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Abstract

We introduce a model where the rate of an inhomogeneous Poisson process is
modified by a Chinese restaurant process. Applying a MCMC sampler to this
model allows us to do posterior Bayesian inference about the number of states in
Poisson-like data. Our sampler is shown to get accurate results for synthetic data
and we apply it to V1 neuron spike data to find discrete firing rate states depending
on the orientation of a stimulus.

1 Introduction

Event time data is often modeled as an inhomogeneous Poisson process, whose rate λ(t) as a func-
tion of time t has to be learned from the data. Poisson processes have been used to model a wide
variety of data, ranging from network traffic [25] to photon emission data [12]. Although neuronal
spikes are in general not perfectly modeled by a Poisson process [17], there has been extensive work
based on the simplified Poisson assumption [e.g. 19, 20]. Prior assumptions about the rate process
strongly influence the result of inference. Some models assume that the rate λ(t) changes contin-
uously [1, 7, 22], but for certain applications it is more useful to model it as a piecewise constant
function of time, which switches between a finite number of distinct states. Such an assumption
could be of interest, when one tries to relate the change of the rate to sudden changes of certain
external experimental conditions, e.g. changes of neural spike activity when external stimuli are
switched.

An example for a discrete state rate process is the Markov modulated Poisson process (MMPP)
[10, 18], where changes between the states of the rate follow a continuous time Markov jump pro-
cess (MJP). For the MMPP one has to specify the number of states beforehand and it is often not
clear how this number should be chosen. Comparing models with different numbers of states by
computing Bayes factors can be cumbersome and time consuming. On the other hand, nonparamet-
ric Bayesian methods for models with an unknown number of model parameters based on Dirichlet
or Chinese restaurant processes have been highly popular in recent years [e.g. 24, 26].

However—to our knowledge—such an idea has not yet been applied to the conceptually simpler
Poisson process scenario. In this paper, we present a computationally efficient MCMC approach to
this model, which utilizes its feature that given the jump process the observed Poisson events are
independent. This property makes computing the data likelihood very fast in each iteration of our
sampler and leads to a highly efficient estimation of the rate. This allows us to apply our sampler to
large data sets.

1



c

f

τi

c

π

pλ α

λi

λ[0 : T ]

s

Y

Figure 1: Generative model.

2 Model

We assume that the data comes from an inhomogeneous Poisson process, which has rate λ(t) at time
t. In our model λ(t) is a latent, piecewise constant process. The likelihood of the data given a path
λ(0:T ) with s distinct states then becomes [8]

P (Y|λ(0:T )) ∝

s
∏

i=1

λni

i e−τiλi , (1)

where τi is the overall time spent in state i defined as λ(t) = λi and ni is the number of Poisson
events in the data Y, while the system is in this state. A trajectory of λ(0:T ) is generated by drawing

c jump times from a Poisson process with rate f . This means λ(0:T ) is separated in c+ 1 segments

during which it remains in one state λi. To deal with an unknown number of discrete states and
their unknown probability π of being visited, we assume that the distribution π is drawn from a
Dirichlet process with concentration parameter α and base distribution pλ. By integrating out π we
get a Chinese restaurant process (CRP) with the same parameters as the Dirichlet process. For a
derivation of this result see [27].

Let us assume we already have i segments and draw the next jump time from an exponential distribu-
tion with rate f . The next segment gets a new λ-value sampled from pλ with probability α/(α+ i),
otherwise one of the previous segments is chosen with equal probability and its λ-value is also used
for the new segment. This leads to the following prior probability of a path λ(0:T ):

P (λ(0:T )|f, α, pλ) ∝ f ce−fTαs

∏s
j=1 (pλ(λj)(#j − 1)!)
∏c

i=0(α+ i)
, (2)

where s is the number of distinct values of λ. To summarize, we have f as the rate of jumps, pλ as
a prior distribution over the values of λ, #j as the number of segments assigned to state j, and α as
a hyperparameter which determines how likely a jump will lead to a completely new value for λ. If
there are c jumps in the path λ(0:T ), then a priori the expected number of distinct λ-values is [28]

E [s|c] =

c+1
∑

i=1

α

α+ i− 1
. (3)

We choose a gamma distribution for pλ with shape a and scale b,

pλ(λ) = Gamma(λ; a, b) ∝ λa−1e−λ/b, (4)

which is conjugate to the likelihood (2). The generative model is visualized in figure 1.

