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Abstract

We analyze a reweighted version of the Kikuchi approximation for estimating the
log partition function of a product distribution defined over a region graph. We
establish sufficient conditions for the concavity of our reweighted objective func-
tion in terms of weight assignments in the Kikuchi expansion, and show that a
reweighted version of the sum product algorithm applied to the Kikuchi region
graph will produce global optima of the Kikuchi approximation whenever the al-
gorithm converges. When the region graph has two layers, corresponding to a
Bethe approximation, we show that our sufficient conditions for concavity are
also necessary. Finally, we provide an explicit characterization of the polytope of
concavity in terms of the cycle structure of the region graph. We conclude with
simulations that demonstrate the advantages of the reweighted Kikuchi approach.

1 Introduction
Undirected graphical models are a familiar framework in diverse application domains such as com-
puter vision, statistical physics, coding theory, social science, and epidemiology. In certain settings
of interest, one is provided with potential functions defined over nodes and (hyper)edges of the
graph. A crucial step in probabilistic inference is to compute the log partition function of the distri-
bution based on these potential functions for a given graph structure. However, computing the log
partition function either exactly or approximately is NP-hard in general [2, 17]. An active area of re-
search involves finding accurate approximations of the log partition function and characterizing the
graph structures for which such approximations may be computed efficiently [29, 22, 7, 19, 25, 18].

When the underlying graph is a tree, the log partition function may be computed exactly via the sum
product algorithm in time linear in the number of nodes [15]. However, when the graph contains
cycles, a generalized version of the sum product algorithm known as loopy belief propagation may
either fail to converge or terminate in local optima of a nonconvex objective function [26, 20, 8, 13].

In this paper, we analyze the Kikuchi approximation method, which is constructed from a variational
representation of the log partition function by replacing the entropy with an expression that decom-
poses with respect to a region graph. Kikuchi approximations were previously introduced in the
physics literature [9] and reformalized by Yedidia et al. [28, 29] and others [1, 14] in the language of
graphical models. The Bethe approximation, which is a special case of the Kikuchi approximation
when the region graph has only two layers, has been studied by various authors [3, 28, 5, 25]. In ad-
dition, a reweighted version of the Bethe approximation was proposed by Wainwright et al. [22, 16].
As described in Vontobel [21], computing the global optimum of the Bethe variational problem may
in turn be used to approximate the permanent of a nonnegative square matrix.

The particular objective function that we study generalizes the Kikuchi objective appearing in pre-
vious literature by assigning arbitrary weights to individual terms in the Kikuchi entropy expansion.
We establish necessary and sufficient conditions under which this class of objective functions is
concave, so a global optimum may be found efficiently. Our theoretical results synthesize known re-
sults on Kikuchi and Bethe approximations, and our main theorem concerning concavity conditions
for the reweighted Kikuchi entropy recovers existing results when specialized to the unweighted
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Kikuchi [14] or reweighted Bethe [22] case. Furthermore, we provide a valuable converse result
in the reweighted Bethe case, showing that when our concavity conditions are violated, the entropy
function cannot be concave over the whole feasible region. As demonstrated by our experiments,
a message-passing algorithm designed to optimize the Kikuchi objective may terminate in local
optima for weights outside the concave region. Watanabe and Fukumizu [24, 25] provide a similar
converse in the unweighted Bethe case, but our proof is much simpler and our result is more general.

In the reweighted Bethe setting, we also present a useful characterization of the concave region of
the Bethe entropy function in terms of the geometry of the graph. Specifically, we show that if the
region graph consists of only singleton vertices and pairwise edges, then the region of concavity
coincides with the convex hull of incidence vectors of single-cycle forest subgraphs of the original
graph. When the region graph contains regions with cardinality greater than two, the latter region
may be strictly contained in the former; however, our result provides a useful way to generate weight
vectors within the region of concavity. Whereas Wainwright et al. [22] establish the concavity of
the reweighted Bethe objective on the spanning forest polytope, that region is contained within the
single-cycle forest polytope, and our simulations show that generating weight vectors in the latter
polytope may yield closer approximations to the log partition function.

