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Abstract

In Reinforcement Learning (RL), state-of-the-art algorithms require a large num-
ber of samples per state-action pair to estimate the transition kernel p. In many
problems, a good approximation of p is not needed. For instance, if from one
state-action pair (s, a), one can only transit to states with the same value, learning
p(·|s, a) accurately is irrelevant (only its support matters). This paper aims at cap-
turing such behavior by defining a novel hardness measure for Markov Decision
Processes (MDPs) based on what we call the distribution-norm. The distribution-
norm w.r.t. a measure ν is defined on zero ν-mean functions f by the standard
variation of f with respect to ν. We first provide a concentration inequality for the
dual of the distribution-norm. This allows us to replace the problem-free, loose
|| · ||1 concentration inequalities used in most previous analysis of RL algorithms,
with a tighter problem-dependent hardness measure. We then show that several
common RL benchmarks have low hardness when measured using the new norm.
The distribution-norm captures finer properties than the number of states or the
diameter and can be used to assess the difficulty of MDPs.

1 Introduction
The motivation for this paper started with a question: Why are the number of samples needed for Re-
inforcement Learning (RL) in practice so much smaller than those given by theory? Can we improve
this? In Markov Decision Processes (MDPs, Puterman (1994)), when the performance is measured
by (1) the sample complexity (Kearns and Singh, 2002; Kakade, 2003; Strehl and Littman, 2008;
Szita and Szepesvári, 2010) or (2) the regret (Bartlett and Tewari, 2009; Jaksch, 2010; Ortner, 2012),
algorithms have been developed that achieve provably near-optimal performance. Despite this, one
can often solve MDPs in practice with far less samples than required by current theory. One possible
reason for this disconnect between theory and practice is because the analysis of RL algorithms has
focused on bounds that hold for the most difficult MDPs. While it is interesting to know how an
RL algorithm will perform for the hardest MDPs, most MDPs we want to solve in practice are far
from pathological. Thus, we want algorithms (and analysis) that perform appropriately with respect
to the hardness of the MDP it is facing.

A natural way to fill this gap is to formalize a “hardness” metric for MDPs and show that MDPs
from the literature that were solved with few samples are not “hard” according to this metric. For
finite-state MDPs, usual metrics appearing in performance bounds of MDPs include the number of
states and actions, the maximum of the value function in the discounted setting, and the diameter
or sometimes the span of the bias function in the undiscounted setting. They only capture limited
properties of the MDP. Our goal in this paper is to propose a more refined notion of hardness.
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Previous work Despite the rich literature on MDPs, there has been surprisingly little work on met-
rics capturing the difficulty of learning MDPs. In Jaksch (2010), the authors introduce the UCRL
algorithm for undiscounted MDPs, whose regret scales with the diameter D of the MDP, a quan-
tity that captures the time to reach any state from any other. In Bartlett and Tewari (2009), the
authors modify UCRL to achieve regret that scales with the span of the bias function, which can be
arbitrarily smaller than D. The resulting algorithm, REGAL achieves smaller regret, but it is an
open question whether the algorithm can be implemented. Closely related to our proposed solution,
in Filippi et al. (2010) the authors provide a modified version of UCRL, called KL-UCRL that
uses modified confidence intervals on the transition kernel based on Kullback-Leibler divergence
rather than || · ||1 control on the error. The resulting algorithm is reported to work better in prac-
tice, although this is not reflected in the theoretical bounds. Farahmand (2011) introduced a metric
for MDPs called the action-gap. This work is the closest in spirit to our approach. The action-
gap captures the difficulty of distinguishing the optimal policy from near-optimal policies, and is
complementary to the notion of hardness proposed here. However, the action-gap has mainly been
used for planning, instead of learning, which is our main focus. In the discounted setting, several
works have improved the bounds with respect to the number of states (Szita and Szepesvári, 2010)
and the discount factor (Lattimore and Hutter, 2012). However, these analyses focus on worst case
bounds that do not scale with the hardness of the MDP, missing an opportunity to help bridge the
gap between theory and practice.
Contributions Our main contribution is a refined metric for the hardness of MDPs, that captures the
observed “easiness” of common benchmark MDPs. To accomplish this we first introduce a norm in-
duced by a distribution ν, aka the distribution-norm. For functions f with zero ν-expectation, ||f ||ν
is the variance of f . We define the dual of this norm in Lemma 1, and then study its concentration
properties in Theorem 1. This central result is of independent interest beyond its application in RL.
More precisely, for a discrete probability measure p and its empirical version �pn built from n i.i.d
samples, we control ||p − �pn||�,p in O((np0)

