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Abstract

We consider regularized empirical risk minimization problems. In particular, we
minimize the sum of a smooth empirical risk function and a nonsmooth regulariza-
tion function. When the regularization function is block separable, we can solve
the minimization problems in a randomized block coordinate descent (RBCD)
manner. Existing RBCD methods usually decrease the objective value by ex-
ploiting the partial gradient of a randomly selected block of coordinates in each
iteration. Thus they need all data to be accessible so that the partial gradient of the
block gradient can be exactly obtained. However, such a “batch” setting may be
computationally expensive in practice. In this paper, we propose a mini-batch ran-
domized block coordinate descent (MRBCD) method, which estimates the partial
gradient of the selected block based on a mini-batch of randomly sampled data
in each iteration. We further accelerate the MRBCD method by exploiting the
semi-stochastic optimization scheme, which effectively reduces the variance of
the partial gradient estimators. Theoretically, we show that for strongly convex
functions, the MRBCD method attains lower overall iteration complexity than ex-
isting RBCD methods. As an application, we further trim the MRBCD method to
solve the regularized sparse learning problems. Our numerical experiments shows
that the MRBCD method naturally exploits the sparsity structure and achieves
better computational performance than existing methods.

1 Introduction

Big data analysis challenges both statistics and computation. In the past decade, researchers have
developed a large family of sparse regularized M-estimators, such as Sparse Linear Regression [17,
24], Group Sparse Linear Regression [22], Sparse Logistic Regression [9], Sparse Support Vector
Machine [23, 19], and etc. These estimators are usually formulated as regularized empirical risk
minimization problems in a generic form as follows [10],

b
✓ = argmin

✓
P(✓) = argmin

✓
F(✓) +R(✓), (1.1)

where ✓ is the parameter of the working model. Here we assume the empirical risk function F(✓)

is smooth, and the regularization function R(✓) is non-differentiable. Some first order algorithms,
mostly variants of proximal gradient methods [11], have been proposed for solving (1.1) . For
strongly convex P(✓), these methods achieve linear rates of convergence [1].

The proximal gradient methods, though simple, are not necessarily efficient for large problems. Note
that empirical risk function F(✓) is usually composed of many smooth component functions:

F(✓) =

1

n

nX

i=1

f
i

(✓) and rF(✓) =

1

n

nX

i=1

rf
i

(✓),
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where each f
i

is associated with a few samples of the whole date set. Since the proximal gradient
methods need to calculate the gradient of F in every iteration, the computational complexity scales
linearly with the sample size (or the number of components functions). Thus the overall computation
can be expensive especially when the sample size is very large in such a “batch” setting [16].

To overcome the above drawback, recent work has focused on stochastic proximal gradient methods
(SPG), which exploit the additive nature of the empirical risk function F(✓). In particular, the
SPG methods randomly sample only a few f

i

’s to estimate the gradient rF(✓), i.e., given an index
set B, also as known as a mini-batch [16], where all elements are independently sampled from
{1, ..., n} with replacement, we consider a gradient estimator 1

|B|

P
i2B

rf
i

(✓). Thus calculating
such a “stochastic” gradient can be far less expensive than the proximal gradient methods within
each iteration. Existing literature has established the global convergence results for the stochastic
proximal gradient methods [3, 7] based on the unbiasedness of the gradient estimator, i.e.,

E
B

"
1

|B|
X

i2B

rf
i

(✓)

#
= rF(✓) for 8 ✓ 2 Rd.

However, owing to the variance of the gradient estimator introduced by the stochastic sampling, SPG
methods only achieve sublinear rates of convergence even when P(✓) is strongly convex [3, 7].

A second line of research has focused randomized block coordinate descent (RBCD) methods.
These methods exploit the block separability of the regularization function R, i.e., given a parti-
tion {G

1

, ...,G
k

} of d coordinates, we use v

Gj to denote the subvector of v with all indices in G
j

,
and then we can write

R(✓) =

kX

j=1

r
j

(✓

Gj ) with ✓ = (✓

T

G1
, ...,✓T

Gk
)

T .