The remainder of the paper is organized as follows: In Section 2, we review background information
about the Kikuchi and Bethe approximations. In Section 3, we provide our main results on concavity
conditions for the reweighted Kikuchi approximation, including a geometric characterization of the
region of concavity in the Bethe case. Section 4 outlines the reweighted sum product algorithm
and proves that fixed points correspond to global optima of the Kikuchi approximation. Section 5
presents experiments showing the improved accuracy of the reweighted Kikuchi approximation over
the region of concavity. Technical proofs and additional simulations are contained in the Appendix.

2 Background and problem setup
In this section, we review basic concepts of the Kikuchi approximation and establish some termi-
nology to be used in the paper.

Let G = (V,R) denote a region graph defined over the vertex set V , where each region r 2 R is a
subset of V . Directed edges correspond to inclusion, so r ! s is an edge of G if s ✓ r. We use the
following notation, for r 2 R:

A(r) := {s 2 R : r ( s} (ancestors of r)
F(r) := {s 2 R : r ✓ s} (forebears of r)
N(r) := {s 2 R : r ✓ s or s ✓ r} (neighbors of r).

For R0 ✓ R, we define A(R0
) =

S

r2R0 A(r), and we define F(R0
) and N(R0

) similarly.

We consider joint distributions x = (xs)s2V that factorize over the region graph; i.e.,

p(x) =
1

Z(↵)

Y

r2R

↵r(xr), (1)

for potential functions ↵r > 0. Here, Z(↵) is the normalization factor, or partition function, which
is a function of the potential functions ↵r, and each variable xs takes values in a finite discrete
set X . One special case of the factorization (1) is the pairwise Ising model, defined over a graph
G = (V,E), where the distribution is given by

p�(x) = exp

⇣

X

s2V

�s(xs) +

X

(s,t)2E

�st(xs, xt)�A(�)
⌘

, (2)

and X = {�1,+1}. Our goal is to analyze the log partition function

logZ(↵) = log

n

X

x2X |V |

Y

r2R

↵r(xr)

o

. (3)

2.1 Variational representation

It is known from the theory of graphical models [14] that the log partition function (3) may be
written in the variational form

logZ(↵) = sup

{⌧r(xr)}2�R

n

X

r2R

X

xr

⌧r(xr) log(↵r(xr)) +H(p⌧ )
o

, (4)
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where p⌧ is the maximum entropy distribution with marginals {⌧r(xr)} and

H(p) := �
X

x

p(x) log p(x)

is the usual entropy. Here, �R denotes the R-marginal polytope; i.e., {⌧r(xr) : r 2 R} 2 �R if
and only if there exists a distribution ⌧(x) such that ⌧r(xr) =

P

x\r
⌧(xr, x\r) for all r. For ease of

notation, we also write ⌧ ⌘ {⌧r(xr) : r 2 R}. Let ✓ ⌘ ✓(x) denote the collection of log potential
functions {log(↵r(xr)) : r 2 R}. Then equation (4) may be rewritten as

logZ(✓) = sup

⌧2�R

{h✓, ⌧i+H(p⌧ )} . (5)

Specializing to the Ising model (2), equation (5) gives the variational representation
A(�) = sup

µ2M
{h�, µi+H(pµ)} , (6)

which appears in Wainwright and Jordan [23]. Here, M ⌘ M(G) denotes the marginal polytope,
corresponding to the collection of mean parameter vectors of the sufficient statistics in the exponen-
tial family representation (2), ranging over different values of �, and pµ is the maximum entropy
distribution with mean parameters µ.

2.2 Reweighted Kikuchi approximation

Although the set �R appearing in the variational representation (5) is a convex polytope, it may
have exponentially many facets [23]. Hence, we replace �R with the set

�

K
R =

n

⌧ : 8t, u 2 R s.t. t ✓ u,
X

xu\t

⌧u(xt, xu\t) = ⌧t(xt) and 8u 2 R,
X

xu

⌧u(xu) = 1

o

of locally consistent R-pseudomarginals. Note that �R ✓ �

K
R and the latter set has only polynomi-

ally many facets, making optimization more tractable.

In the case of the pairwise Ising model (2), we let L ⌘ L(G) denote the polytope �

K
R . Then L is

the collection of nonnegative functions ⌧ = (⌧s, ⌧st) satisfying the marginalization constraints
P

xs
⌧s(xs) = 1, 8s 2 V,

P

xt
⌧st(xs, xt) = ⌧s(xs) and

P

xs
⌧st(xs, xt) = ⌧t(xt), 8(s, t) 2 E.