−1/2), where p0 is the minimum mass of p on its sup-
port. Second, we define a hardness measure for MDPs based on the distribution-norm. This measure
captures stochasticity along the value function. This quantity is naturally small in MDPs that are
nearly deterministic, but it can also be small in MDPs with highly stochastic transition kernels. For
instance, this is the case when all states reachable from a state have the same value. We show that
some common benchmark MDPs have small hardness measure. This illustrates that our proposed
norm is a useful tool for the analysis and design of existing and future RL algorithms.
Outline In Section 2, we formalize the distribution-norm, and give intuition about the interplay with
its dual. We compare to distribution-independent norms. Theorem 1 provides a concentration in-
equality for the dual of this norm, that is of independent interest beyond the MDP setting. Section 3
uses these insights to define a problem-dependent hardness metric for both undiscounted and dis-
counted MDPs (Definition 2, Definition 1), that we call the environmental norm. Importantly, we
show in section 3.2 that common benchmark MDPs have small environmental norm C in this sense,
and compare our bound to approaches bounding the problem-free || · ||1 norm.

2 The distribution-norm and its dual
In Machine Learning (ML), norms often play a crucial role in obtaining performance bounds. One
typical example is the following. Let X be a measurable space equipped with an unknown prob-
ability measure ν ∈ M1(X ) with density p. Based on some procedure, an algorithm produces a
candidate measure ν̃ ∈ M1(X ) with density p̃. One is then interested in the loss with respect to a
continuous function f . It is natural to look at the mismatch between ν and ν̃ on f . That is

(ν − ν̃, f) =

�

X
f(x)(ν − ν̃)(dx) =

�

X
f(x)(p(x)− p̃(x))dx .

A typical bound on this quantity is obtained by applying a Hölder inequality to f and p− p̃, which
gives (ν − ν̃, f) � ||p − p̃||1||f ||∞ . Assuming a bound is known for ||f ||∞, this inequality can
be controlled with a bound on ||p − p̃||1. When X is finite and p̃ is the empirical distribution �pn
estimated from n i.i.d. samples of p, results such as Weissman et al. (2003) can be applied to bound
this term with high probability.

However, in this learning problem, what matters is not f but the way f behaves with respect to ν.
Thus, trying to capture the properties of f via the distribution-free ||f ||∞ bound is not satisfactory.
So we propose, instead, a norm || · ||ν driven by ν. Well-behaving f will have small norm ||f ||ν ,
whereas badly-behaving f will have large norm ||f ||ν . Every distribution has a natural norm asso-
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ciated with it that measures the quadratic variations of f with respect to ν. This quantity is at the
heart of many key results in mathematical statistics, and is formally defined by

||f ||ν =

��

X

�
f(x)− Eνf

�2

ν(dx) . (1)

To get a norm, we restrict C(X ) to the space of continuous functions Eν = {f ∈ C(X ) : ||f ||ν <
∞, supp(ν) ⊂ supp(f),Eνf = 0} .We then define the corresponding dual space in a standard way
by E�

ν = {µ : ||µ||�,ν < ∞} where

||µ||�,ν = sup
f∈Eν

�
x
f(x)µ(dx)

||f ||ν
.

Note that for f ∈ Eν , using the fact the ν(X ) = ν̃(X ) = 1 and that x → f(x)−Eνf is a zero mean
function, we immediately have

(ν − ν̃, f) = (ν − ν̃, f − Eνf)

� ||p− p̃||�,ν ||f − Eνf ||ν . (2)

The key difference with the generic Hölder inequality is that || · ||ν is now capturing the behavior of
f with respect to ν, as opposed to || · ||∞. Conceptually, using a quadratic norm instead of an L1
norm, as we do here, is analogous to moving from Hoeffding’s inequality to Bernstein’s inequality
in the framework of concentration inequalities.

We are interested in situations where ||f ||ν is much smaller than ||f ||∞. That is, f is well-behaving
with respect to ν. In such cases, we can get an improved bound ||p − p̃||�,ν ||f − Eνf ||ν instead of
the best possible generic bound infc∈R ||p− p̃||1||f − c||∞.

