, but has quantities which involve 6*, X, w, for which we develop high probability bounds in
Sections 3, 4, and 5.

2.1 The Restricted Error Set and the Error Cone
‘We start with a characterization of the restricted error set £, where An will belong.

Lemma 1 Forany 8 > 1, assuming

An = PR (VL0 Z27™)) 2)
the error vector An = é,\n — 6" belongs to the set
1
E.=E.(0",8) = {A eRP | R(0*+ A) < R(0*) + BR(A)} . 3)

The restricted error set F,. need not be convex for general norms. Interestingly, for 5 = 1, the
inequality in (3) is just the triangle inequality, and is satisfied by all A. Note that 5 > 1 restricts the
set of A which satisfy the inequality, yielding the restricted error set. In particular, A cannot go in
the direction of 0%, i.e., A # «af* for any a > 0. Further, note that the condition in (2) is similar
to that in [9] for B = 2, but the above characterization holds for any norm, not just decomposable
norms [9].



While E,. need not be a convex set, we establish a relationship between F,. and C., the cone for the
constrained problem [4], where

C.=C.(0") =cone{A eR” | R(0"+ A) < R(O")} . “4)

Theorem 1 Let A, = E, N pBY and A. = C. N pBY, where BY = {ul||ul|2 < 1} is the unit ball
of {3 norm and p > 0 is any suitable radius. Then, for any 3 > 1 we have

2 10l
wia) < (14 72108 Y ua, ©

where w(A) denotes the Gaussian width of any set A given by: w(A) = Eg[sup,c 4(a, g)], where
g is an isotropic Gaussian random vector.

Thus, the Gaussian width of the error sets of regularized and constrained problems are closely re-
lated. In particular, for ||0*|2 = 1, with p = 1,8 = 2, we have w(A,) < 3w(A.). Related
observations have been made for the special case of the L; norm [2], although past work did not
provide an explicit characterization in terms of Gaussian widths. The result also suggests that it is
possible to move between the error analysis of the regularized and the constrained versions of the
estimation problem.

2.2 Recovery Guarantees

In order to establish recovery guarantees, we start by assuming that restricted strong convexity (RSC)
is satisfied by the loss function in C,. = cone(E,), i.e., for any A € C,., there exists a suitable
constant x so that

SL(A,0%) 2 L(0% + A) — L(6%) — (VLO),A) > k||A|% . 6)

In Sections 4 and 5, we establish precise forms of the RSC condition for a wide variety of design
matrices and loss functions. In order to establish recovery guarantees, we focus on the quantity

F(A) = L0 +A) = L(O") + A\ (R(O" + A) — R(07)) . (7

Since éAn = 0* + An is the estimated parameter, i.e., é)\n is the minimum of the objective, we

clearly have F(A,) < 0, which implies a bound on ||A,,||5. Unlike previous results, the bound
can be established without making any additional assumptions on the norm R(6). We start with the

following result, which expresses the upper bound on || A,, || in terms of the gradient of the objective
at 0*.

Lemma 2 Assume that the RSC condition is satisfied in C,. by the loss L(-) with parameter k. With
A, =0y, — 0%, for any norm R(-), we have

2 1
[Anlls < IVLE?) + A VRE)]2 ®)

where V R(-) is any sub-gradient of the norm R(-).

Note that the right hand side is simply the L, norm of the gradient of the objective evaluated at
0*. For the special case when 6, = 6%, the gradient of the objective is zero, implying correctly

that ||A,|l2 = 0. While the above result provides useful insights about the bound on [|A,, ||z,
the quantities on the right hand side depend on 6*, which is unknown. We present another form
of the result in terms of quantities such as \,, x, and the norm compatibility constant ¥(C,.) =

) R(u) . .
SUPyeC, Tl which are often easier to compute or bound.

