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Abstract

We present techniques for speeding up the test-time evaluation of large convo-
lutional networks, designed for object recognition tasks. These models deliver
impressive accuracy, but each image evaluation requires millions of floating point
operations, making their deployment on smartphones and Internet-scale clusters
problematic. The computation is dominated by the convolution operations in the
lower layers of the model. We exploit the redundancy present within the con-
volutional filters to derive approximations that significantly reduce the required
computation. Using large state-of-the-art models, we demonstrate speedups of
convolutional layers on both CPU and GPU by a factor of 2×, while keeping the
accuracy within 1% of the original model.

1 Introduction

Large neural networks have recently demonstrated impressive performance on a range of speech and
vision tasks. However, the size of these models can make their deployment at test time problematic.
For example, mobile computing platforms are limited in their CPU speed, memory and battery life.
At the other end of the spectrum, Internet-scale deployment of these models requires thousands
of servers to process the 100’s of millions of images per day. The electrical and cooling costs of
these servers is significant. Training large neural networks can take weeks, or even months. This
hinders research and consequently there have been extensive efforts devoted to speeding up training
procedure. However, there are relatively few efforts aimed at improving the test-time performance
of the models.

We consider convolutional neural networks (CNNs) used for computer vision tasks, since they are
large and widely used in commercial applications. These networks typically require a huge number
of parameters (∼ 108 in [1]) to produce state-of-the-art results. While these networks tend to be
hugely over parameterized [2], this redundancy seems necessary in order to overcome a highly non-
convex optimization [3]. As a byproduct, the resulting network wastes computing resources. In this
paper we show that this redundancy can be exploited with linear compression techniques, resulting
in significant speedups for the evaluation of trained large scale networks, with minimal compromise
to performance.

We follow a relatively simple strategy: we start by compressing each convolutional layer by finding
an appropriate low-rank approximation, and then we fine-tune the upper layers until the prediction
performance is restored. We consider several elementary tensor decompositions based on singular
value decompositions, as well as filter clustering methods to take advantage of similarities between
learned features.

Our main contributions are the following: (1) We present a collection of generic methods to exploit
the redundancy inherent in deep CNNs. (2) We report experiments on state-of-the-art Imagenet
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CNNs, showing empirical speedups on convolutional layers by a factor of 2 − 3× and a reduction
of parameters in fully connected layers by a factor of 5− 10×.

Notation: Convolution weights can be described as a 4-dimensional tensor: W ∈ RC×X×Y×F . C
is the number of number of input channels, X and Y are the spatial dimensions of the kernel, and F
is the target number of feature maps. It is common for the first convolutional layer to have a stride
associated with the kernel which we denote by ∆. Let I ∈ RC×N×M denote an input signal where
C is the number of input maps, and N and M are the spatial dimensions of the maps. The target
value, T = I ∗W , of a generic convolutional layer, with ∆ = 1, for a particular output feature, f ,
and spatial location, (x, y), is

T (f, x, y) =

C∑
c=1

X∑
x′=1

Y∑
y′=1

I(c, x− x′, y − y′)W (c, x′, y′, f)

IfW is a tensor, ‖W‖ denotes its operator norm, sup‖x‖=1 ‖Wx‖F and ‖W‖F denotes its Frobenius
norm.

2 Related Work

Vanhoucke et al. [4] explored the properties of CPUs to speed up execution. They present many
solutions specific to Intel and AMD CPUs and some of their techniques are general enough to be
used for any type of processor. They describe how to align memory, and use SIMD operations
(vectorized operations on CPU) to boost the efficiency of matrix multiplication. Additionally, they
propose the linear quantization of the network weights and input. This involves representing weights
as 8-bit integers (range [−127, 128]), rather than 32-bit floats. This approximation is similar in spirit
to our approach, but differs in that it is applied to each weight element independently. By contrast,
our approximation approach models the structure within each filter. Potentially, the two approaches
could be used in conjunction.