3 MCMC Sampler

We use a Metropolis-within-Gibbs sampler with two main steps: First, we change the path of the
Chinese restaurant process conditioned on the current parameters with a Metropolis Hastings ran-
dom walk. In the seconds step, the time of the jumps and the states are held fixed, and we directly
sample the λ-values and f from their conditional posteriors.
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3.1 Random Walk on the many-state Markov jump process

To generate a proposal path λ∗

(0:T ) (for the remainder of this paper ∗ will always denote a variable

concerning the proposal path) we manipulate the current path λ(0:T ) by one of the following actions:

shifting one of the jumps in time, adding a jump, removing one of the existing jumps, switching the
state of a segment, joining two states, or dividing one state into two. This is similar to the birth-death
approach, which has been used before for other types of MJPs [e.g. 5].

We shift a jump by drawing the new time from a Gaussian distribution centered at the current time
with standard deviation σt and truncated at the neighboring jumps. σt is a parameter of the sampler,
which we chose by hand and which should be in the same scale as the typical time between Poisson
events. If in doubt, a high value should be chosen, so that the truncated distribution becomes more
uniform.

When adding a jump the time of the new jump is drawn from a uniform distribution over the whole
time interval. With probability qn a new value of λ is added, otherwise we reuse an old one. The
parameter qn was chosen by hand to be 0.1, which worked well for all data sets we tested the sampler
on.

To remove a jump we choose one of the jumps with equal probability.

Switching the state of a segment is done by choosing one of the segments at random and either
assigning it to an existing value or introducing a value which was not used before, again with prob-
ability qn.

When adding a new value of λ, both when adding a jump or when switching the state of a segment,
we draw it from the conditional density

P (λ∗

s+1|Y, λ(0:T )) ∝ Gamma(λ∗

s+1; a, b)Gamma(λ∗

s+1;ns+1 + 1, 1/τs+1)

∝ Gamma
(

λ∗

s+1; a+ ns+1, b/(τs+1b+ 1)
)

. (5)

If we instead reuse an already existing λ, we choose which state to use by drawing it from a discrete
distribution with probabilities proportional to (5), but with n and τ being the number of Poisson
events and the time in this segment, respectively.

Changing the number of states through adding and removing jumps or switching the states of seg-
ments is sufficient to guarantee that the sampler converges to the posterior density. However, the
sampler is very unlikely to reduce the number of states through these actions, if all states are used
in multiple segments, so that convergence might take a very long time in this case. Therefore, we
introduce the option to join all segments assigned to a neighboring (when ordered by their λ-values)

pair of states into one state. Here the geometrical mean λ∗

j =
√

λi1λi2 of both λ-values is used for
the joined state.

Because we added the join action, we need an inverted action, which divides a state into two new
ones, in order to guarantee reversibility and therefore fulfill detailed balance. The state to divide is
randomly chosen among the states which have at least two segments assigned to them. Then a small
factor ǫ > 1 is drawn from a shifted exponential distribution and the λ-value of the chosen state is
multiplied with and divided by ǫ, respectively, to get the λ-values λ∗

j1
= λi ǫ and λ∗

j2
= λi/ǫ of

the two new states. The distribution over ǫ is bounded, so that the new λ-values are assured to be
between the neighboring ones. After this, the segments of the old state are randomly assigned to the
two new states with probability proportional to the data likelihood (1). If by the last segment only
one of the two states was chosen for all segments, the last segment is set to the other state. This
method assures that every possible assignment (where both states are used) of the two states to the
segments of the old state can occur. Additionally, there is exactly one way for each assignment to
be drawn allowing a simple calculation of the Metropolis-Hastings acceptance probability for both
the join and the divide action. Figure 2 shows how these actions work on the path.