Recall that M(G) ✓ L(G), with equality achieved if and only if the underlying graph G is a tree. In
the general case, we have �R = �

K
R when the Hasse diagram of the region graph admits a minimal

representation that is loop-free (cf. Theorem 2 of Pakzad and Anantharam [14]).

Given a collection of R-pseudomarginals ⌧ , we also replace the entropy term H(p⌧ ), which is
difficult to compute in general, by the approximation

H(p⌧ ) ⇡
X

r2R

⇢rHr(⌧r) := H(⌧ ; ⇢), (7)

where Hr(⌧r) := �
P

xr
⌧r(xr) log ⌧r(xr) is the entropy computed over region r, and {⇢r : r 2 R}

are weights assigned to the regions. Note that in the pairwise Ising case (2), with p := p� , we have
the equality

H(p) =
X

s2V

Hs(ps)�
X

(s,t)2E

Ist(pst)

when G is a tree, where Ist(pst) = Hs(ps) + Ht(pt) � Hst(pst) denotes the mutual information
and ps and pst denote the node and edge marginals. Hence, the approximation (7) is exact with

⇢st = 1, 8(s, t) 2 E, and ⇢s = 1� deg(s), 8s 2 V.

Using the approximation (7), we arrive at the following reweighted Kikuchi approximation:
B(✓; ⇢) := sup

⌧2�K
R

{h✓, ⌧i+H(⌧ ; ⇢)}
| {z }

B✓,⇢(⌧)

. (8)

Note that when {⇢r} are the overcounting numbers {cr}, defined recursively by

cr = 1�
X

s2A(r)

cs, (9)

the expression (8) reduces to the usual (unweighted) Kikuchi approximation considered in Pakzad
and Anantharam [14].

3



3 Main results and consequences
In this section, we analyze the concavity of the Kikuchi variational problem (8). We derive a suffi-
cient condition under which the function B✓,⇢(⌧) is concave over the set �K

R , so global optima of
the reweighted Kikuchi approximation may be found efficiently. In the Bethe case, we also show
that the condition is necessary for B✓,⇢(⌧) to be concave over the entire region �

K
R , and we provide

a geometric characterization of �K
R in terms of the edge and cycle structure of the graph.

3.1 Sufficient conditions for concavity

We begin by establishing sufficient conditions for the concavity of B✓,⇢(⌧). Clearly, this is equiva-
lent to establishing conditions under which H(⌧ ; ⇢) is concave. Our main result is the following:

Theorem 1. If ⇢ 2 R|R| satisfies
X

s2F(S)

⇢s � 0, 8S ✓ R, (10)

then the Kikuchi entropy H(⌧ ; ⇢) is strictly concave on �

K
R .

The proof of Theorem 1 is contained in Appendix A.1, and makes use of a generalization of Hall’s
marriage lemma for weighted graphs (cf. Lemma 1 in Appendix A.2).

The condition (10) depends heavily on the structure of the region graph. For the sake of inter-
pretability, we now specialize to the case where the region graph has only two layers, with the first
layer corresponding to vertices and the second layer corresponding to hyperedges. In other words,
for r, s 2 R, we have r ✓ s only if |r| = 1, and R = V [ F , where F is the set of hyperedges and
V denotes the set of singleton vertices. This is the Bethe case, and the entropy

H(⌧ ; ⇢) =
X

s2V

⇢sHs(⌧s) +
X

↵2F

⇢↵H↵(⌧↵) (11)

is consequently known as the Bethe entropy.

The following result is proved in Appendix A.3:
Corollary 1. Suppose ⇢↵ � 0 for all ↵ 2 F , and the following condition also holds:

X

s2U

⇢s +
X

↵2F : ↵\U 6=;

⇢↵ � 0, 8U ✓ V. (12)

Then the Bethe entropy H(⌧ ; ⇢) is strictly concave over �K
R .

