
Exclusive Feature Learning on Arbitrary Structures
via `1,2-norm

Deguang Kong1, Ryohei Fujimaki2, Ji Liu3, Feiping Nie1, Chris Ding1
1 Dept. of Computer Science, University of Texas Arlington, TX, 76019;

2 NEC Laboratories America, Cupertino, CA, 95014;
3 Dept. of Computer Science, University of Rochester, Rochester, NY, 14627
Email: doogkong@gmail.com, rfujimaki@nec-labs.com,

jliu@cs.rochester.edu, feipingnie@gmail.com, chqding@uta.edu

Abstract

Group LASSO is widely used to enforce the structural sparsity, which achieves
the sparsity at the inter-group level. In this paper, we propose a new formulation
called “exclusive group LASSO”, which brings out sparsity at intra-group level in
the context of feature selection. The proposed exclusive group LASSO is applica-
ble on any feature structures, regardless of their overlapping or non-overlapping
structures. We provide analysis on the properties of exclusive group LASSO, and
propose an effective iteratively re-weighted algorithm to solve the corresponding
optimization problem with rigorous convergence analysis. We show applications
of exclusive group LASSO for uncorrelated feature selection. Extensive experi-
ments on both synthetic and real-world datasets validate the proposed method.

1 Introduction

Structure sparsity induced regularization terms [1, 8] have been widely used recently for feature
learning purpose, due to the inherent sparse structures of the real world data. Both theoretical and
empirical studies have suggested the powerfulness of structure sparsity for feature learning, e.g.,
Lasso [24], group LASSO [29], exclusive LASSO [31], fused LASSO [25], and generalized LAS-
SO [22]. To make a compromise between the regularization term and the loss function, the sparse-
induced optimization problem is expected to fit the data with better statistical properties. Moreover,
the results obtained from sparse learning are easier for interpretation, which give insights for many
practical applications, such as gene-expression analysis [9], human activity recognition [14], elec-
tronic medical records analysis [30], etc.

Motivation Of all the above sparse learning methods, group LASSO [29] is known to enforce the
sparsity on variables at an inter-group level, where variables from different groups are competing to
survive. Our work is motivated from a simple observation: in practice, not only features from differ-
ent groups are competing to survive (i.e., group LASSO), but also features in a seemingly cohesive
group are competing to each other. The winner features in a group are set to large values, while the
loser features are set to zeros. Therefore, it leads to sparsity at the intra-group level. In order to make
a distinction with standard LASSO and group LASSO, we called it “exclusive group LASSO” regu-
larizer. In “exclusive group LASSO” regularizer, intra-group sparsity is achieved via `1 norm, while
inter-group non-sparsity is achieved via `2 norm. Essentially, standard group LASSO achieves spar-
sity via `2,1 norm, while the proposed exclusive group LASSO achieves sparsity via `1,2 norm. An
example of exclusive group LASSO is shown in Fig.(1) via Eq.(2). The significant difference from
the standard LASSO is to encourage similar features in different groups to co-exist (Lasso usually
allows only one of them surviving). Overall, the exclusive group LASSO regularization encourages
intra-group competition but discourages inter-group competition.
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Figure 1: Explanation of differences between group LASSO and exclusive group LASSO. Group setting:
G1 = {1, 2},G2 = {3, 4},G3 = {5, 6, 7}. Group LASSO solution of Eq.(3) at λ = 2 using least square loss
is: w = [0.0337; 0.0891; 0; 0;−0.2532; 0.043; 0.015]. exclusive group LASSO solution of Eq.(2) at λ = 10
is: w = [0.0749; 0; 0;−0.0713;−0.1888; 0; 0]. Clearly, group LASSO introduces sparsity at an inter-group
level, whereas exclusive LASSO enforces sparsity at an intra-group level.