Theorem 2 Assume that the RSC condition is satisfied in C,. by the loss L(-) with parameter k.
With A,, = 0y, — 0%, for any norm R(-), we have

A 1 An
I8alla < 222 0(C,) ©

The above result is deterministic, but contains \,, and . In Section 3, we give precise characteri-
zations of \,,, which needs to satisfy (2). In Sections 4 and 5, we characterize the RSC condition
constant « for different losses and a variety of design matrices.



3 Bounds on the Regularization Parameter

Recall that the parameter \,, needs to satisfy the inequality

An > BR*(VL(O*;2™)) . (10)
The right hand side of the inequality has two issues: it depends on §*, and it is a random variable,
since it depends on Z". In this section, we characterize E[R*(VL(6*; Z™))] in terms of the Gaus-
sian width of the unit norm ball 2z = {u : R(u) < 1}, and also discuss large deviation bounds
around the expectation. For ease of exposition, we present results for the case of squared loss, i.e.,
L(6*;2") = 5|y — X6*||* with the linear model y = X6 + w, where w can be Gaussian or
sub-Gaussian noise. For this setting, VL(6*; Z") = 1 X7 (y — X6*) = L XTw. The analysis can
be extended to GLMs, using analysis techniques discussed in Section 5.
Gaussian Designs: First, we consider Gaussian design X, where 2;; ~ N (0,1) are independent,
and w is elementwise independent Gaussian or sub-Gaussian noise.

Theorem 3 Let Qp = {u : R(u) < 1}. Then, for Gaussian design X and Gaussian or sub-
Gaussian noise w, for a suitable constant ng > 0, we have

B[R (VL(0%: 2")] < Z=w(r) - an

Further, for any ™ > 0, for suitable constants nl,ngn > 0, with probability at least (1 —
1 exp(—n27?))

R (VL0 Z™)) < 77%w(ﬂm) + in . (12)

For anisotropic Gaussian design, i.e., when columns of X € R"*? have covariance >, the above

result continues to hold with w(2g) replaced by \/Amax(Z)w(2g), where Apax(X) denotes the
operator norm (largest eigenvalue). For correlated isotropic design, i.e., when rows of X € R"™ have

covariance I';, «,,, the result continues to hold with w({2g) replaced by 1/ Amax (D) w(QR).

Sub-Gaussian Designs: Recall that for a sub-Gaussian variable x, the sub-Gaussian norm [[|z||,, =
SUp,> 1 %(E[mp])l/p [18]. Now, we consider sub-Gaussian design X, where ||z;;||,, < & and
x;; are i.1.d., and w is elementwise independent Gaussian or sub-Gaussian noise.

Theorem 4 Let Qr = {u : R(u) < 1}. Then, for sub-Gaussian design X and Gaussian or sub-
Gaussian noise w, for a suitable constant g > 0, we have

E[R*(VL(0": Z™)] < %w(QR) . (13)

Interestingly, the analysis for the result above involves ‘sub-Gaussian width’ which can be upper
bounded by a constant times the Gaussian width, using generic chaining [15]. Further, one can
get Gaussian-like exponential concentration around the expectation for important classes of sub-
Gaussian random variables, including bounded random variables [6], and when X,, = (h, u), where
u i any unit vector, are such that their Malliavin derivatives have almost surely bounded norm in

L2[0,1], ie., [y [Dy Xy [2dr <1 [19].

Next, we provide a mechanism for bounding the Gaussian width w(€2g) of the unit norm ball in
terms of the Gaussian width of a suitable cone, obtained by shifting or translating the norm ball. In
particular, the result involves taking any point on the boundary of the unit norm ball, considering
that as the origin, and constructing a cone using the norm ball. Since such a construction can be done
with any point on the boundary, the tightest bound is obtained by taking the infimum over all points
on the boundary. The motivation behind getting an upper bound of the Gaussian width w(2g) of
the unit norm ball in terms of the Gaussian width of such a cone is because considerable advances
have been made in recent years in upper bounding Gaussian widths of such cones.