Simply controlling either ||p − p̃||�,ν (respectively ||p − p̃||1) or ||f ||ν (respectively ||f ||∞) is not
enough. What matters is the product of these quantities. For our choice of norm, we show that
||p − p̃||�,ν concentrates at essentially the same speed as ||p − p̃||1, but ||f ||∞ is typically much
larger than ||f ||ν for the typical functions met in the analysis of MDPs. We do not claim that the
norm defined in equation (1) is the best norm that leads to a minimal ||p − p̃||�,ν ||f − Eνf ||ν , but
we show that it is an interesting candidate.

We proceed in two steps. First, we design in Section 2 a concentration bound for ||p− �pn||�,ν that is
not much larger than the Weissman et al. (2003) bound on ||p− �pn||1. (Note that ||p− �pn||�,ν must
be larger than ||p− �pn||1 as it captures a refined property). Second, in Section 3, we consider RL in
an MDP where p represents the transition kernel of a station-action pair and f represents the value
function of the MDP for a policy. The value function and p are strongly linked by construction,
and the distribution-norm helps us capture their interplay. We show in Section 3.2 that common
benchmark MDPs have optimal value functions with small || · ||ν norm. This naturally introduces a
new way to capture the hardness of MDPs, besides the diameter (Jaksch, 2010) or the span (Bartlett
and Tewari, 2009). Our formal notion of MDP hardness is summarized in Definitions 1 and 2, for
discounted and undiscounted MDPs, respectively.

2.1 A dual-norm concentration inequality
For convenience we consider a finite space X = {1, . . . , S} with S points. We focus on the first
term on the right hand side of (2), which corresponds to the dual norm when p̃ = �pn is the empirical
mean built from n i.i.d. samples from the distribution ν. We denote by p the probability vector
corresponding to ν. The following lemma, whose proof is in the supplementary material, provides a
convenient way to compute the dual norm.

Lemma 1 Assume that X = {1, . . . , S}, and, without loss of generality, that supp(p) =
{1, . . . ,K}, withK � S. Then the following equality holds true

||�pn − p||�,p =

����
K�

s=1

�p2n,s − p2s
ps

.

Now we provide a finite-sample bound on our proposed norm.
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Theorem 1 (Main result) Assume that supp(p) = {1, . . . ,K}, with K � S. Then for all δ ∈
(0, 1), with probability higher than 1− δ,

||�pn − p||�,p � min

��
1

p(K)
− 1,

�
K − 1

n
+ 2

�
(2n− 1) ln(1/δ)

n2

�
1

p(K)
− 1

p(1)

��
, (3)

where p(K) is the smallest non zero component of p = (p1, . . . , pS), and p(1) the largest one.

The proof follows an adaptation of Maurer and Pontil (2009) for empirical Bernstein bounds, and
uses results for self-bounded functions from the same paper. This gives tighter bounds than naive
concentration inequalities (Hoeffding, Bernstein, etc.). We indeed get a O(n−1/2) scaling, whereas
using simpler techniques would lead to a weak O(n−1/4) scaling.

Proof We will apply Theorem 7 of Maurer and Pontil (2009). Using the notation of this theorem,
we denote the sample byX = (X1, . . . , Xn) and the function we want to control by

V(X) = ||�pn − p||2�,p .
We now introduce, for any s ∈ S the modified sampleXi0,s = (X1, . . . , Xi0−1, s,Xi0+1, . . . , Xn).
We are interested in the quantity V(X)−V(Xi0,s). To apply Theorem 7 ofMaurer and Pontil (2009),
we need to identify constants a, b such that

�∀i ∈ [n], V(X)− infs∈S V(Xi,s) � b
�n

i=1

�
V(X)− infs∈S V(Xi,s)

�2

� aV(X) .

The two following lemmas enable us to identify a and b. They follow from simple algebra and are
proved in Appendix A in the supplementary material.

Lemma 2 V(X) satisfies Ep

�
V(X)

�
= K−1

n . Moreover, for all i ∈ {1, . . . , n} we have that

V(X)− inf
s∈S

V(Xi,s) � b , where b =
2n− 1

n2

�
1

p(K)
− 1

p(1)

�
.