The most expensive operations in CNNs are the convolutions in the first few layers. The complexity
of this operation is linear in the area of the receptive field of the filters, which is relatively large for
these layers. However, Mathieu et al. [5] have shown that convolution can be efficiently computed
in Fourier domain, where it becomes element-wise multiplication (and there is no cost associated
with size of receptive field). They report a forward-pass speed up of around 2× for convolution
layers in state-of-the-art models. Importantly, the FFT method can be used jointly with most of the
techniques presented in this paper.

The use of low-rank approximations in our approach is inspired by work of Denil et al. [2] who
demonstrate the redundancies in neural network parameters. They show that the weights within a
layer can be accurately predicted from a small (e.g. ∼ 5%) subset of them. This indicates that
neural networks are heavily over-parametrized. All the methods presented here focus on exploiting
the linear structure of this over-parametrization.

Finally, a recent preprint [6] also exploits low-rank decompositions of convolutional tensors to speed
up the evaluation of CNNs, applied to scene text character recognition. This work was developed
simultaneously with ours, and provides further evidence that such techniques can be applied to a
variety of architectures and tasks. Our work differs in several ways. First, we consider a significantly
larger model. This makes it more challenging to compute efficient approximations since there are
more layers to propagate through and thus a greater opportunity for error to accumulate. Second, we
present different compression techniques for the hidden convolutional layers and provide a method
of compressing the first convolutional layer. Finally, we present GPU results in addition to CPU
results.

3 Convolutional Tensor Compression

In this section we describe techniques for compressing 4 dimensional convolutional weight tensors
and fully connected weight matrices into a representation that permits efficient computation and
storage. Section 3.1 describes how to construct a good approximation criteria. Section 3.2 describes
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techniques for low-rank tensor approximations. Sections 3.3 and 3.4 describe how to apply these
techniques to approximate weights of a convolutional neural network.

3.1 Approximation Metric

Our goal is to find an approximation, W̃ , of a convolutional tensor W that facilitates more efficient
computation while maintaining the prediction performance of the network. A natural choice for
an approximation criterion is to minimize ‖W̃ −W‖F . This criterion yields efficient compression
schemes using elementary linear algebra, and also controls the operator norm of each linear convolu-
tional layer. However, this criterion assumes that all directions in the space of weights equally affect
prediction performance. We now present two methods of improving this criterion while keeping the
same efficient approximation algorithms.

Mahalanobis distance metric: The first distance metric we propose seeks to emphasize coordi-
nates more prone to produce prediction errors over coordinates whose effect is less harmful for the
overall system. We can obtain such measurements as follows. Let Θ = {W1, . . . ,WS} denote
the set of all parameters of the S-layer network, and let U(I; Θ) denote the output after the soft-
max layer of input image I . We consider a given input training set (I1, . . . , IN ) with known labels
(y1, . . . , yN ). For each pair (In, yn), we compute the forward propagation pass U(In,Θ), and de-
fine as {βn} the indices of the h largest values of U(In,Θ) different from yn. Then, for a given
layer s, we compute

dn,l,s = ∇Ws (U(In,Θ)− δ(i− l)) , n ≤ N , l ∈ {βn} , s ≤ S , (1)

where δ(i−l) is the dirac distribution centered at l. In other words, for each input we back-propagate
the difference between the current prediction and the h “most dangerous” mistakes.

The Mahalanobis distance is defined from the covariance of d: ‖W‖2maha = wΣ−1wT , where w
is the vector containing all the coordinates of W , and Σ is the covariance of (dn,l,s)n,l. We do not
report results using this metric, since it requires inverting a matrix of size equal to the number of pa-
rameters, which can be prohibitively expensive in large networks. Instead we use an approximation
that considers only the diagonal of the covariance matrix. In particular, we propose the following,
approximate, Mahalanobis distance metric:

‖W‖
m̃aha

:=
∑
p

αpW (p) , where αp =
(∑

n,l

dn,l,s(p)
2
)1/2

(2)

where the sum runs over the tensor coordinates. Since (2) is a reweighted Euclidiean metric, we can
simply compute W ′ = α . ∗W , where .∗ denotes element-wise multiplication, then compute the
approximation W̃ ′ on W ′ using the standard L2 norm, and finally output W̃ = α−1. ∗ W̃ ′ .
Data covariance distance metric: One can view the Frobenius norm of W as ‖W‖2F =
Ex∼N (0,I)‖Wx‖2F . Another alternative, similar to the one considered in [6], is to replace the
isotropic covariance assumption by the empirical covariance of the input of the layer. If W ∈
RC×X×Y×F is a convolutional layer, and Σ̂ ∈ RCXY×CXY is the empirical estimate of the input
data covariance, it can be efficiently computed as

‖W‖data = ‖Σ̂1/2WF ‖F , (3)

where WF is the matrix obtained by folding the first three dimensions of W .As opposed to [6], this
approach adapts to the input distribution without the need to iterate through the data.

3.2 Low-rank Tensor Approximations

3.2.1 Matrix Decomposition

Matrices are 2-tensors which can be linearly compressed using the Singular Value Decomposition.
If W ∈ Rm×k is a real matrix, the SVD is defined as W = USV >, where U ∈ Rm×m, S ∈
Rm×k, V ∈ Rk×k. S is a diagonal matrix with the singular values on the diagonal, and U , V
are orthogonal matrices. If the singular values of W decay rapidly, W can be well approximated
by keeping only the t largest entries of S, resulting in the approximation W̃ = Ũ S̃Ṽ >, where
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Ũ ∈ Rm×t, S̃ ∈ Rt×t, Ṽ ∈ Rt×k Then, for I ∈ Rn×m, the approximation error ‖IW̃ − IW‖F
satisfies ‖IW̃ − IW‖F ≤ st+1‖I‖F , and thus is controlled by the decay along the diagonal of S.
Now the computation IW̃ can be done in O(nmt + nt2 + ntk), which, for sufficiently small t is
significantly smaller than O(nmk).

3.2.2 Higher Order Tensor Approximations

SVD can be used to approximate a tensor W ∈ Rm×n×k by first folding all but two dimensions
together to convert it into a 2-tensor, and then considering the SVD of the resulting matrix. For
example, we can approximate Wm ∈ Rm×(nk) as W̃m ≈ Ũ S̃Ṽ >. W can be compressed even
further by applying SVD to Ṽ . We refer to this approximation as the SVD decomposition and use
K1 and K2 to denote the rank used in the first and second application of SVD respectively.

Alternatively, we can approximate a 3-tensor, WS ∈ Rm×n×k, by a rank 1 3-tensor by finding a
decomposition that minimizes

‖W − α⊗ β ⊗ γ‖F , (4)

where α ∈ Rm, β ∈ Rn, γ ∈ Rk and ⊗ denotes the outer product operation. Problem (4) is solved
efficiently by performing alternate least squares on α, β and γ respectively, although more efficient
algorithms can also be considered [7].

This easily extends to a rank K approximation using a greedy algorithm: Given a tensor W , we
compute (α, β, γ) using (4), and we update W (k+1) ←W k − α⊗ β ⊗ γ. Repeating this operation
K times results in

W̃S =

K∑
k=1

αk ⊗ βk ⊗ γk . (5)

We refer to this approximation as the outer product decomposition and use K to denote the rank of
the approximation.
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Figure 1: A visualization of monochromatic and biclustering approximation structures. (a) The
monochromatic approximation, used for the first layer. Input color channels are projected onto a set
of intermediate color channels. After this transformation, output features need only to look at one
intermediate color channel. (b) The biclustering approximation, used for higher convolution layers.
Input and output features are clustered into equal sized groups. The weight tensor corresponding
to each pair of input and output clusters is then approximated. (c) The weight tensors for each
input-output pair in (b) are approximated by a sum of rank 1 tensors using techniques described in
3.2.2

3.3 Monochromatic Convolution Approximation

Let W ∈ RC×X×Y×F denote the weights of the first convolutional layer of a trained network.
We found that the color components of trained CNNs tend to have low dimensional structure. In
particular, the weights can be well approximated by projecting the color dimension down to a 1D
subspace. The low-dimensional structure of the weights is illustrated in Figure 4.1.