3.2 Necessary conditions for concavity

We now establish a converse to Corollary 1 in the Bethe case, showing that condition (12) is also
necessary for the concavity of the Bethe entropy. When ⇢↵ = 1 for ↵ 2 F and ⇢s = 1 � |N(s)|
for s 2 V , we recover the result of Watanabe and Fukumizu [25] for the unweighted Bethe case.
However, our proof technique is significantly simpler and avoids the complex machinery of graph
zeta functions. Our approach proceeds by considering the Bethe entropy H(⌧ ; ⇢) on appropriate
slices of the domain �

K
R so as to extract condition (12) for each U ✓ V . The full proof is provided

in Appendix B.1.
Theorem 2. If the Bethe entropy H(⌧ ; ⇢) is concave over �

K
R , then ⇢↵ � 0 for all ↵ 2 F , and

condition (12) holds.

Indeed, as demonstrated in the simulations of Section 5, the Bethe objective function B✓,⇢(⌧) may
have multiple local optima if ⇢ does not satisfy condition (12).

3.3 Polytope of concavity

We now characterize the polytope defined by the inequalities (12). We show that in the pairwise
Bethe case, the polytope may be expressed geometrically as the convex hull of single-cycle forests
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formed by the edges of the graph. In the more general (non-pairwise) Bethe case, however, the
polytope of concavity may strictly contain the latter set.

Note that the Bethe entropy (11) may be written in the alternative form

H(⌧ ; ⇢) =
X

s2V

⇢0sHs(⌧s)�
X

↵2F

⇢↵eI↵(⌧↵), (13)

where eI↵(⌧↵) := {
P

s2↵ Hs(⌧s)}�H↵(⌧↵) is the KL divergence between the joint distribution ⌧↵
and the product distribution

Q

s2↵ ⌧s, and the weights ⇢0s are defined appropriately.

We show that the polytope of concavity has a nice geometric characterization when ⇢0s = 1 for
all s 2 V , and ⇢↵ 2 [0, 1] for all ↵ 2 F . Note that this assignment produces the expression
for the reweighted Bethe entropy analyzed in Wainwright et al. [22] (when all elements of F have
cardinality two). Equation (13) then becomes

H(⌧ ; ⇢) =
X

s2V

⇣

1�
X

↵2N(s)

⇢↵

⌘

Hs(⌧s) +
X

↵2F

⇢↵H↵(⌧↵), (14)

and the inequalities (12) defining the polytope of concavity are
X

↵2F : ↵\U 6=;

(|↵ \ U |� 1)⇢↵  |U |, 8U ✓ V. (15)

Consequently, we define

C :=

n

⇢ 2 [0, 1]|F |
:

X

↵2F : ↵\U 6=;

(|↵ \ U |� 1)⇢↵  |U |, 8U ✓ V
o

.

By Theorem 2, the set C is the region of concavity for the Bethe entropy (14) within [0, 1]|F |.

We also define the set

F := {1F 0
: F 0 ✓ F and F 0 [N(F 0

) is a single-cycle forest in G} ✓ {0, 1}|F |,

where a single-cycle forest is defined to be a subset of edges of a graph such that each connected
component contains at most one cycle. (We disregard the directions of edges in G.) The following
theorem gives our main result. The proof is contained in Appendix C.1.
Theorem 3. In the Bethe case (i.e., the region graph G has two layers), we have the containment
conv(F) ✓ C. If in addition |↵| = 2 for all ↵ 2 F , then conv(F) = C.

The significance of Theorem 3 is that it provides us with a convenient graph-based method for
constructing vectors ⇢ 2 C. From the inequalities (15), it is not even clear how to efficiently verify
whether a given ⇢ 2 [0, 1]|F | lies in C, since it involves testing 2

|V | inequalities.

Comparing Theorem 3 with known results, note that in the pairwise case (|↵| = 2 for all ↵ 2 F ),
Theorem 1 of Wainwright et al. [22] states that the Bethe entropy is concave over conv(T), where
T ✓ {0, 1}|E| is the set of edge indicator vectors for spanning forests of the graph. It is trivial to
check that T ✓ F, since every spanning forest is also a single-cycle forest. Hence, Theorems 2
and 3 together imply a stronger result than in Wainwright et al. [22], characterizing the precise
region of concavity for the Bethe entropy as a superset of the polytope conv(T) analyzed there. In
the unweighted Kikuchi case, it is also known [1, 14] that the Kikuchi entropy is concave for the
assignment ⇢ = 1F when the region graph G is connected and has at most one cycle. Clearly,
1F 2 C in that case, so this result is a consequence of Theorems 2 and 3, as well. However, our
theorems show that a much more general statement is true.