Lemma3 Let Qr = {u : R(u) < 1} be the unit norm ball and ©r = {u : R(u) = 1} be the
boundary. For any 0 € O, p(0) = supg.pg)<1 |0 — 0|2 is the diameter of Qr measured with
respect to 0. Let G(A) = cone(Qg — 0) N p(A) B, i.e., the cone of (g — ) intersecting the ball of

radius p(0). Then

w(Qr) < inf w(G(9)). (14)
0cORr



4 Least Squares Models: Restricted Eigenvalue Conditions

When the loss function is squared loss, i.c., £(6; Z") = 5-|ly — X0]||?, the RSC condition (6)

becomes equivalent to the Restricted Eigenvalue (RE) condition [2, 9], i.e., 1| XA|3 > &[|A[3,

or equivalently, Hﬁ(ﬁ!ﬁ > y/kn for any A in the error cone C,.. Since the absolute magnitude of

||A]|2 does not play a role in the RE condition, without loss of generality we work with unit vectors
ue A= C,NSP~L, where SP~! is the unit sphere.

In this section, we establish RE conditions for a variety of Gaussian and sub-Gaussian design ma-
trices, with isotropic, anisotropic, or dependent rows, i.e., when samples (rows of X) are correlated.
Results for certain types of design matrices for certain types of norms, especially the L; norm, have
appeared in the literature [2, 13, 14]. Our analysis considers a wider variety of design matrices and
establishes RSC conditions for any A C SP~1, thus corresponding to any norm. Interestingly, the
Gaussian width w(A) of A shows up in all bounds, as a geometric measure of the size of the set A,
even for sub-Gaussian design matrices. In fact, all existing RE results do implicitly have the width
term, but in a form specific to the chosen norm [13, 14]. The analysis on atomic norm in [4] has the
w(A) term explicitly, but the analysis relies on Gordon’s inequality [5, 7], which is applicable only
for isotropic Gaussian design matrices.

The proof technique we use is simple, a standard covering argument, and is largely the same across
all the cases considered. A unique aspect of our analysis, used in all the proofs, is a way to go from
covering numbers of A to the Gaussian width of A using the Sudakov-Dudley inequality [7]. Our
general techniques are in sharp contrast to much of the existing literature on RE conditions, which
commonly use specialized tools such as Gaussian comparison principles [13, 9], and/or specialized
analysis geared to a particular norm such as Ly [14].

4.1 Restricted Eigenvalue Conditions: Gaussian Designs

In this section, we focus on the case of Gaussian design matrices X € R™*P, and consider three
settings: (i) independent-isotropic, where the entries are elementwise independent, (ii) independent-
anisotropic, where rows X; are independent but each row has a covariance E[X; X ]| = ¥ € RP*?,
and (iii) dependent-isotropic, where the rows are isotropic but the columns X are correlated with

E[X;X]] =T € R™*™. For convenience, we assume E[z};] = 1, noting that the analysis easily

extends to the general case of E[z7;] = 0.

Independent Isotropic Gaussian (IIG) Designs: The IIG setting has been extensively studied in
the literature [3, 9]. As discussed in the recent work on atomic norms [4], one can use Gordon’s
inequality [5, 7] to get RE conditions for the IIG setting. Our goal in this section is two-fold:
first, we present the RE conditions obtained using our simple proof technique, and show that it
is equivalent, up to constants, the RE condition obtained using Gordon’s inequality, an arguably
heavy-duty technique only applicable to the IIG setting; and second, we go over some facets of how
we present the results, which will apply to all subsequent RE-style results as well as give a way to
plug-in x in the estimation error bound in (9).

Theorem 5 Let the design matrix X € R™*P be elementwise independent and normal, i.e., x;; ~
N(0,1). Then, for any A C SP~, any n > 2, and any 7 > 0, with probability at least (1 —
n1 exp(—n272)), we have

1
inf || X > —v/n— A) — 1
Inf [|Xullz = 5v/n —now(A) -7, (15)
Mo, M, N2 > 0 are absolute constants.