A proposed path λ∗

(0:T ) is accepted with probability

pMH = min

(

1,
P (Y|λ∗

(0:T ))

P (Y|λ(0:T ))

Q(λ(0:T )|λ
∗

(0:T ))

Q(λ∗

(0:T )|λ(0:T ))

P (λ∗

(0:T )|f, α, pλ)

P (λ(0:T )|f, α, pλ)

)

. (6)
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Figure 2: Example showing how the proposal actions modify the path of the Chinese restaurant
process. The new path is drawn in dark blue, the old one in light blue.

While the data likelihood ratio is the same for all proposal actions and follows from (1), the proposal
and prior ratios

Ψ =
Q(λ(0:T )|λ

∗

(0:T ))

Q(λ∗

(0:T )|λ(0:T ))

P (λ∗

(0:T )|f, α, pλ)

P (λ(0:T )|f, α, pλ)
(7)

depend on the chosen proposal action. The acceptance probability for each action (provided in the
supplementary material) can be calculated based on its description and the probability of a path (2).

Because our proposal process is a simple random walk, the major contribution to the computation
time comes from calculating the data likelihood. Luckily, this can be done very efficiently, because
we only need to know how many Poisson events occur during the segments of λ∗

(0:T ) and λ(0:T ),

how often the process changes state, and how much time it spends in each state. In order to avoid
iterating over all the data for each proposal, we compute the index of the next event in the data for
a fine time grid before the sampler starts. This ensures that the computational time is linear in the
number of jumps in λ(0:T ), while the number of Poisson events in the data only introduces one-

time costs for calculating the grid, which are negligible in practice. Additionally, we only need to
compute the likelihood ratio over those segments which are changed in the proposal, because the
unchanged parts cancel each other out.

3.2 Sampling the parameters

As we use a gamma prior Gamma(λi; a, b) for each λi, it is easy to see from (1) that this leads to
gamma posteriors

Gamma (λi; a+ ni, b/(τib+ 1)) (8)

over λi. Thus a Gibbs sampling step is used to update each λi. As for the rate f of change points,
if we assume a gamma prior for f ∼ Gamma(af , bf ), the posterior becomes a gamma distribution,
too:

Gamma (f ; af + c, bf/(Tbf + 1)) . (9)

4 Experiments

We first validate our sampler on synthetic data sets, then we test our Chinese restaurant approach on
neural spiking data from a cat’s primary visual cortex.

4.1 Synthetic Data

We sampled 100 data sets from the prior with f = 0.02 and α = 3.0. Figure 3 compares the
true values for the number of states and number of jumps with the posterior mean after 1.1 million
samples with the first 100, 000 dropped as burn-in. On average the sampler took around 25 seconds
to generate the samples on an Intel Xeon CPU with 2.40 GHz.

The amounts of both jumps and states seem to be captured well, but for a large number of distinct
states the mean seems to underestimate the true value. This is not surprising, because the λ parame-
ters are drawn from the same base distribution. For a large number of states the probability that two

4



0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
true number of states

po
st

er
io

r 
m

ea
n 

nu
m

be
r 

of
 s

ta
te

s

0

10

20

30

0 10 20 30
true number of jumps

po
st

er
io

r 
m

ea
n 

nu
m

be
r 

of
 ju

m
ps

Figure 3: Posterior mean vs. true number of
states (left) and jumps (right) for 100
data sets drawn from the prior. The red
line shows the identity function.
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Figure 4: Posterior of λ over t for the first 4 toy
data sets. The black line is the true
path, while the posterior mean is drawn
as a dashed green lined surrounded by
a 95% confidence interval.
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Figure 5: Stimulus and data for a part of the
recordings from the first neuron. (top)
Mean rates computed by using a mov-
ing triangle function. (middle) Spik-
ing times. (bottom) Orientation of the
stimulus.
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Figure 6: (left) Posterior mean number of states
vs. number of spikes in the data for all
neurons. (right) Posterior mean num-
ber of states over the posterior mean
number of jumps.

states are very similar becomes high, which makes them indistinguishable without observing more
data. For four of the 100 data sets the posterior distribution over λ(t) is compared to the true path in
figure 4. While we used the true value of α for our simulations the model seems to be robust against
different choices of the parameter. This is shown in the supplementary material.