We note that “exclusive LASSO” was first used in [31] for multi-task learning. Our “exclusive group
LASSO” work, however, has clear difference from [31]: (1) we give a clear physical intuition of
“exclusive group LASSO”, which leads to sparsity at an intra-group level (Eq.2), whereas [31] fo-
cuses on “Exclusive LASSO” problem in a multi-task setting; (2) we target a general “group” setting
which allows arbitrary group structure, which can be easily extended to multi-task/multi-label learn-
ing. The main contributions of this paper include: (1) we propose a new formulation of “exclusive
group LASSO” with clear physical meaning, which allow any arbitrary structure on feature space;
(2) we propose an effective iteratively re-weighted algorithm to tackle non-smooth “exclusive group
LASSO” term with rigorous convergence guarantees. Moreover, an effective algorithm is proposed
to handle both non-smooth `1 and exclusive group LASSO term (Lemma 4.1); (3) The proposed ap-
proach is validated via experiments on both synthetic and real data sets, specifically for uncorrelated
feature selection problems.

Notation Throughout the paper, matrices are written as boldface uppercase, vectors are written
as boldface lowercase, and scalars are denoted by lower-case letters (a, b). n is the number of
data points, p is the dimension of data, K is the number of class in a dataset. For any vector

w ∈ <p, `q norm of w is ‖w‖q =

(∑p
i=1 |wj |q

) 1
q

for q ∈ (0,∞). A group of variables is

a subset g ⊂ {1, 2, · · · , p}. Thus, the set of possible groups is the power set of {1, 2, · · · , p}:
P({1, 2, · · · , p}). Gg ∈ P({1, 2, · · · , p}) denotes a set of group g, which is known in advance
depending on applications. If two groups have one or more overlapped variables, we say that they are
overlapped. For any group variable wGg ∈ <p, only the entries in the group g are preserved which
are the same as those in w, while the other entries are set to zeros. For example, if Gg = {1, 2, 4},
wGg = [w1, w2, 0, w4, 0, · · · , 0], then ‖wGg‖2 =

√
w2

1 + w2
2 + w2

4. Let supp(w) ⊂ {1, 2, · · · , p}
be a set which wi 6= 0, and zero(w) ⊂ {1, 2, · · · , p} be a set which wi = 0. Clearly, zero(w) =
{1, 2, · · · , p} \ supp(w). Let5f(w) be gradient of f at w ∈ <p, for any differentiable function f :
<p → <.

2 Exclusive group LASSO

Let G be a group set, the exclusive group LASSO penalty is defined as:

∀w ∈ <p, ΩGEg(w) =
∑
g∈G
‖wGg‖21. (1)

When the groups of g form different partitions of the set of variables, ΩGEg is a `1/`2 norm penalty.
A `2 norm is enforced on different groups, while in each group, `1 norm is used to make a sum
over each intra-group variable. Minimizing such a convex risk function often leads to a solution that
some entries in a group are zeros. For example, for a group Gg = {1, 2, 4}, there exists a solution
w, such that w1 = 0, w2 6= 0, w4 6= 0. A concrete example is shown in Fig.1, in which we solve:

min
w∈<p

J1(w), J1(w) = f(w) + λΩGEg(w). (2)

using least square loss function f(w) = ‖y−XTw‖22. As compared to standard group LASSO [29]
solution of Eq.(3),
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Figure 2: (a-b): Geometric shape of Ω(w) ≤ 1 in R3. (a) non-overlap exclusive group LASSO: Ω(w) =
(|w1|+ |w2|)2 + (|w3|)2; (b) overlap exclusive group LASSO: Ω(w) = (|w1|+ |w2|)2 + (|w2|+ |w3|)2;
(c) feature correlation matrix R on dataset House (506 data points, 14 variables). Rij indicates the feature
correlation between feature i and j. Red colors indicate large values, while blue colors indicate small values.

f(w) + λ
∑
g

‖wGg‖2. (3)

We observe that group LASSO introduces sparsity at an inter-group level, whereas exclusive LASSO
enforces sparsity at an intra-group level.

Analysis of exclusive group LASSO For each group g, feature index u ∈ supp(g) will be non-zero.
Let vg ∈ <p be a variable which preserves the values of non-zero index for group g. Consider all
groups, for optimization goal w, we have supp(w) = ∪

g
supp(vg). (1) For non-overlapping case,

different groups form a partition of feature set {1, 2, · · · , p}, and there exists a unique decomposition
of w =

∑
g vg . Since there is not any common elements for any two different groups Gu and Gv ,

i.e., supp(wGu) ∩ supp(wGv ) = φ. thus it is easy to see: vg = wGg , ∀g ∈ G. (2) However, for
overlapping groups, there could be element sets I ⊂ (Gu ∩ Gv), and therefore, different groups Gu
and Gv may have opposite effects to optimize the features in set I . For feature i ∈ I , it is prone to
give different values if optimized separately, i.e., (wGu)i 6= (wGv )i. For example, Gu = [1, 2],Gv =
[2, 3], whereas group u may require w2 = 0 and group v may require w2 6= 0. Thus, there will be
many possible combinations of feature values, and it leads to: ΩGEg = inf∑

g vg=w

∑
g ‖vg‖21. Further,

if some groups are overlapped, the final zeros sets will be a subset of unions of all different groups.
zero(w) ⊂ ∩

g
zero(vg).