It is tempting to posit that conv(F) = C holds more generally in the Bethe case. However, as the fol-
lowing example shows, settings arise where conv(F) ( C. Details are contained in Appendix C.2.
Example 1. Consider a two-layer region graph with vertices V = {1, 2, 3, 4, 5} and factors ↵1 =

{1, 2, 3}, ↵2 = {2, 3, 4}, and ↵3 = {3, 4, 5}. Then (1, 1
2 , 1) 2 C\ conv(F).

In fact, Example 1 is a special case of a more general statement, which we state in the following
proposition. Here, F := {F 0 ✓ F : 1F 0 2 F}, and an element F ⇤ 2 F is maximal if it is not
contained in another element of F.
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Proposition 1. Suppose (i) G is not a single-cycle forest, and (ii) there exists a maximal element
F ⇤ 2 F such that the induced subgraph F ⇤ [N(F ⇤

) is a forest. Then conv(F) ( C.

The proof of Proposition 1 is contained in Appendix C.3. Note that if |↵| = 2 for all ↵ 2 F , then
condition (ii) is violated whenever condition (i) holds, so Proposition 1 provides a partial converse
to Theorem 3.

4 Reweighted sum product algorithm
In this section, we provide an iterative message passing algorithm to optimize the Kikuchi varia-
tional problem (8). As in the case of the generalized belief propagation algorithm for the unweighted
Kikuchi approximation [28, 29, 11, 14, 12, 27] and the reweighted sum product algorithm for the
Bethe approximation [22], our message passing algorithm searches for stationary points of the La-
grangian version of the problem (8). When ⇢ satisfies condition (10), Theorem 1 implies that the
problem (8) is strictly concave, so the unique fixed point of the message passing algorithm globally
maximizes the Kikuchi approximation.

Let G = (V,R) be a region graph defining our Kikuchi approximation. Following Pakzad and
Anantharam [14], for r, s 2 R, we write r � s if r ( s and there does not exist t 2 R such that
r ( t ( s. For r 2 R, we define the parent set of r to be P(r) = {s 2 R : r � s} and the child set
of r to be C(r) = {s 2 R : s � r}. With this notation, ⌧ = {⌧r(xr) : r 2 R} belongs to the set �K

R
if and only if

P

xs\r
⌧s(xr, xs\r) = ⌧r(xr) for all r 2 R, s 2 P(r).

The message passing algorithm we propose is as follows: For each r 2 R and s 2 P(r), let
Msr(xr) denote the message passed from s to r at assignment xr. Starting with an arbitrary positive
initialization of the messages, we repeatedly perform the following updates for all r 2 R, s 2 P(r):

Msr(xr) C

2

6

4

P

xs\r

exp

�

✓s(xs)/⇢s
�

Q

v2P(s)

Mvs(xs)
⇢v/⇢s

Q

w2C(s)\r
Msw(xw)

�1

exp

�

✓r(xr)/⇢r
�

Q

u2P(r)\s
Mur(xr)

⇢u/⇢r
Q

t2C(r)
Mrt(xt)

�1

3

7

5

⇢r
⇢r+⇢s

. (16)

Here, C > 0 may be chosen to ensure a convenient normalization condition; e.g.,
P

xr
Msr(xr) = 1. Upon convergence of the updates (16), we compute the pseudomarginals ac-

cording to

⌧r(xr) / exp

✓

✓r(xr)

⇢r

◆

Y

s2P(r)

Msr(xr)
⇢s/⇢r

Y

t2C(r)

Mrt(xt)
�1, (17)

and we obtain the corresponding Kikuchi approximation by computing the objective function (8)
with these pseudomarginals. We have the following result, which is proved in Appendix D:
Theorem 4. The pseudomarginals ⌧ specified by the fixed points of the messages {Msr(xr)} via
the updates (16) and (17) correspond to the stationary points of the Lagrangian associated with the
Kikuchi approximation problem (8).