4.2 Bursting of Cat V1 Neurons

Poisson processes are not an ideal model for single neuron spiking times [3]. The two main reasons
for this are the refractory period of neurons and bursting [14]. Despite this, Poisson processes have
been used extensively to analyze spiking data [e.g. 19, 20]. Additionally, both reasons should not be
a problem for us. The refractory period is not as important for inference since spiking during it will
not be observed. Bursting, on the other hand, is exactly what models with jumping Poisson rates are
made to explain: sudden changes in the spiking rate.

The data set used in this paper was obtained from multi-site silicon electrodes in the primary visual
cortex of an anesthetized cat. For further information on the experimental setup see [4]. The data
set contains spike trains from 10 different neurons, which were recorded while bars of varying
orientation moved through the visual field of the cat. Since the stimulus is discrete (the orientation
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Figure 8: Probability distribution of the orienta-
tion of the stimulus conditioned on the
active state. The states are ordered by
increasing rate λ and the results are
taken from samples at the MAP num-
ber of states.

ranges from 0◦ to 340◦ in steps of 20◦), we expect to find discrete states in the response of the
neurons. The recording lasted for 720 seconds and, while the orientation of the stimulus changed
randomly, each orientation was shown 8 times for 5 seconds each over the whole experiment. In
figure 5, a section of the spiking times of one neuron is shown together with the orientation of the
stimulus. When computing a mean spiking rate by sliding a triangle function over the data, it is
crucial to select a good width for the triangle function. A small width makes it possible to find short
phases of very high spiking rate (so called bursts), but also leads to jumps in the rate even for single
spikes. A larger width, on the other hand, smoothes the bursts out. Using our sampler for Bayesian
inference based on our model allows us to find bursts and cluster them by their spiking rate, but at
the same time the spikes between bursts are explained by one of the ground states, which have lower
rates, but longer durations.

We used an exponential prior for f with mean rate 10−4 and a low value of α = 0.1 to prevent
overfitting. A second simulation running with a ten times higher prior mean for f and α = 0.5 lead
to almost the same posterior number of states and only a slightly higher number of jumps, of which
a larger fraction had no impact, because the state was not changed. The base distribution pλ was
chosen to be exponential with mean 106, which is a fairly uninformative prior, because the duration
of a single spike is in the order of magnitude of 1ms [11] resulting in an upper bound for the rate at
around 1000/s.

The posterior number of states for all of the 10 neurons is in the same region, as shown in figure
6, even though the number of spikes differs widely (from 725 to 13244). Although there seem
to be more states if more jumps are found, the posterior differs strongly from the prior—a priori
the expected number of states is under 2—indicating that the posterior is dominated by the data
likelihood.

For a small time frame of the spiking data from one of the neurons figure 7 shows which state had
the highest posterior probability at each time and how high this probability was. It can be seen
that the bursting states, which have high rates, are only active for a short time. Figure 8 shows that
these burst states are clearly orientation dependent (see the supplementary material for results of all
10 neurons). Over the whole experiment all orientations were shown for exactly the same amount
of time. While the highest state is always clearly concentrated on a range of about 60◦, the lower
bursting states cover neighboring orientations. Often a smaller reaction can be seen for bars rotated
by 180◦ from the favored angle. The lowest state might indicate inhibition, because it is mostly
active between the favored state and the one rotated by 180◦.

As we can see in figure 9, some of the rates of the states are pretty similar over all the neurons,
although it has to be noted that the orientation is probably not the only feature of the stimulus the

6



neurons are receptive to. Especially the position of the bar in the visual field should be important
and could explain, why only some of the neurons reach the highest burst rate.

It may seem that finding bursts is a simple task, but there has been extensive work in this field
[e.g. 6, 13, 16] and naive approaches, like looking at the mean rate of events over time, fail easily,
if the time resolution is not chosen well (as seen in figure 5). Additionally, our sampler not only
distinguishes between burst and non-burst phases, but also uncovers discrete intensities, which are
associated with features of the stimulus.

4.3 Comparison to a continuous rate model

While our model assumes that the Poisson rates are discrete values, there have been other approaches
applying continuous functions to estimate the rate. [1] use a Gaussian process prior over λ(t) and
present a Markov chain Monte Carlo sampler to sample from the posterior. Since the sampler is very
slow for our neuron data, we restricted the inference task to a small time window of the spike train
from only one of the neurons.