Accordingly, they develop the randomized block coordinate descent (RBCD) methods. In particular,
the block coordinate descent methods randomly select a block of coordinates in each iteration, and
then only calculate the gradient of F with respect to the selected block [15, 13]. Since the variance
introduced by the block selection asymptotically goes to zero, the RBCD methods also attain lin-
ear rates of convergence when P(✓) is strongly convex. For sparse learning problems, the RBCD
methods have a natural advantage over the proximal gradient methods. Because many blocks of
coordinates stay at zero values throughout most of iterations, we can integrate the active set strategy
into the computation. The active set strategy maintains an only iterates over a small subset of all
blocks [2], which greatly boosts the computational performance. Recent work has corroborated the
empirical advantage of RBCD methods over the proximal gradient method [4, 20, 8]. The RBCD
methods, however, still requires that all component functions are accessible within every iteration
so that the partial gradient can be exactly obtained.

To address this issue, we propose a stochastic variant of the RBCD methods, which shares the ad-
vantage with both the SPG and RBCD methods. More specifically, we randomly select a block of
coordinates in each iteration, and estimate the corresponding partial gradient based on a mini-batch
of f

i

’s sampled from all component functions. To address the variance introduced by stochastic sam-
pling, we exploit the semi-stochastic optimization scheme proposed in [5, 6]. The semi-stochastic
optimization scheme contains two nested loops: For each iteration of the outer loop, we calculate
an exact gradient. Then in the follow-up inner loop, we adjust all estimated partial gradients by the
obtained exact gradient. Such a modification, though simple, has a profound impact: the amortized
computational complexity in each iteration is similar to the stochastic optimization, but the rate of
convergence is not compromised. Theoretically, we show that when P(✓) is strongly convex, the
MRBCD method attains better overall iteration complexity than existing RBCD methods. We then
apply the MRBCD method combined with the active set strategy to solve the regularized sparse
learning problems. Our numerical experiments shows that the MRBCD method achieves much bet-
ter computational performance than existing methods.

A closely related method is the stochastic proximal variance reduced gradient method proposed in
[21]. Their method is a variant of the stochastic proximal gradient methods using the same semi-
stochastic optimization scheme as ours, but their method inherits the same drawback as the proximal
gradient method, and does not fully exploit the underlying sparsity structure for large sparse learning
problems. We will compare its computational performance with the MRBCD method in numerical
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experiments. Note that their method can be viewed as a special example of the MRBCD method
with one single block.

While this paper was under review, we learnt that a similar method was independently proposed by
[18]. They also apply the variance reduction technique into the randomized block coordinate descent
method, and obtain similar theoretical results to ours.

2 Notations and Assumptions

Given a vector v = (v
1

, ..., v
d

)

T 2 Rd, we define vector norms: ||v||
1

=

P
j

|v
j

|, ||v||2 =

P
j

v2
j

,
and ||v||

1

= max

j

|v
j

|. Let {G
1

, ...,G
k

} be a partition of all d coordinates with |G
j

| = p
j

andP
k

j=1

p
j

= d. We use v

Gj to denote the subvector of v with all indices in G
j

, and v

\Gj
to denote

the subvector of v with all indices in G
j

removed.

Throughout the rest of the paper, if not specified, we make the following assumptions on P(✓).

Assumption 2.1. Each f
i

(✓) is convex and differentiable. Given the partition {G
1

, ...,G
k

}, all
r

Gjfi(✓) = [rf
i

(✓)]

Gj ’s are Lipschitz continuous, i.e., there exists a positive constants L
max

such
that for all ✓,✓0 2 Rd and ✓

Gj 6= ✓

0

Gj
, we have

||r
Gjfi(✓)�r

Gjfi(✓
0

)||  L
max

||✓
Gj � ✓

0

Gj
||.

Moreover, rf
i

(✓) is Lipschitz continuous, i.e., there exists a positive constant T
max

for all ✓,✓0 2
Rd and ✓ 6= ✓

0, we have

||rf
i

(✓)�rf
i

(✓

0

)||  T
max

||✓ � ✓

0||.

Assumption 2.1 also implies that rF(✓) is Lipschitz continuous, and given the tightest T
max

and
L
max

in Assumption 2.1, we have T
max

 kL
max

.

Assumption 2.2. F (✓) is strongly convex, i.e., for all ✓ and ✓

0, there exists a positive constant µ
such that

F(✓

0

)� F(✓) +rF(✓)

T

(✓

0 � ✓) � µ

2

||✓0 � ✓||2.