The monochromatic approximation exploits this structure and is computed as follows. First, for
every output feature, f , we consider the matrixWf ∈ RC×(XY ), where the spatial dimensions of the
filter corresponding to the output feature have been combined, and find the SVD, Wf = UfSfV

>
f ,
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Approximation technique Number of operations
No approximation XY CFNM∆−2

Monochromatic C ′CNM +XY FNM∆−2

Biclustering + outer product decomposition GHK(NM C
G +XYNM∆−2 + F

HNM∆−2)
Biclustering + SVD GHNM(C

GK1 +K1XYK2∆−2 +K2
F
H )

Table 1: Number of operations required for various approximation methods.

where Uf ∈ RC×C , Sf ∈ RC×XY , and Vf ∈ RXY×XY . We then take the rank 1 approximation
of Wf , W̃f = Ũf S̃f Ṽ

>
f , where Ũf ∈ RC×1, S̃f ∈ R, Ṽf ∈ R1×XY . We can further exploit the

regularity in the weights by sharing the color component basis between different output features.
We do this by clustering the F left singular vectors, Ũf , of each output feature f into C ′ clusters,
for C ′ < F . We constrain the clusters to be of equal size as discussed in section 3.4. Then,
for each of the F

C′ output features, f , that is assigned to cluster cf , we can approximate Wf with
W̃f = Ucf S̃f Ṽ

>
f where Ucf ∈ RC×1 is the cluster center for cluster cf and S̃f and Ṽf are as before.

This monochromatic approximation is illustrated in the left panel of Figure 1(c). Table 1 shows the
number of operations required for the standard and monochromatic versions.

3.4 Biclustering Approximations

We exploit the redundancy within the 4-D weight tensors in the higher convolutional layers by clus-
tering the filters, such that each cluster can be accurately approximated by a low-rank factorization.
We start by clustering the rows of WC ∈ RC×(XY F ), which results in clusters C1, . . . , Ca. Then
we cluster the columns of WF ∈ R(CXY )×F , producing clusters F1, . . . , Fb. These two opera-
tions break the original weight tensor W into ab sub-tensors {WCi,Fj

}i=1,...,a,j=1,...,b as shown in
Figure 1(b). Each sub-tensor contains similar elements, and thus is easier to fit with a low-rank
approximation.

In order to exploit the parallelism inherent in CPU and GPU architectures it is useful to constrain
clusters to be of equal sizes. We therefore perform the biclustering operations (or clustering for
monochromatic filters in Section 3.3) using a modified version of the k-means algorithm which bal-
ances the cluster count at each iteration. It is implemented with the Floyd algorithm, by modifying
the Euclidean distance with a subspace projection distance.

After the input and output clusters have been obtained, we find a low-rank approximation of each
sub-tensor using either the SVD decomposition or the outer product decomposition as described in
Section 3.2.2. We concatenate the X and Y spatial dimensions of the sub-tensors so that the de-
composition is applied to the 3-tensor, WS ∈ RC×(XY )×F . While we could look for a separable
approximation along the spatial dimensions as well, we found the resulting gain to be minimal. Us-
ing these approximations, the target output can be computed with significantly fewer operations. The
number of operations required is a function the number of input clusters, G, the output clusters H
and the rank of the sub-tensor approximations (K1,K2 for the SVD decomposition; K for the outer
product decomposition. The number of operations required for each approximation is described in
Table 1.

3.5 Fine-tuning

Many of the approximation techniques presented here can efficiently compress the weights of a
CNN with negligible degradation of classification performance provided the approximation is not
too harsh. Alternatively, one can use a harsher approximation that gives greater speedup gains but
hurts the performance of the network. In this case, the approximated layer and all those below it can
be fixed and the upper layers can be fine-tuned until the original performance is restored.