As with the standard belief propagation and reweighted sum product algorithms, we have several
options for implementing the above message passing algorithm in practice. For example, we may
perform the updates (16) using serial or parallel schedules. To improve the convergence of the
algorithm, we may damp the updates by taking a convex combination of new and previous messages
using an appropriately chosen step size. As noted by Pakzad and Anantharam [14], we may also use
a minimal graphical representation of the Hasse diagram to lower the complexity of the algorithm.

Finally, we remark that although our message passing algorithm proceeds in the same spirit as clas-
sical belief propagation algorithms by operating on the Lagrangian of the objective function, our
algorithm as presented above does not immediately reduce to the generalized belief propagation
algorithm for unweighted Kikuchi approximations or the reweighted sum product algorithm for
tree-reweighted pairwise Bethe approximations. Previous authors use algebraic relations between
the overcounting numbers (9) in the Kikuchi case [28, 29, 11, 14] and the two-layer structure of the
Hasse diagram in the Bethe case [22] to obtain a simplified form of the updates. Since the coeffi-
cients ⇢ in our problem lack the same algebraic relations, following the message-passing protocol
used in previous work [11, 28] leads to more complicated updates, so we present a slightly different
algorithm that still optimizes the general reweighted Kikuchi objective.
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5 Experiments
In this section, we present empirical results to demonstrate the advantages of the reweighted Kikuchi
approximation that support our theoretical results. For simplicity, we focus on the binary pairwise
Ising model given in equation (2). Without loss of generality, we may take the potentials to be
�s(xs) = �sxs and �st(xs, xt) = �stxsxt for some � = (�s, �st) 2 R|V |+|E|. We run our
experiments on two types of graphs: (1) Kn, the complete graph on n vertices, and (2) Tn, thep
n⇥

p
n toroidal grid graph where every vertex has degree four.

Bethe approximation. We consider the pairwise Bethe approximation of the log partition function
A(�) with weights ⇢st � 0 and ⇢s = 1 �

P

t2N(s) ⇢st. Because of the regularity structure of Kn

and Tn, we take ⇢st = ⇢ � 0 for all (s, t) 2 E and study the behavior of the Bethe approximation
as ⇢ varies. For this particular choice of weight vector ~⇢ = ⇢1E , we define

⇢tree = max{⇢ � 0: ~⇢ 2 conv(T)}, and ⇢cycle = max{⇢ � 0: ~⇢ 2 conv(F)}.
It is easily verified that for Kn, we have ⇢tree =

2
n and ⇢cycle =

2
n�1 ; while for Tn, we have

⇢tree =
n�1
2n and ⇢cycle =

1
2 .

Our results in Section 3 imply that the Bethe objective function B�,⇢(⌧) in equation (8) is concave
if and only if ⇢  ⇢cycle, and Wainwright et al. [22] show that we have the bound A(�)  B(�; ⇢)
for ⇢  ⇢tree. Moreover, since the Bethe entropy may be written in terms of the edge mutual
information (13), the function B(�; ⇢) is decreasing in ⇢. In our results below, we observe that we
may obtain a tighter approximation to A(�) by moving from the upper bound region ⇢  ⇢tree to the
concavity region ⇢  ⇢cycle. In addition, for ⇢ > ⇢cycle, we observe multiple local optima of B�,⇢(⌧).

Procedure. We generate a random potential � = (�s, �st) 2 R|V |+|E| for the Ising model (2) by
sampling each potential {�s}s2V and {�st}(s,t)2E independently. We consider two types of models:

Attractive: �st ⇠ Uniform[0,!st], and Mixed: �st ⇠ Uniform[�!st,!st].

In each case, �s ⇠ Uniform[0,!s]. We set !s = 0.1 and !st = 2. Intuitively, the attractive model
encourages variables in adjacent nodes to assume the same value, and it has been shown [18, 19] that
the ordinary Bethe approximation (⇢st = 1) in an attractive model lower-bounds the log partition
function. For ⇢ 2 [0, 2], we compute stationary points of B�,⇢(⌧) by running the reweighted sum
product algorithm of Wainwright et al. [22]. We use a damping factor of � = 0.5, convergence
threshold of 10�10 for the average change of messages, and at most 2500 iterations. We repeat this
process with at least 8 random initializations for each value of ⇢. Figure 1 shows the scatter plots
of ⇢ and the Bethe approximation B�,⇢(⌧). In each plot, the two vertical lines are the boundaries
⇢ = ⇢tree and ⇢ = ⇢cycle, and the horizontal line is the value of the true log partition function A(�).