Note that Assumption 2.2 also implies that P(✓) is strongly convex.

Assumption 2.3. R(✓) is a simple convex nonsmooth function such that given some positive con-
stant ⌘, we can obtain a closed form solution to the following optimization problem,

T j

⌘

(✓

0

Gj
) = argmin

✓Gj2Rpj

1

2⌘
||✓

Gj � ✓

0

Gj
||2 + r

j

(✓).

Assumptions 2.1-2.3 are satisfied by many popular regularized empirical risk minimization prob-
lems. We give some examples in the experiments section.

3 Method

The MRBCD method is doubly stochastic, in the sense that we not only randomly select a block
of coordinates, but also randomly sample a mini-batch of component functions from all f

i

’s. The
partial gradient of the selected block is estimated based on the selected component functions, which
yields a much lower computational complexity than existing RBCD methods in each iteration.

A naive implementation of the MRBCD method is summarized in Algorithm 1. Since the variance
introduced by stochastic sampling over component functions does not go to zero as the number of
iteration increases, we have to choose a sequence of diminishing step sizes (e.g. ⌘

t

= µ�1t�1) to
ensure the convergence. When t is large, we only gain very limited descent in each iteration. Thus
the MRBCD-I method can only attain a sublinear rate of convergence.
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Algorithm 1 Mini-batch Randomized Block Coordinate Descent Method-I: A Naive Implementa-
tion. The stochastic sampling over component functions introduces variance to the partial gradient
estimator. To ensure the convergence, we adopt a sequence of diminishing step sizes, which eventu-
ally leads to sublinear rates of convergence.

Parameter: Step size ⌘
t

Initialize: ✓(0)

For t = 1, 2, ...
Randomly sample a mini-batch B from {1, ..., n} with equal probability
Randomly sample j from {1, ..., k} with equal probability
✓

(t)

Gj
 T j

⌘t

⇣
✓

(t�1)

Gj
� ⌘

t

r
GjfB(✓

(t�1)

)

⌘
, ✓(t)

\Gj
 ✓

(t�1)

\Gj

End for

3.1 MRBCD with Variance Reduction

A recent line of work shows how to reduce the variance in the gradient estimation without deterio-
rating rates of convergence using a semi-stochastic optimization scheme [5, 6]. The semi-stochastic
optimization contains two nested loops: In each iteration of the outer loop, we calculate an exact
gradient; Then within the follow-up inner loop, we use the obtained exact gradient to adjust all esti-
mated partial gradients. These adjustments can guarantee that the variance introduced by stochastic
sampling over component functions asymptotically goes to zero (see [5]).

Algorithm 2 Mini-batch Randomized Block Coordinate Descent Method-II: MRBCD + Variance
Reduction. We periodically calculate the exact gradient at the beginning of each outer loop, and
then use the obtained exact gradient to adjust all follow-up estimated partial gradients. These ad-
justments guarantee that the variance introduced by stochastic sampling over component functions
asymptotically goes to zero, and help the MRBCD II method attain linear rates of convergence.

Parameter: update frequency m and step size ⌘
Initialize: e

✓

(0)

For s = 1,2,...
e
✓  e

✓

(s�1), eµ rF(

e
✓

(s�1)

), ✓(0)  e
✓

(s�1)

For t = 1, 2, ...,m
Randomly sample a mini-batch B from {1, ..., n} with equal probability
Randomly sample j from {1, ..., k} with equal probability

✓

(t)

Gj
 T j

⌘

⇣
✓

(t�1)

Gj
� ⌘

h
r

GjfB(✓
(t�1)

)�r
GjfB(e✓) + e

µ

Gj

i⌘
, ✓(t)

\Gj
 ✓

(t�1)

\Gj

End for
e
✓

(s)  P
m

l=1

✓

(l)

End for

The MRBCD method with variance reduction is summarized in Algorithm 2. In the next section,
we will show that the MRBCD II method attains linear rates of convergence, and the amortized
computational complexity within each iteration is almost the same as that of the MRBCD I method.
Remark 3.1. Another option for the variance reduction is the stochastic averaging scheme as pro-
posed in [14], which stores the gradients of most recently subsampled component functions. But the
MRBCD method iterates randomly over different blocks of coordinates, which makes the stochastic
averaging scheme inapplicable.