We consider the equivalent result one could obtain by directly using Gordon’s inequality [5, 7]:

Theorem 6 Let the design matrix X be elementwise independent and normal, i.e., v;; ~ N (0,1).
Then, for any A C SP~1 and any T > 0, with probability at least (1 — 2 exp(—72/2)), we have

. o B
;ggHXUIlz_% w(A) -7, (16)

where v, = E|||h||2] > TngT 8 the expected length of a Gaussian random vector in R™.



Interestingly, the results are equivalent, up to constants. However, unlike Gordon’s inequality, our
proof technique generalizes to all the other design matrices considered in the sequel.

We emphasize three additional aspects in the context of the above analysis, which will continue to
hold for all the subsequent results but will not be discussed explicitly. First, to get a form of the
result which can be used as x and plugged in to the estimation error bound (9), one can simply
choose 7 = L(1/n — nyw(A)) so as to get

2\2
1 7
inf [ Xullz > $vn - Dw(d), an

with high probability. Table 1 shows a summary of recovery bounds on Independent Isotropic
Gaussian design matrices with Gaussian noise. Second, the result does not depend on the fact that
u € A C C.NSP~1sothat ||ul|2 = 1. For example, one can consider the cone C,. to be intersecting
with a sphere pSP~! of a different radius p, to give 4, = C,. N pSP~! so thatu € A, has |Jul]2 = p.
For simplicity, let A = A, i.e., corresponding to p = 1. Then, a straightforward extension yields
infuea, [ Xull2 > (5v/n—mnow(A) —7)||ul|2, with probability at least (1 — 71 exp(—n272)), since
[ Xullz = [|X = ll2llull2 and w(A)y),) = |lullzw(A) [4]. Such a scale independence is in fact

necessary for the error bound analysis in Section 2. Finally, note that the leading constant % was

a consequence of our choice of € = % for the e-net covering of A in the proof. One can get other
constants, less than 1, with different choices of ¢, and the constants 79, 771, 772 Will change based on
this choice.

Tulls 2|

Independent Anisotropic Gaussian (IAG) Designs: We consider a setting where the rows X; of
the design matrix are independent, but each row is sampled from an anisotropic Gaussian distribu-
tion, i.e., X; ~ N(0,X,x,) where X; € RP. The setting has been considered in the literature [13]
for the special case of L1 norms, and sharp results have been established using Gaussian comparison
techniques [7]. We show that equivalent results can be obtained by our simple technique, which does
not rely on Gaussian comparisons [7, 9].

Theorem 7 Let the design matrix X be row wise independent and each row X; ~ N(0,3,xp).
Then, for any A C SP~! and any T > 0, with probability at least 1 — 11 exp(—n272), we have

. 1
7}relf/;”‘)(’uf”Q 2 §\ﬁ\ﬁ—770 Amax(z) w(A) -7, (18)

2, /Amax (X) denotes the largest eigenvalue of ©'/ and 1o, ny, 12 >

where /v = inf,c 4 |
0 are constants.

A comparison with the results of [13] is instructive. The leading term /v appears in [13] as
well—we have simply considered inf, 4 on both sides, and the result in [13] is for any u with the
HZl/ 2ul|o term. The second term in [13] depends on the largest entry in the diagonal of 3, v/Iog p,
and ||u||;. These terms are a consequence of the special case analysis for L; norm. In contrast, we

consider the general case and simply get the scaled Gaussian width term \/Apax(Z) w(A4).
Dependent Isotropic Gaussian (DIG) Designs: We now consider a setting where the rows of the

design matrix X are isotropic Gaussians, but the columns X are correlated with E[X; X T} T'e

R™>" Interestingly, correlation structure over the columns make the samples dependent, a scenario
which has not yet been widely studied in the literature [22, 10]. We show that our simple technique
continues to work in this scenario and gives a rather intuitive result.