Results. Figures 1(a)–1(d) show the results of our experiments on small graphs (K5 and T9) for
both attractive and mixed models. We see that the Bethe approximation with ⇢  ⇢cycle generally
provides a better approximation to A(�) than the Bethe approximation computed over ⇢  ⇢tree.
However, in general we cannot guarantee whether B(�; ⇢) will give an upper or lower bound for
A(�) when ⇢  ⇢cycle. As noted above, we have B(�; 1)  A(�) for attractive models.

We also observe from Figures 1(a)–1(d) that shortly after ⇢ leaves the concavity region {⇢  ⇢cycle},
multiple local optima emerge for the Bethe objective function. The presence of the point clouds
near ⇢ = 1 in Figures 1(a) and 1(c) arises because the sum product algorithm has not converged
after 2500 iterations. Indeed, the same phenomenon is true for all our results: in the region where
multiple local optima begin to appear, it is more difficult for the algorithm to converge. See Figure 2
and the accompanying text in Appendix E for a plot of the points (⇢, log10(�)), where � is the
final average change in the messages at termination of the algorithm. From Figure 2, we see that the
values of � are significantly higher for the values of ⇢ near where multiple local optima emerge. We
suspect that for these values of ⇢, the sum product algorithm fails to converge since distinct local
optima are close together, so messages oscillate between the optima. For larger values of ⇢, the local
optima become sufficiently separated and the algorithm converges to one of them. However, it is
interesting to note that this point cloud phenomenon does not appear for attractive models, despite
the presence of distinct local optima.

Simulations for larger graphs are shown in Figures 1(e)–1(h). If we zoom into the region near
⇢  ⇢cycle, we still observe the same behavior that ⇢  ⇢cycle generally provides a better Bethe
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(f) K15, attractive
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Figure 1: Values of the reweighted Bethe approximation as a function of ⇢. See text for details.

approximation than ⇢  ⇢tree. Moreover, the presence of the point clouds and multiple local optima
are more pronounced, and we see from Figures 1(c), 1(g), and 1(h) that new local optima with even
worse Bethe values arise for larger values of ⇢. Finally, we note that the same qualitative behavior
also occurs in all the other graphs that we have tried (Kn for n 2 {5, 10, 15, 20, 25} and Tn for
n 2 {9, 16, 25, 36, 49, 64}), with multiple random instances of the Ising model p� .

6 Discussion
In this paper, we have analyzed the reweighted Kikuchi approximation method for estimating the log
partition function of a distribution that factorizes over a region graph. We have characterized nec-
essary and sufficient conditions for the concavity of the variational objective function, generalizing
existing results in literature. Our simulations demonstrate the advantages of using the reweighted
Kikuchi approximation and show that multiple local optima may appear outside the region of con-
cavity.

An interesting future research direction is to obtain a better understanding of the approximation
guarantees of the reweighted Bethe and Kikuchi methods. In the Bethe case with attractive potentials
✓, several recent results [22, 19, 18] establish that the Bethe approximation B(✓; ⇢) is an upper bound
to the log partition function A(✓) when ⇢ lies in the spanning tree polytope, whereas B(✓; ⇢)  A(✓)
when ⇢ = 1F . By continuity, we must have B(✓; ⇢⇤) = A(✓) for some values of ⇢⇤, and it would
be interesting to characterize such values where the reweighted Bethe approximation is exact.

Another interesting direction is to extend our theoretical results on properties of the reweighted
Kikuchi approximation, which currently depend solely on the structure of the region graph and the
weights ⇢, to incorporate the effect of the model potentials ✓. For example, several authors [20, 6]
present conditions under which loopy belief propagation applied to the unweighted Bethe approxi-
mation has a unique fixed point. The conditions for uniqueness of fixed points slightly generalize the
conditions for convexity, and they involve both the graph structure and the strength of the potentials.
We suspect that similar results would hold for the reweighted Kikuchi approximation.
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