Illustration of Geometric shape of exclusive LASSO Figure 2 shows the geometric shape for
both norms in R3 with different group settings, where in (a): G1 = [1, 2],G2 = [3]; and in (b):
G1 = [1, 2],G2 = [2, 3]. For the non-overlapping case, variables w1, w2 usually can not be zero
simultaneously. In contrast, for the overlapping case, variable w2 cannot be zero unless both groups
G1 and G2 require w2 = 0.

Properties of exclusive LASSO The regularization term of Eq.(1) is a convex formulation. If

∪g∈G = {1, 2, · · · , p}, then ΩGE :=
√

ΩGEg is a norm. See Appendix for proofs.

3 An effective algorithm for solving ΩG
Eg regularizer

The challenge of solving Eq. (1) is to tackle the exclusive group LASSO term, where f(w) can be
any convex loss function w.r.t w. It is generally felt that exclusive group LASSO term is much more
difficult to solve than the standard LASSO term (shrinkage thresholding). Existing algorithm can
formulate it as a quadratic programming problem [19], which can be solved by interior point method
or active set method. However, the computational cost is expensive, which limits its use in practice.
Recently, a primal-dual algorithm [27] is proposed to solve the similar problem, which casts the
non-smooth problem into a min-max problem. However, the algorithm is a gradient descent type
method and converges slowly. Moreover, the algorithm is designed for multi-task learning problem,
and cannot be applied directly for exclusive group LASSO problem with arbitrary structures.

In the following, we first derive a very efficient yet simple algorithm. Moreover, the proposed
algorithm is a generic algorithm, which allows arbitrary structure on feature space, irrespective of
specific feature structures [10], e.g., linear structure [28], tree structure [15], graph structure [7], etc.
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Theoretical analysis guarantees the convergence of algorithm. Moreover, the algorithm is easy to
implement and ready to use in practice.

Key idea The idea of the proposed algorithm is to find an auxiliary function for Eq.(1) which can be
easily solved. Then the updating rules for w is derived. Finally, we prove the solution is exactly the
optimal solution we are seeking for the original problem. Since it is a convex problem, the optimal
solution is the global optimal solution.

Procedure Instead of directly optimizing Eq. (1), we propose to optimize the following objective
(the reasons will be seen immediately below), i.e.,

J2(w) = f(w) + λwTFw, (4)

where F ∈ <p×p is a diagonal matrices which encodes the exclusive group information, and its
diagonal element is given by1

Fii =
(∑

g

(IGg )i‖wGg‖1
|wi|

)
. (5)

Let IGg ∈ {0, 1}p×1 be group index indicator for group g ∈ G. For example, group G1 is {1, 2},
then IG1 = [1, 1, 0, · · · , 0]. Thus the group variable wGg can be explicitly expressed as wGg =
diag(IGg )×w.

Note computation of F depends on w, thus minimization of w depends on both F. In the following,
we propose an efficient iteratively re-weighted algorithm to find out the optimal global solution for
w, where in each iteration, w is updated along the gradient descent direction. This process is iterated
until the algorithm converges. Taking the derivative of Eq.(4) w.r.t w and set ∂J2

∂w = 0. We have

∇wf(w) + 2λFw = 0. (6)

Then the complete algorithm is:

(1) Updating wt via Eq.(6);

(2) Updating Ft via Eq.(5).

The above two steps are iterated until the algorithm converges. We can prove the obtained optimal
solution is exactly the global optimal solution for Eq.(1).

3.1 Convergence Analysis
In the following, we prove the convergence of algorithm.
Theorem 3.1. Under the updating rule of Eq. (6), J1(wt+1)− J1(wt) ≤ 0.