Theorem 8 Let X E~R"Xp be a matrix whose rows X; are isotropic Gaussian random vectors in
R? and the columns X are correlated with E[X; XJT] = T. Then, for any set A C SP~! and any
7 > 0, with probability at least (1 — 0y exp(—n272), we have

~ 3 5
it 1€l > VAT VR () + 5 ) =7 (19)

where 1y, n1,n2 > 0 are constants.

Note that with the assumption that £ [:cfj] = 1, I" will be a correlation matrix implying Tr(I") = n,
and making the sample size dependence explicit. Intuitively, due to sample correlations, n samples

are effectively equivalent to i 1;(18“) ’”(F) samples.




4.2 Restricted Eigenvalue Conditions: Sub-Gaussian Designs

In this section, we focus on the case of sub-Gaussian design matrices X € R™*P, and consider three
settings: (i) independent-isotropic, where the rows are independent and 1sotr0p1c (i1) 1ndependent-

anisotropic, where the rows X; are independent but each row has a covariance E[X; X]] = Spxy,
and (iii) dependent-isotropic, where the rows are isotropic and the columns X; are correlated
with E[X ijT] = I',,xn. For convenience, we assume E[xfj} = 1 and the sub—Gaussian norm

2l v S k [18]. In recent work, [17] also considers generalizations of RE conditions to sub-
Gaussian designs, although our proof techniques are different.

Independent Isotropic Sub-Gaussian Designs: We start with the setting where the sub-Gaussian
design matrix X € R™*P has independent rows X; and each row is isotropic.

Theorem 9 Let X € R"*P be a design matrix whose rows X; are independent isotropic sub-
Gaussian random vectors in RP. Then, for any set A C SP~! and any 7 > 0, with probability at
least (1 — 2exp(—n172)), we have

Inf [[Xullz = v = now(A) -7, (20)

where 1o, 11 > 0 are constants which depend only on the sub-Gaussian norm ||zi;||,,, = k.

Independent Anisotropic Sub-Gaussian Designs: We consider a setting where the rows X; of the
demgn matrix are independent, but each row is sampled from an anisotropic sub-Gaussian distribu-
tion, i.e., [[zill,, = k and E[X; X]] = %),

Theorem 10 Let the sub-Gaussian design matrix X be row wise independent, and each row has
E[X;XI] = ¥ € RP*P. Then, for any A C SP~! and any T > 0, with probability at least
(1 — 2exp(—m7?)), we have

&relg”XU”Q > \ﬁ\f_n() Amax(z) ’LU(A) -7, 2D

where \/v = inf,c 4 ||21/2u 2, \/ Amax (X) denotes the largest eigenvalue of XY/2, and g, m1 > 0
are constants which depend on the sub-Gaussian norm ||z ,, = k.

Note that [14] establish RE conditions for anisotropic sub-Gaussian designs for the special case of
Ly norm. In contrast, our results are general and in terms of the Gaussian width w(A).

Dependent Isotropic Sub-Gaussian Designs: We consider the setting where the sub-Gaussian de-

sign matrix X has isotropic sub-Gaussian rows, but the columns X are correlated with E[X X T]
T", implying dependent samples.

Theorem 11 Letf( € R™*P be a sub-Gaussian design matrix with isotropic rows and correlated
columns with E[XjX]T] =T € R™*". Then, for any A C S~ and any T > 0, with probability at
least (1 — 2exp(—n172)), we have