Lemma 3 V(X) = ||�pn − p||2�,p satisfies
n�

i=1

�
V(X)− inf

s∈S
V(Xi,s)

�2

� 2bV(X) .

Thus, we can choose a = 2b. By application of Theorem 7 of Maurer and Pontil (2009) to Ṽ(X) =
V(X)/b, we deduce that for all ε > 0,

P
�
Ṽ(X)− EṼ(X) > ε

�
� exp

�
− ε2

4EṼ(X) + 2ε

�
.

Plugging back in the definition of Ṽ(X), we obtain

P
�
||�pn − p||2�,p >

K − 1

n
+ ε

�
� exp

�
− ε2/b

4K−1
n + 2ε

�
.

After inverting this bound in ε and using the fact that
√
a+ b � √

a+
√
b for non-negative a, b, we

deduce that for all δ ∈ (0, 1), with probability higher than 1− δ, then

||�pn − p||2�,p � EV(X) + 2
�
EV(X)b ln(1/δ) + 2b log(1/δ)

=

��
EV(X) +

�
b ln(1/δ)

�2

+ b log(1/δ) .

Thus, we deduce from this inequality that

||�pn − p||�,p �
�
EV(X) + 2

�
b ln(1/δ)

=

�
K − 1

n
+ 2

�
(2n− 1) ln(1/δ)

n2

�
1

p(K)
− 1

p(1)

�
,

which concludes the proof. We recover here a O(n−1/2) behavior, more precisely a O(p−1
(K)n

−1/2)

scaling where p(K) is the smallest non zero probability mass of p. �
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3 Hardness measure in Reinforcement Learning using the distribution-norm
In this section, we apply the insights from Section 2 for the distribution-norm to learning in Markov
Decision Processes (MDPs). We start by defining a formal notion of hardness C for discounted
MDPs and undiscounted MDPs with average reward, that we call the environmental norm. Then, we
show in Section 3.2 that several benchmark MDPs have small environmental norm. In Section 3.1,
we present a regret bound for a modification of UCRL whose regret scales with C, without having
to know C in advance.
Definition 1 (Discounted MDP) Let M =< S,A, r, p, γ > be a γ-discounted MDP, with reward
function r and transition kernel p. We denote V π the value function corresponding to a policy π
(Puterman, 1994). We define the environmental-value norm of policy π in MDPM by

Cπ
M = max

s,a∈S×A
||V π||p(·|s,a) .

Definition 2 (Undiscounted MDP) LetM =< S,A, r, p > be an undiscounted MDP, with reward
function r and transition kernel p. We denote by hπ the bias function for policy π (Puterman, 1994;
Jaksch, 2010). We define the environmental-value norm of policy π in MDPM by the quantity

Cπ
M = max

s,a∈S×A
||hπ||p(·|s,a) .

In the discounted setting with bounded rewards in [0, 1], V π � 1
1−γ and thus Cπ

M � 1
1−γ as well.

In the undiscounted setting, then ||hπ||p(·|s,a) � span(hπ), and thus Cπ
M � span(hπ). We define

the class of C-“hard” MDPs byMC =

�
M : Cπ∗

M � C

�
. That is, the class of MDPs with optimal

policy having a low environmental-value norm, or for short, MDPs with low environmental norm.

Important note It may be tempting to think that, since the above definition captures a notion of
variance, an MDP that is very noisy will have a high environmental norm. However this reasoning
is incorrect. The environmental norm of an MDP is not the variance of a roll-out trajectory, but
rather captures the variations of the value (or the bias value) function with respect to the transition
kernel. For example, consider a fully connected MDP with transition kernel that transits to every
state uniformly at random, but with a constant reward function. In this trivial MDP, Cπ

M = 0 for
all policies π, even though the MDP is extremely noisy because the value function is constant. In
general MDPs, the environmental norm depends on how varied the value function is at the possible
next states and on the distribution over next states. Note also that we use the term hardness rather
than complexity to avoid confusion with such concepts as Rademacher or VC complexity.

3.1 “Easy” MDPs and algorithms
In this section, we demonstrate how the dual norm (instead of the usual || · ||1 norm) can lead to
improved bounds for learning in MDPs with small environmental norm.

Discounted MDPs Due to space constraints, we only report one proposition that illustrates the kind
of achievable results. Indeed, our goal is not to derive a modified version of each existing algorithm
for the discounted scenario, but rather to instill the key idea of using a refined hardness measure
when deriving the core lemmas underlying the analysis of previous (and future) algorithms.