The proof is provided in Appendix.

Discussion We note reweighted strategy [26] was also used in solving problems like zero-norm
of the parameters of linear models. However, it cannot be directly used to solve “exclusive group
LASSO” problem proposed in this paper, and cannot handle arbitrary structures on feature space.

4 Uncorrelated feature learning via exclusive group LASSO

Motivation It is known that in Lasso-type (including elastic net) [24, 32] variable selection, variable
correlations are not taken into account. Therefore, some strongly correlated variables tend to be in
or out of the model together. However, in practice, feature variables are often correlated. See an
example shown on housing dataset [4] with 506 samples and 14 attributes. Although there are only
14 attributes, feature 5 is highly correlated with feature 6, 7, 11, 12, etc. Moveover, the strongly cor-
related variables may share similar properties, with overlapped or redundant information. Especially

1when wi = 0, then Fii is related to subgradient of w w.r.t to wi. However, we can not set
Fii = 0, otherwise the derived algorithm cannot be guaranteed to converge. We can regularize Fii =(∑

g

(IGg )i‖wGg‖1/
√

w2
i + ε

)
, then the derived algorithm can be proved to minimize the regularized∑

g ‖(w + ε)Gg‖21. It is easy to see the regularized exclusive `1 norm of w approximates exclusive `1 norm of
w when ε→ 0+.
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Table 1: Characteristics of datasets
Dataset # data #dimension #domain
isolet 1560 617 UCI
ionosphere 351 34 UCI
mnist(0,1) 3125 784 image
Leuml 72 3571 biology

when the number of selected variables are limited, more discriminant information with minimum
correlations are desirable for prediction or classification purpose. Therefore, it is natural to eliminate
the correlations in the feature learning process.

Formulation The above observations motivate our work of uncorrelated feature learning via exclu-
sive group LASSO. We consider the variable selection problem based on the LASSO-type optimiza-
tion, where we can make the selected variables uncorrelated as much as possible. To be exact, we
propose to optimize the following objective:

min
w∈<p

f(w) + α‖w‖1 + β
∑
g

‖wGg‖21, (7)

where f(w) is loss function involving class predictor y ∈ <n and data matrix X =
[x1,x2, · · · ,xn] ∈ <p×n, ‖wGg‖21 is the exclusive group LASSO term involving feature correla-
tion information α and β are tuning parameters, which can make balances between plain LASSO
term and the exclusive group LASSO term.

The core part of Eq.(7) is to use exclusive group LASSO regularizer to eliminate the correlated
features, which cannot be done by plain LASSO. Let the feature correlation matrix be R = (Rst) ∈
<p×p, clearly, R = RT , Rst represents the correlations between features s and t, i.e.,

Rst =
|
∑

iXsiXti|√∑
iX

2
si

√∑
iX

2
ti

, Rst > θ (8)

To let the selected features uncorrelated as much as possible, for any two features s, t, if their
correlations Rst > θ, then we put them in an exclusive group. Therefore, only one feature can
survive. For example, on the example shown in Fig.2(c), if we use θ = 0.93 as a threshold, we will
generate the following exclusive group LASSO term:∑
g

‖wGg‖
2
1 = (|w3|+ |w10|)2 + (|w5|+ |w6|)2 + (|w5|+ |w7|)2 + (|w5|+ |w11|)2 + (|w6|+ |w11|)2

+(|w6|+ |w12|)2 + (|w6|+ |w14|)2 + (|w7|+ |w11|)2. (9)

Algorithm Solving Eq.(7) is to solve a convex optimization problem, because all the three involved
terms are convex. This also indicates that there exists a unique global solution. Eq.(7) can be
efficiently solved via accelerated proximal gradient (FISTA) method [17, 2], irrespective of what
kind of loss function used in minimization of empirical risk. Thus solving Eq.(7) is transformed into
solving:

min
w∈<p

1

2
‖w − a‖22 + α‖w‖1 + β

∑
g

‖wGg‖
2
1, (10)

where a = wt − 1
Lt
∇f(wt) which involves the current wt value and step size Lt. The challenge

of solving Eq.(10) is that, it involves two non-smooth terms. Fortunately, we have the following
lemma to establish the relations between the optimal solution of Eq.(10) to Eq.(11), the solution of
which has been well discussed in §3.