122 | Xuly > % Tr(T) — 1o Amax (Dw(A) — 7, (22)

where 110,11 are constants which depend on the sub-Gaussian norm ||zi;||,,, = k-

5 Generalized Linear Models: Restricted Strong Convexity

In this section, we consider the setting where the conditional probabilistic distribution of y|x follows
an exponential family distribution: p(y|z;6) = exp{y(0,x) — ¥ ({6, x))}, where ¥(-) is the log-
partition function. Generalized linear models consider the negative likelihood of such conditional
distributions as the loss function: £(6;2") = 13" (4((6,X;)) — (0,4, X;)). Least squares
regression and logistic regression are popular special cases of GLMs. Since V4 ({0, x)) = Ely|«z],
we have VL(0*; Z") = L XTw, where w; = Vo ({0, X;)) — y; = Ely|X;] — y; plays the role of
noise. Hence, the analysis in Section 3 can be applied assuming w is Gaussian or sub-Gaussian. To
obtain RSC conditions for GLMs, first note that

L0, A Z) = Zv2 Xi) + 7D, Xi))(A, Xi)? (23)



Table 1: A summary of various values for L and L., norms with all values correct upto constants.

2 N
Rlu) | Ani= e85 | i [max{ (1- 22) 0} | w(C)) | [An]z i= g™

n Vi
oo |0 (/5r) o) v oo(yE=)
oo | 0(/E) o) NPTV

where ; € [0, 1], by mean value theorem. Since ¢ is of Legendre type, the second derivative
V24(-) is always positive. Since the RSC condition relies on a non-trivial lower bound for the above
quantity, the analysis considers a suitable compact set where £ = £ (T) = min|, <ar V2t(a) is

bounded away from zero. Outside this compact set, we will only use V2t () > 0. Then,
E n
SL(O, A Z™) > =Y (X, AV I[|(X5,0%)] < TV I[[(X;, A)| < T7. (24)
n
i=1
We give a characterization of the RSC condition for independent isotropic sub-Gaussian design ma-
trices X € R™*P. The analysis can be suitably generalized to the other design matrices considered in
Section 4 by using the same techniques. As before, we denote A as w, and consider u € A C Sp—1
so that ||u|l2 = 1. Further, we assume ||6*||2 < ¢; for some constant ¢;. Assuming X has sub-
Gaussian entries with [|; |, <k, (X, 6*) and (X;, u) are sub-Gaussian random variables with
sub-Gaussian norm at most Ck. Let ¢1 = ¢ (T;u) = P{|{X;,u)| > T} < e-exp(—coT?/C?k?),
and ¢y = ¢o(T;0%) = P{|(X;,0%)| > T} < e - exp(—coT?/C?k?). The result we present is in
terms of the constants ¢ = £,,(T'), $1 = ¢(T';u) and ¢ = ¢(T', 6*) for any suitably chosen 7.

Theorem 12 Let X € R"™*P be a design matrix with independent isotropic sub-Gaussian rows.

Then, for any set A C SP~1, any a € (0,1), any 7 > 0, and any n > m(ch(A) +

cs(1—¢1—02)°
cik?

we have

(1—a)72) for suitable constants c3 and c4, with probability at least 1—3 exp (—771 72),

&IGIE VnoLO*;u, X) > b7 (\/ﬁ —now(A) — 7')) , (25)

where m = (1 — a)(1 — ¢1 — ¢2), £ = Ly(T) = minjg<orix V24 (a), and constants (1o, 1)
depend on the sub-Gaussian norm |H£U1]|||¢2 = k.

The form of the result is closely related to the corresponding result for the RE condition on
inf,ea || Xull2 in Section 4.2. Note that RSC analysis for GLMs was considered in [9] for spe-
cific norms, especially L;, whereas our analysis applies to any set A C SP~!, and hence to any
norm. Further, following similar argument structure as in Section 4.2, the analysis for GLMs can be
extended to anisotropic and dependent design matrices.

6 Conclusions

The paper presents a general set of results and tools for characterizing non-asymptotic estimation
error in norm regularized regression problems. The analysis holds for any norm, and includes much
of existing literature focused on structured sparsity and related themes as special cases. The work
can be viewed as a direct generalization of results in [9], which presented related results for decom-
posable norms. Our analysis illustrates the important role Gaussian widths, as a geometric measure
of size of suitable sets, play in such results. Further, the error sets of regularized and constrained
versions of such problems are shown to be closely related [2]. Going forward, it will be interesting
to explore similar generalizations for the semi-parametric and non-parametric settings.