4 Experiments

We use the 15 layer convolutional architecture of [8], trained on the ImageNet 2012 dataset [9]. The
network contains 5 convolutional layers, 3 fully connected layers and a softmax output layer. We
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Figure 2: Visualization of the 1st layer filters. (Left) Each component of the 96 7x7 filters is plotted
in RGB space. Points are colored based on the output filter they belong to. Hence, there are 96
colors and 72 points of each color. Leftmost plot shows the original filters and the right plot shows
the filters after the monochromatic approximation, where each filter has been projected down to a
line in colorspace. (Right) Original and approximate versions of a selection of 1st layer filters.

evaluated the network on both CPU and GPU platforms. All measurements of prediction perfor-
mance are with respect to the 50K validation images from the ImageNet12 dataset.

We present results showing the performance of the approximations described in Section 3 in terms
of prediction accuracy, speedup gains and reduction in memory overhead. All of our fine-tuning
results were achieved by training with less than 2 passes using the ImageNet12 training dataset.
Unless stated otherwise, classification numbers refer to those of fine-tuned models.

4.1 Speedup

The majority of forward propagation time is spent on the first two convolutional layers (see Supple-
mentary Material for breakdown of time across all layers). Because of this, we restrict our attention
to the first and second convolutional layers in our speedup experiments. However, our approxima-
tions could easily applied to convolutions in upper layers as well.

We implemented several CPU and GPU approximation routines in an effort to achieve empirical
speedups. Both the baseline and approximation CPU code is implemented in C++ using Eigen3
library [10] compiled with Intel MKL. We also use Intel’s implementation of openmp and multi-
threading. The baseline gives comparable performance to highly optimized MATLAB convolution
routines and all of our CPU speedup results are computed relative to this. We used Alex Krizhevsky’s
CUDA convolution routines 1 as a baseline for GPU comparisons. The approximation versions are
written in CUDA. All GPU code was run on a standard nVidia Titan card.

We have found that in practice it is often difficult to achieve speedups close to the theoretical gains
based on the number of arithmetic operations (see Supplementary Material for discussion of the-
oretical gains). Moreover, different computer architectures and CNN architectures afford different
optimization strategies making most implementations highly specific. However, regardless of im-
plementation details, all of the approximations we present reduce both the number of operations and
number of weights required to compute the output by at least a factor of two, often more.

4.1.1 First Layer

The first convolutional layer has 3 input channels, 96 output channels and 7x7 filters. We approx-
imated the weights in this layer using the monochromatic approximation described in Section 3.3.
The monochromatic approximation works well if the color components span a small number of one
dimensional subspaces. Figure 2 illustrates the effect of the monochromatic approximation on the
first layer filters.

The only parameter in the approximation is C ′, the number of color channels used for the interme-
diate representation. As expected, the network performance begins to degrade as C ′ decreases. The
number of floating point operations required to compute the output of the monochromatic convolu-
tion is reduced by a factor of 2− 3×, with the larger gain resulting for small C ′. Figure 3 shows the
empirical speedups we achieved on CPU and GPU and the corresponding network performance for
various numbers of colors used in the monochromatic approximation. Our CPU and GPU imple-

1https://code.google.com/p/cuda-convnet/
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Figure 3: Empirical speedups on (Left) CPU and (Right) GPU for the first layer. C ′ is the number
of colors used in the approximation.
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Figure 4: Empirical speedups for second convolutional layer. (Left) Speedups on CPU using biclus-
tered (G = 2 and H = 2) with SVD approximation. (Right) peedups on GPU using biclustered
(G = 48 and H = 2) with outer product decomposition approximation.

mentations achieve empirical speedups of 2 − 2.5× relative to the baseline with less than 1% drop
in classification performance.

4.1.2 Second Layer

The second convolutional layer has 96 input channels, 256 output channels and 5x5 filters. We
approximated the weights using the techniques described in Section 3.4. We explored various con-
figurations of the approximations by varying the number of input clusters G, the number of output
clusters H and the rank of the approximation (denoted by K1 and K2 for the SVD decomposition
and K for the outer product decomposition).