min
w∈<p

1

2
‖w − u‖22 + β

∑
g

‖wGg‖
2
1. (11)

Lemma 4.1. The optimal solution to Eq.(10) is the optimal solution to Eq.(11), where

u = arg min
x

1

2
‖x− a‖22 + α‖x‖1 = sgn(a)(a− α)+, (12)

and sgn(.), SGN(.) are the operators defined in the component fashion: if v > 0, sgn(v) = 1, SGN(v) =
{1}; else if v = 0, sgn(v) = 0, SGN(v) = [−1, 1]; else if v < 0, sgn(v) = −1, SGN(v) = {−1}.

The proof is provided in Appendix.
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Figure 3: (a-d): Feature selection results on synthetic dataset using (a, b) linear structure; (c, d) hub structure.
Evaluation metrics: RMSE, MAE. x-axis: number of selected features. y-axis: RMSE or MAE error in log
scale. (g-j): Classification accuracy using SVM (linear kernel) with different number of selected features on
four datasets. Compared methods: Exclusive LASSO of Eq.(7), LASSO, ReliefF [21], F-statistics [3]. x-axis:
number of selected features; y-axis: classification accuracy.

5 Experiment Results

To validate the effectiveness of our method, we first conduct experiment using Eq.(7) on two syn-
thetic datasets, and then show experiments on real-world datasets.

5.1 Synthetic datasets

(1) Linear-correlated features. Let data X1 = [x1
1,x

1
2, · · · ,x1

n] ∈ <p×n, X2 = [x2
1,x

2
2, · · · ,x2

n] ∈
<p×n, where each data x1

i ∼ N [0p×1, Ip×p], x2
i ∼ N [0p×1, Ip×p], I is identity matrix. We generate

a group of p-features, which is a linear combination of features in X1 and X2, i.e., X3 = 0.5(X1 +
X2) + ε, ε ∼ N (−0.1e, 0.1Ip×p). Construct data matrix X = [X1;X2;X3], clearly, X ∈ <3p×n.
Features in dimension [2p + 1, 3p] are highly correlated with features in dimension [1, p] and [p +
1, 2p]. Let w1 ∈ <p, where each w1

i ∼ Uniform(−0.5, 0.5), and w2 ∈ <p, where each w2
i ∼

Uniform(−0.5, 0.5). Let w̃ = [w1;w2;0p×1]. We generate predicator y ∈ <n, and y = w̃TX +
εy , where (εy)i ∼ N (0, 0.1).

We solve Eq.(7) using current y and X with least square loss. The group settings are: (i, p+i, 2p+i),
for 1 ≤ i ≤ p. We compare the computed w∗ against ground truth solution w̃ and plain LASSO
solution (i.e., β = 0 in Eq.7). We use the root mean square error (RMSE) and mean absolute
error (MAE) error to evaluate the differences of values predicted by a model and the values actually
observed. We generate n = 1000 data, with p = [120, 140, · · · , 220, 240] and do 5-fold cross
validation. Generalization error of RMSE and MAE are shown in Figures 3(a) and 3(b). Clearly,
our approach outperforms standard LASSO solution and exactly recovers the true features.

(2) Correlated features on Hub structure. Let data X = [X1;X2; · · · ,XB ] ∈ <q×n, where
each block Xb = [Xb

1:;X
b
2:; · · · ;Xb

p:] ∈ <p×n, 1 ≤ b ≤ B, q = p × B. In each block, for
each data point 1 ≤ i ≤ n, Xb

1i = 1
B

∑
2≤j≤pX

b
ji + 1

B zi + εbi , where Xb
ji ∼ N (0, 1), zi ∼

N (0, 1) and εbi ∼ Uniform(−0.1, 0.1). Let w1,w2, · · · ,wB ∈ <p, where wb = [wb
1 0]T , where

wb
1 ∼ Uniform(−0.5, 0.5). Let w̃ = [w1;w2; · · · ;wB ], we generate predicator y ∈ <n, and

y = w̃TX + εy , where (εy)i ∼ N (0, 0.1).