Acknowledgements: We thank the anonymous reviewers for helpful comments and suggestions on
related work. We thank Sergey Bobkov, Snigdhansu Chatterjee, and Pradeep Ravikumar for discus-
sions related to the paper. The research was supported by NSF grants I1S-1447566, 11S-1422557,
CCF-1451986, CNS-1314560, 11S-0953274, 11S-1029711, and by NASA grant NNX12AQ39A.



References

[1] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp. Living on the edge: A geometric
theory of phase transitions in convex optimization. Inform. Inference, 3(3):224-294, 2013.

[2] P.J.Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector.
Annals of Statistics, 37(4):1705-1732, 2009.

[3] P. Buhlmann and S. van de Geer. Statistics for High Dimensional Data: Methods, Theory and
Applications. Springer Series in Statistics. Springer, 2011.

[4] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky. The convex geometry of linear
inverse problems. Foundations of Computational Mathematics, 12(6):805-849, 2012.

[5] Y. Gordon. On Milmans inequality and random subspaces which escape through a mesh in R™.
In Geometric Aspects of Functional Analysis, volume 1317 of Lecture Notes in Mathematics,
pages 84—106. Springer, 1988.

[6] M. Ledoux. The concentration of measure phenomenon. Mathematical Surveys and Mon-
graphs. American Mathematical Society.

[7] M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes.
Springer, 2013.

[8] N.Meinshausen and B Yu. Lasso-type recovery of sparse representations for high-dimensional
data. The Annals of Statistics, 37(1):246—270, 2009.

[9] S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for the analysis
of regularized M -estimators. Statistical Science, 27(4):538-557, December 2012.

[10] S. Negahban and M. J. Wainwright. Estimation of (near) low-rank matrices with noise and
high-dimensional scaling. Annals of Statistics, 39(2):1069-1097, 2011.

[11] S. Oymak, C. Thrampoulidis, and B. Hassibi. The Squared-Error of Generalized Lasso: A
Precise Analysis. Arxiv, arXiv:1311.0830v2, 2013.

[12] Y. Plan and R. Vershynin. Robust 1-bit compressed sensing and sparse logistic regression: A
convex programming approach. IEEE Transactions on Information Theory, 59(1):482-494,
2013.

[13] G. Raskutti, M. J. Wainwright, and B. Yu. Restricted Eigenvalue Properties for Correlated
Gaussian Designs. Journal of Machine Learning Research, 11:2241-2259, 2010.

[14] Z. Rudelson and S. Zhou. Reconstruction from anisotropic random measurements. IEEE
Transactions on Information Theory, 59(6):3434-3447, 2013.

[15] M. Talagrand. The Generic Chaining. Springer, 2005.

[16] R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical
Society, Series B, 58(1):267-288, 1996.

[17] J. A. Tropp. Convex recovery of a structured signal from independent random linear measure-
ments. In Sampling Theory, a Renaissance. (To Appear), 2014.

[18] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. Eldar and
G. Kutyniok, editors, Compressed Sensing, chapter 5, pages 210-268. Cambridge University
Press, 2012.

[19] A. B. Vizcarra and F. G. Viens. Some applications of the Malliavin calculus to sub-Gaussian
and non-sub-Gaussian random fields. In Seminar on Stochastic Analysis, Random Fields and
Applications, Progress in Probability, volume 59, pages 363—396. Birkhauser, 2008.

[20] M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using
¢1-constrained quadratic programming(Lasso). IEEE Transactions on Information Theory,
55:2183-2202, 2009.

[21] P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning
Research, 7:2541-2567, November 2006.

[22] S. Zhou. Gemini: Graph estimation with matrix variate normal instances. The Annals of
Statistics, 42(2):532-562, 2014.