The analysis of most RL algorithms for the discounted case uses a “simulation lemma” (Kearns
and Singh, 2002); see also Strehl and Littman (2008) for a refined version. A simulation lemma
bounds the error in the value function of running a policy planned on an estimated MDP in the MDP
where the samples were taken from. This effectively controls the number of samples needed from
each state-action pair to derive a near-optimal policy. The following result is a simulation lemma
exploiting our proposed notion of hardness (the environmental norm).

Proposition 1 Let M be a γ-discounted MDP with deterministic rewards. For a policy π, let us
denote its corresponding value V π . We denote by p the transition kernel ofM , and for convenience
use the notation pπ(s�|s) for p(s�|s, π(s)). Now, let �p be an estimate of the transition kernel such
that maxs∈S ||pπ(·|s) − �pπ(·|s)||�,pπ(·|s) � ε and let us denote �V π its corresponding value in the
MDP with kernel �p. Then, the maximal expected error between the two values is bounded by

Eπ
rr

def
= max

s0∈S

�
Epπ(·|s0)

�
V π

�
− E�pπ(·|s0)

��V π
��

� εCπ

1− γ
,

where Cπ = maxs,a∈S×A ||V π||p(·|s,a). In particular, for the optimal policy π�, then Cπ� � C.
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To understand when this lemma results in smaller sample sizes, we need to compare to what
one would get using the standard || · ||1 decomposition, for an MDP with rewards in [0, 1]. If
maxs∈S ||pπ(·|s)− �pπ(·|s)||1 � ε�, then one would get

Eπ
rr �

εspan(V π)

1− γ
� ε�V ∗

MAX

1− γ
� ε�

(1− γ)2
.

When, for example, C is a bound with respect to all policies, this simulation lemma can be plugged
directly into the analysis of R-MAX (Kakade, 2003) or MBIE (Strehl and Littman, 2008) to obtain
a hardness-sensitive bound on the sample complexity. Now, in most analyses, one only needs to
bound the hardness with respect to the optimal policy and to the optimistic/greedy policies actually
used by the algorithm. For an optimal policy π̃ computed from an (ε, ε�)-approximate model (see
Lemma 4 for details), it is not difficult to show that C π̃ � Cπ�

+ (ε�Cπ�

+ ε)/(1− γ), which thus
allows for a tighter analysis. We do not report further results here, to avoid distracting the reader
from the main message of the paper, which is the introduction of a distribution-dependent hardness
metric for MDPs. Likewise, we do not detail the steps that lead from this result to the various
sample-complexity bounds one can find in the abundant literature on the topic, as it would not be
more illuminating than Proposition 1.

Undiscounted MDPs In the undiscounted setting, with average reward criterion, it is natural to
consider the UCRL algorithm from Jaksch (2010). We modify the definition of plausible MDPs
used in the algorithm as follows: Using the same notations as that of Jaksch (2010), we replace the
admissibility condition for a candidate transition kernel p̃ at the beginning of episode k at time tk

||�pk(·|s, a)− p̃(·|s, a)||1 �
�

14S log(2Atk/δ)

max{1, Nk(s, a)}
,

with the following condition involving the result of Theorem 1

||�pk(·|s, a)− p̃(·|s, a)||�,p̃(·|s,a) � Bk(s, a)
def
=

min

��
1

p0
− 1,

�
K − 1

max{1, Nk(s, a)}
+ 2

�
(2Nk(s, a)− 1) ln(tkSA/δ)

max{1, Nk(s, a)}2
�

1

p̃(K)
− 1

p̃(1)

��
, (4)

where p̃(K) is the smallest non zero component of p̃(·|s, a), and p̃(1) the largest one, and K is the
size of the support of p̃(·|s, a). We here assume for simplicity that the transition kernel p of the MDP
always puts at least p0 mass on each point of its support, and thus constraint an admissible kernel p̃
to satisfy the same condition. One restriction of the current (simple) analysis is that the algorithm
needs to know a bound on p0 in advance. We believe it is possible to remove such an assumption by
estimating p0 and taking care of the additional low probability event corresponding to the estimation
error. As this comes at the price of a more complicated algorithm and analysis, we do not report
this extension here for clarity. Note that the optimization problem corresponding to Extended Value
Iteration with (4) can still be solved by optimizing over the simplex. We refer to Jaksch (2010) for
implementation details. Naturally, similar modifications apply also to REGAL and other UCRL
variants introduced in the MDP literature.