The group settings are: ((b − 1) × p + 1, · · · , b × p), for 1 ≤ b ≤ B. We generate n = 1000 data,
B = 10, with varied p = [20, 21, · · · , 24, 25] and do 5-fold cross validation. Generalization error of
RMSE and MAE are shown in Figs.3(c),3(d). Clearly, our approach outperforms standard LASSO
solution, and recovers the exact features.
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5.2 Real-world datasets

To validate the effectiveness of proposed method, we perform feature selection via proposed un-
correlated feature learning framework of Eq.(7) on 4 datasets (shown in Table.1), including 2 UCI
datasets: isolet [6], ionosphere [5], 1 image dataset: mnist with only figure “0” and “1” [16], and 1
biology dataset: Leuml [13].

We perform classification tasks on these different datasets. The compared methods include: pro-
posed method of Eq.(7) (shown as Exclusive), plain LASSO, ReliefF [21], F-statistics [3]. We use
logistic regression as the loss function in our method and plain LASSO method. In our method,
parameter α, β are tuned to select different numbers of features. Exclusive LASSO groups are set
according to feature correlations (i.e., threshold θ is set to 0.90 in Eq.8). After the specific number
of features are selected, we feed them into support vector machine (SVM) with linear kernel, and
classification results with different number of selected features are shown in Fig.(3).

A first glance at the experimental results indicates the better performance of our method as com-
pared to plain LASSO. Moreover, our method is also generally better than the other two popularly
used feature selection methods, such as ReliefF and F-statistics. The experiment result also further
confirms our intuition: elimination of correlated features is really helpful for feature selection and
thus improves the classification performance. Because `1,∞ [20], `2,1 [12, 18], or non-convex fea-
ture learning via `p,∞ [11](0 < p < 1) are designed for multi-task or multi-label feature learning,
thus we do not compare against these methods.

Further, we list the mean and variance of classification accuracy of different algorithms in the fol-
lowing table, using 50% of all the features. Compared methods include (1) Lasso (L1); (2) Plain
exclusive group LASSO (α = 0 in Eq. (7)); (3) Exclusive group LASSO (α > 0 in Eq. (7)).

dataset # of features LASSO plain exclusive exclusive group LASSO
isolet 308 81.75 ± 0.49 82.05 ± 0.50 83.24 ± 0.23
ionosphere 17 85.10 ± 0.27 85.21 ± 0.31 87.28 ± 0.42
mnist(0,1) 392 92.35 ± 0.13 93.07 ± 0.20 94.51 ± 0.19
leuml 1785 95.10 ± 0.31 95.67± 0.24 97.70 ± 0.27

The above experiment results indicate that the advantage of our method (exclusive group LASSO)
over plain LASSO comes from the exclusive LASSO term. The experiment results also suggest that
the plain exclusive LASSO performs very similar to LASSO. However, the exclusive group LASSO
(α > 0 in Eq.7) performs definitely better than both standard LASSO and plain exclusive LASSO
(1%-4% performance improvement). The exclusive LASSO regularizer eliminates the correlated
and redundant features.

We show the running time of plain exclusive LASSO and exclusive group LASSO (α > 0 in Eq.7)
in the following table. We run different algorithms on a Intel i5-3317 CPU, 1.70GHz, 8GRAM
desktop.

dataset plain exclusive (running time: sec) exclusive group LASSO (running time: sec)
isolet 47.24 51.93
ionosphere 22.75 24.18
mnist(0,1) 123.45 126.51
leuml 142.19 144.08

The above experiment results indicate that the computational cost of exclusive group LASSO is
slightly higher than that of plain exclusive LASSO. The reason is that, the solution to exclusive
group LASSO is given by simple thresholding on the plain exclusive LASSO result. This further
confirms our theoretical analysis results shown in Lemma 4.1.
6 Conclusion
In this paper, we propose a new formulation called “exclusive group LASSO” to enforce the sparsity
for features at an intra-group level. We investigate its properties and propose an effective algorithm
with rigorous convergence analysis. We show applications for uncorrelated feature selection, which
indicate the good performance of proposed method. Our work can be easily extended for multi-task
or multi-label learning.