Figure 4 shows our empirical speedups on CPU and GPU and the corresponding network perfor-
mance for various approximation configurations. For the CPU implementation we used the bi-
clustering with SVD approximation. For the GPU implementation we using the biclustering with
outer product decomposition approximation. We achieved promising results and present speedups
of 2− 2.5× relative to the baseline with less than a 1% drop in performance.

4.2 Combining approximations

The approximations can also be cascaded to provide greater speedups. The procedure is as fol-
lows. Compress the first convolutional layer weights and then fine-tune all the layers above until
performance is restored. Next, compress the second convolutional layer weights that result from
the fine-tuning. Fine-tune all the layers above until performance is restored and then continue the
process.

We applied this procedure to the first two convolutional layers. Using the monochromatic approxi-
mation with 6 colors for the first layer and the biclustering with outer product decomposition approx-
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Approximation method Number of parameters Approximation Reduction Increase
hyperparameters in weights in error

Standard colvolution CXY F

Conv layer 1: Monochromatic CC′ + XY F C′ = 6 3× 0.43%
Conv layer 2: Biclustering GHK(C

G
+ XY + F

H
) G = 48; H = 2; K = 6 5.3× 0.68%

+ outer product decomposition
Conv layer 2: Biclustering + SVD GH(C

G
K1 + K1XY K2 + K2

F
H

) G = 2;H = 2; K1 = 19; K2 = 24 3.9× 0.9%
Standard FC NM
FC layer 1: Matrix SVD NK + KM K = 250 13.4× 0.8394%

K = 950 3.5× 0.09%
FC layer 2: Matrix SVD NK + KM K = 350 5.8× 0.19%

K = 650 3.14× 0.06%
FC layer 3: Matrix SVD NK + KM K = 250 8.1× 0.67%

K = 850 2.4× 0.02%

Table 2: Number of parameters expressed as a function of hyperparameters for various approxima-
tion methods and empirical reduction in parameters with corresponding network performance.

imation for the second layer (G = 48;H = 2;K = 8) and fine-tuning with a single pass through
the training set we are able to keep accuracy within 1% of the original model. This procedure could
be applied to each convolutional layer, in this sequential manner, to achieve overall speedups much
greater than any individual layer can provide. A more comprehensive summary of these results can
be found in the Supplementary Material.

4.3 Reduction in memory overhead

In many commercial applications memory conservation and storage are a central concern. This
mainly applies to embedded systems (e.g. smartphones), where available memory is limited, and
users are reluctant to download large files. In these cases, being able to compress the neural network
is crucial for the viability of the product.

In addition to requiring fewer operations, our approximations require significantly fewer parame-
ters when compared to the original model. Since the majority of parameters come from the fully
connected layers, we include these layers in our analysis of memory overhead. We compress the
fully connected layers using standard SVD as described in 3.2.2, using K to denote the rank of the
approximation.

Table 2 shows the number of parameters for various approximation methods as a function of hy-
perparameters for the approximation techniques. The table also shows the empirical reduction of
parameters and the corresponding network performance for specific instantiations of the approxima-
tion parameters.

5 Discussion

In this paper we have presented techniques that can speed up the bottleneck convolution operations
in the first layers of a CNN by a factor 2 − 3×, with negligible loss of performance. We also show
that our methods reduce the memory footprint of weights in the first two layers by factor of 2− 3×
and the fully connected layers by a factor of 5 − 13×. Since the vast majority of weights reside in
the fully connected layers, compressing only these layers translates into a significant savings, which
would facilitate mobile deployment of convolutional networks. These techniques are orthogonal to
other approaches for efficient evaluation, such as quantization or working in the Fourier domain.
Hence, they can potentially be used together to obtain further gains.

An interesting avenue of research to explore in further work is the ability of these techniques to
aid in regularization either during or post training. The low-rank projections effectively decrease
number of learnable parameters, suggesting that they might improve generalization ability. The
regularization potential of the low-rank approximations is further motivated by two observations.
The first is that the approximated filters for the first conolutional layer appear to be cleaned up
versions of the original filters. Additionally, we noticed that we sporadically achieve better test error
with some of the more conservative approximations.
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