In order to assess the performance of the policy chosen by UCRL it is useful to show the following:
Lemma 4 LetM and M̃ be two communicating MDPs over the same state-action space such that
one is an (ε, ε�)-approximation of the other in the sense that for all s, a |r(s, a) − r̃(s, a)| � ε and
||p̃(·|s, a)− p(·|s, a)||�,p(·|s,a) � ε�. Let ρ�(M) denotes the average value function ofM . Then

||ρ�(M)− ρ�(M̃)||p � ε� min{CM , CM̃}+ ε .

Lemma 4 is a simple adaptation from Ortner et al. (2014). We now provide a bound on the regret of
this modified UCRL algorithm. The regret bound turns out to be a bit better than UCRL in the case
of an MDPM ∈ MC with a small C.

Proposition 2 Let us consider a finite-state MDP with S state, low environmental norm (M ∈ MC)
and diameter D. Assume moreover that the transition kernel that always puts at least p0 mass on
each point of its support. Then, the modified UCRL algorithm run with condition (4) is such that
for all δ, with probability higher than 1− δ, for all T , the regret after T steps is bounded by

RT = O

��
DC

√
SA

�� log(TSA/δ)

p0
+
√
S
�
+D

��
T

p0
log(TSA/δ)

�
.
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The regret bound for the original UCRL from Jaksch (2010) scales asO
�
DS

�
AT log(TSA/δ)

�
.

Since we used some crude upper bounds in parts of the proof of Proposition 2, we believe the

right scaling for the bound of Proposition 2 is O

�
C
�

TSA
p0

log(TSA/δ)

�
. The cruder factors

come from some second order terms that we controlled trivially to avoid technical and not very
illuminating considerations. What matters here is that C appears as a factor of the leading term.
Indeed proposition 2 is mostly here for illustration purpose of what one can achieve, and improving
on the other terms is technical and goes beyond the scope of this paper. Comparing the two regret
bounds, the result of Proposition 2 provides a qualitative improvement over the result of Jaksch
(2010) whenever C < D

√
Sp0 (respectively C <

√
Sp0) for the conjectured (resp. current) result.

Note. The modified UCRL algorithm does not need to know the environmental norm C of the MDP
in advance. It only appears in the analysis and in the final regret bound. This property is similar to
that of UCRL with respect to the diameter D.

3.2 The hardness of benchmarks MDPs

In this section, we consider the hardness of a set of MDPs that have appeared in past literature.
Table 3.2 summarizes the results for six MDPs that were chosen to be both representative of typ-
ical finite-states MDPs but also cover a diverse range of tasks. These MDPs are also significant
in the sense that good solutions for them have been learned with far fewer samples then sug-
gested by existing theoretical bounds. The metrics we report include the number of states S,
the number of actions A, the maximum of V � (denoted V ∗

MAX), the span of V ∗, the Cπ∗
M , and

p0 = min
s∈S,a∈A

min
s�∈supp(p(·|s,a)

p(s�|s, a), that is the minimum non-zero probability mass given by the

transition kernel of the MDP. While we cannot compute the hardness for all policies, the hardness
with respect to π∗ is significant because it indicates how hard it is to learn the value function V ∗

of the optimal policy. Notice that Cπ∗
M is significantly smaller than both V ∗

MAX and span(V ∗) in
all the MDPs. This suggests that a model accurately representing the optimal value function can be
derived with a small number of samples (and a bound based on � · �1V ∗

MAX is overly conservative).

MDP S A V ∗
MAX Span(V ∗) Cπ∗

M p0

bottleneck McGovern and Barto (2001) 231 4 19.999 19.999 0.526 0.1
red herring Hester and Stone (2009) 121 4 17.999 17.999 4.707 0.1
taxi † Dietterich (1998) 500 6 7.333 0.885 0.055 0.043
inventory † Mankowitz et al. (2014) 101 2 19.266 0.963 0.263 < 10−3

mountain car † � � Sutton and Barto (1998) 150 3 19.999 19.999 1.296 0.322
pinball † � � Konidaris and Barto (2009) 2304 5 19.999 19.991 0.059 < 10−3