Acknowledgement The majority of the work was done during the internship of the first author at NEC Labo-
ratories America, Cupertino, CA.
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Appendix

Proof of a valid norm of ΩGE: Note if ΩGE(w) = 0, then w = 0. For any scalar a, ΩGE(aw) =

|a|ΩGE(w). This proves absolute homogeneity and zero property hold. Next we consider triangle
inequality. Consider w, w̃ ∈ <p. Let vg and ṽg be optimal decomposition of w, w̃ such that

ΩGE(w) =
√∑

g ‖vg‖21, and ΩGE(w̃) =
√∑

g ‖ṽg‖21. Since vg + ṽg is a decomposition of w + w̃,

thus we have: 1 ΩGE(w + w̃) ≤
√∑

g ‖vg + ṽg‖21 ≤
√∑

g ‖vg‖21 +
√∑

g ‖ṽg‖21 = ΩGE(w) +

ΩGE(w̃). u–
To prove Theorem 3.1, we need two lemmas.
Lemma 6.1. Under the updating rule of Eq.(6), J2(wt+1) < J2(wt).
Lemma 6.2. Under the updating rule of Eq.(6),(

J1(wt+1)− J1(wt)

)
≤
(
J2(wt+1)− J2(wt)

)
. (13)

Proof of Theorem 3.1 From Lemma 6.1 and Lemma 6.2, it is easy to see
(
J1(wt+1)−J1(wt)

)
≤

0. This completes the proof. u–
Proof of Lemma 6.1 Eq.(4) is a convex function, and optimal solution of Eq.(6) is obtained by
taking derivative ∂J2

∂w = 0, thus obtained w∗ is global optimal solution, J2(wt+1) < J2(wt). u–
Before proof of Lemma 6.2, we need the following Proposition.
Proposition 6.3. wTFw =

∑G
g=1(‖wGg‖1)2.

Proof of Lemma 6.2 Let ∆ = LHS -RHS of Eq.(13). We have ∆, where

∆ =
∑
g

‖wt+1
Gg ‖

2
1 −

∑
i,g

(IGg )i‖wt
Gg‖1

|wt
i |

(wt+1
i )2 +

∑
i,g

(IGg )i‖wt
Gg‖1

|wt
i |

(wt
i)

2 −
∑
g

‖wt
Gg‖

2
1

(14)

=
∑
g

‖wt+1
Gg ‖

2
1 −

∑
i,g

(IGg )i‖wt
Gg‖1

|wt
i |

(wt+1
i )2 =

∑
g

[
(
∑
i∈Gg

|wt+1
i |)2 − (

∑
i∈Gg

|wt
i |)(

∑
i∈Gg

(wt+1
i )2

|wt
i |

)

]
(15)

=
∑
g

[
(
∑
i∈Gg

aibi)
2 − (

∑
i∈Gg

a2i )(
∑
i∈Gg

b2i )

]
≤ 0, (16)

where ai =
|wt+1

i |√
|wt

i |
, bi =

√
|wt

i |. Due to proposition 6.3, Eq.(14) is equivalent to Eq.(15). Eq.(16)

holds due to cauchy inequality [23]: for any scalar ai, bi, (
∑

i aibi)
2 ≤ (

∑
i a

2
i )(
∑

i b
2
i ). u–

Proof of Lemma 4.1 For notation simplicity, let ΩGEg(w) =
∑

g ‖wGg‖21. Let w∗ be the optimal
solution to Eq.(11), then we have

0 ∈ w∗ − u + β∂ΩGEg(w∗). (17)
In order to prove that w∗ is also the global optimal solution to Eq.(10), i.e.,

0 ∈ w∗ − a + αSGN(w∗) + β∂ΩGEg(w∗). (18)

First, from Eq.(12), we have 0 ∈ u−a+αSGN(u), and this leads to u ∈ a−αSGN(u). According
to the definition of ΩGEg(w), from Eq.(11), it is easy to verify that (1) if ui = 0, then wi = 0; (2) if
ui 6= 0, then sign(wi) = sign(ui) and 0 ≤ |wi| ≤ |ui|. This indicates that SGN(u) ⊂ SGN(w),
and thus

u ∈ a− αSGN(w). (19)

Put Eqs.(17, 19) together, and this exactly recovers Eq.(18), which completes the proof.
1Note the derivation needs Cauchy inequality [23], where for any scalar ai, bi, (

∑
g agbg)2 ≤

(
∑

g a
2
g)(
∑

g b
2
g). Let ag = ‖vg‖1, bg = ‖ṽg‖1, then we can get the inequality.
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