In figure 10 the results from the Sigmoidal Gaussian Cox Process (SGCP) model of [1] are shown for
different values of the length scale hyperparameter and contrasted with the results from our model.
Similar to the naive approach of computing a moving average of the rate (as in figure 5) the GP
seems to either smooth out the bursts or becomes so sensitive that even single spikes change the rate
function significantly depending on the choice of the GP hyperparameters.

Our neural data seems to be especially bad for the performance of this algorithm, because it is based
on the principle of uniformization. Uniformization was introduced by [9] and allows to sample from
an inhomogeneous Poisson process by first sampling from a homogeneous one. If the rate of the
homogeneous process is an upper bound of the rate function of the inhomogeneous Poisson process,
then a sample of the latter can be generated by thinning out the events, where each event is omitted
with a certain probability. The sampler for the SGCP model performs inference using this method,
so that events are sampled at the current estimate of the maximum rate for the whole data set and
thinned out afterwards.

For our neural data the maximum rate would have to be the spiking rate during the strongest bursts,
but this would lead to a very large number of (later thinned out) event times to be sampled in the
long periods between bursts, which slows down the algorithm severely. This problem only occurs if
uniformization is applied on λ(t) while other approaches, like [21], use it on the rate of a MJP with
a fixed number of states.

When we use a practically flat prior for the sampling of the maximum rate, it will be very low
compared to the bursting rates our algorithm finds (see figure 10). On the other hand, if we use a
very peaked prior around our burst rates, the algorithm becomes extremely slow (taking hours for
just 100 samples) even when used on less than a tenth of the data for one neuron.

5 Conclusion

We have introduced an inhomogeneous Poisson process model with a flexible number of states.
Our inference is based on a MCMC sampler which detects recurring states in the data set and joins
them in the posterior. Thus the number of distinct event rates is estimated directly during MCMC
sampling.

Clearly, sampling the number of states together with the jump times and rates needs considerably
more samples to fully converge compared to a MJP with a fixed number of states. For our application
to neural data in section 4.2 we generated 110 million samples for each neuron, which took between
80 and 325 minutes on an Intel Xeon CPU with 2.4 GHz. For all neurons the posterior had converged
at the latest after a tenth of the time. It has to be remembered that to obtain similar results without
the Chinese restaurant process, we would need to compute the Bayes factors for different number
of states. This is a more complicated task than just doing posterior inference for a fixed number
of states and would require more computationally demanding approaches, e.g. a bridge sampler, in
order to get reasonably good estimates. Additionally, it would be hard to decide for what range of
state dimensionality the samplers should be run. In contrast to this, our sampler typically gave a
good estimate of the number of states in the data set already after just a few seconds of sampling.
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Longer run times are only needed for a higher accuracy estimate of the posterior distribution over
the number of states.

Although our prior for the transition rates of the MJP is state-independent, which facilitates the
integration over the maximum number of states and gives rise to the Chinese restaurant process, this
does not hold for the posterior. We can indeed compute the full posterior state transition matrix—
with state-dependent jump rates—from the samples.

A huge advantage of our algorithm is that its computation time scales linearly in the number of
jumps in the hidden process and the influence of the number of events can be neglected in practice.
This has been shown to speed up inference for MMPPs [23], but our more flexible model makes it
possible to find simple underlying structures in huge data sets (e.g. network access data with millions
of events) in reasonable time without the need to fix the number of states beforehand.

In contrast to other MCMC algorithms [2, 8, 15] for MMPPs, our sampler is very flexible and can be
easily adapted to e.g. Gamma processes generating the data or semi-Markov jump processes, which
have non-exponentially distributed waiting times for the change of the rate. For Gamma process
data the computation time to calculate the likelihood would no longer be independent of the number
of events, but it might lead to better results for data which is strongly non-Poissonian.

We showed that our model can be applied to neural spike trains and that our MCMC sampler finds
discrete states in the data, which are linked to the discreteness of the stimulus. In general, our
model should yield the best results when applied to data with many events and a discrete structure
of unknown dimensionality influencing the rate.
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