Table 1: MDPs marked with a † indicate that the true MDP was not available and so it was
estimated from samples. We estimated these MDPs with 10, 000 samples from each state-
action pair. MDPs marked with a � indicate that the original MDP is deterministic and there-
fore we added noise to the transition dynamics. For the Mountain Car problem, we added a
small amount of noise to the vehicle’s velocity during each step (post+1 = post + velt(1 +
X) where X is a random variable with equally probable events {−velMAX , 0, velMAX}). For the
pinball domain we added noise similar to Tamar et al. (2013). MDPs marked with a � were dis-
cretized to create a finite state MDP. The rewards of all MDPs were normalized to [0, 1] and discount
factor γ = 0.95 was used.

To understand the environmental-value norm of near-optimal policies π in an MDP, we ran policy
iteration on each of the benchmark MDPs from Table 3.2 for 100 iterations (see supplementary
material for further details). We computed the environmental-value norm of all encountered policies
and selected the policy π with maximal norm and its corresponding worst case distribution. Figure 1
compares the Weissman et al. (2003) bound ×VMAX to the bound given by Theorem 1 ×Cπ

M as the
number of samples increases. This is indeed the comparison of this products that matters for the
learning regret, rather than that of one or the other factor only. In each MDP, we see an order of
magnitude improvement by exploiting the distribution-norm. This is particularly significant because
the Weissman et al. (2003) bound is quite close to the behavior observed in experiments. The result
in Figure 1 strengthens support for our theoretical findings, suggesting that bounds based on the
distribution-norm scale with the MDP’s hardness.
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Figure 1: Comparison of the Weissman et al. (2003) bound times VMAX to (3) of Theorem 1 times
Cπ

M in the benchmark MDPs. In each MDP, we selected the policy π (from the policies encountered
during policy iteration) that gave the largest Cπ and the worst next state distribution for our bound.
In each MDP, the improvement with the distribution-norm is an order of magnitude (or more) better
than using the distribution-free Weissman et al. (2003) bound.

4 Discussion and conclusion
In the early days of learning theory, sample independent quantities such as the VC-dimension and
later the Rademacher complexity were used to derive generalization bounds for supervised learning.
Later on, data dependent bounds (empirical VC or empirical Rademacher) replaced these quantities
to obtain better bounds. In a similar spirit, we proposed the first analysis in RL where instead of
considering generic a-priori bounds one can use stronger MDP-specific bounds. Similarly to the su-
pervised learning, where generalization bounds have been used to drive model selection algorithms
and structural risk minimization, our proposed distribution dependent norm suggests a similar ap-
proach in solving RL problems. Although we do not claim to close the gap between theoretical
and empirical bounds, this paper opens an interesting direction of research towards this goal, and
achieves a significant first step. It inspires at least a modification of the whole family of UCRL-
based algorithms, and could potentially benefit also to others fundamental problems in RL such as
basis-function adaptation or model selection, but efficient implementation should not be overlooked.

We choose a natural weighted L2 norm induced by a distribution, due to its simplicity of interpre-
tation and showed several benchmark MDPs have low hardness. A natural question is how much
benefit can be obtained by studying other Lp or Orlicz distribution-norms? Further, one may wish
to create other distribution dependent norms that emphasize certain areas of the state space in order
to better capture desired (or undesired) phenomena. This is left for future work.

In the analysis we basically showed how to adapt existing algorithms to use the new distribution
dependent hardness measure. We believe this is only the beginning of what is possible, and that new
algorithms will be developed to best utilize distribution dependent norms in MDPs.

Acknowledgements This work was supported by the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement 306638 (SUPREL) and the Technion.

References
Bartlett, P. L. and Tewari, A. (2009). Regal: A regularization based algorithm for reinforcement
learning in weakly communicating mdps. In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, pages 35–42.

Dietterich, T. G. (1998). The MAXQ method for hierarchical reinforcement learning. In Interna-
tional Conference on Machine Learning, pages 118–126.

8



Farahmand, A. M. (2011). Action-gap phenomenon in reinforcement learning. In Shawe-Taylor, J.,
Zemel, R. S., Bartlett, P. L., Pereira, F. C. N., and Weinberger, K. Q., editors, Proceedings of the
25th Annual Conference on Neural Information Processing Systems, pages 172–180, Granada,
Spain.
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