3.2 MRBCD with Variance Reduction and Active Set Strategy

When applying the MRBCD II method to regularized sparse learning problems, we further incor-
porate the active set strategy to boost the empirical performance. Different from existing RBCD
methods, which usually identify the active set by cyclic search, we exploit a proximal gradient pilot
to identify the active set. More specifically, within each iteration of the outer loop, we conduct a
proximal gradient descent step, and select the support of the resulting solution as the active set. This
is very natural to the MRBCD-II method. Because at the beginning of each outer loop, we always
calculate an exact gradient, and delivering a proximal gradient pilot will not introduce much addi-
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tional computational cost. Once the active set is identified, all randomized block coordinate descent
steps within the follow-up inner loop only iterates over blocks of coordinates in the active set.

Algorithm 3 Mini-batch Randomized Block Coordinate Descent Method-III: MRBCD with Vari-
ance Reduction and Active Set. To fully take advantage of the obtained exact gradient, we adopt
a proximal gradient pilot ✓(0) to identify the active set at each iteration of the outer loop. Then
all randomized coordinate descent steps within the follow-up inner loop only iterate over blocks of
coordinates in the active set.

Parameter: update frequency m and step size ⌘
Initialize: e

✓

(0)

For s = 1,2,...
e
✓  e

✓

(s�1), eµ rF(

e
✓

(s�1)

)

For j = 1, 2, ..., k

✓

(0)

Gj
 T j

⌘/k

⇣
e
✓

Gj � ⌘eµ
Gj/k

⌘

End for
A { j | ✓(0)

Gj
6= 0}, |B| = |A|

For t = 1, 2, ...,m|A|/k
Randomly sample a mini-batch B from {1, ..., n} with equal probability
Randomly sample j from {1, ..., k} with equal probability
For all j 2 eA
✓

(t)

Gj
 T j

⌘

⇣
✓

(t�1)

Gj
� ⌘

h
r

GjfB(✓
(t�1)

)�r
GjfB(e✓) + e

µ

Gj

i⌘
, ✓(t)

\Gj
 ✓

(t�1)

\Gj

End for
e
✓

(s)  P
m

l=1

✓

(l)

End for

The MRBCD method with variance reduction and active set strategy is summarized in Algorithm 3.
Since we integrate the active set into the computation, a successive |A| coordinate decent iterations
in MRBCD-III will have similar performance as k iterations in MRBCD-II. Therefore we change
the maximum number of iterations within each inner loop to |A|m/k. Moreover, since the support
is only |A| blocks of coordinates, we only need to take |B| = |A| to guarantee sufficient variance
reduction. These modifications will further boost the computational performance of MRBCD-III.
Remark 3.2. The exact gradient can be also used to determine the convergence of the MRBCD-
III method. We terminate the iteration when the approximate KKT condition is satisfied,
min⇠2@R(

e✓) ||eµ + ⇠||  ", where " is a positive preset convergence parameter. Since evaluat-
ing whether the approximate KKT condition holds is based on the exact gradient obtained at each
iteration of the outer loop, it does not introduce much additional computational cost, either.

4 Theory

Before we proceed with our main results of the MRBCD-II method, we first introduce the important
lemma for controlling the variance introduced by stochastic sampling.
Lemma 4.1. Let B be a mini-batch sampled from {1, ..., n}. Define v

B

=

1

|B|

P
i2|B|

rf
i

(✓

(t�1)

)�
1

|B|

P
i2|B|

rf
i

(

e
✓) +

e
µ. Conditioning on ✓

(t�1), we have E
B

v

B

= rF(✓

(t�1)

) and

E
B

||v
B

�rF(✓

(t�1)

)||2  4T
max

|B|
h
P(✓

(t�1)

)� P(

b
✓) + P(

e
✓)� P(

b
✓)

i
.

The proof of Lemma 4.1 is provided in Appendix A. Lemma 4.1 guarantees that v is an unbiased
estimator of F(✓), and its variance is bounded by the objective value gap. Therefore we do not need
to choose a sequence diminishing step sizes to reduce the variance.

4.1 Strongly Convex Functions

We then present the concrete rates of convergence of MRBCD-II when P is strongly convex.
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Theorem 4.2. Suppose that Assumptions 2.1-2.3 hold. Let e✓(s) be a random point generated by the
MRBCD-II method in Algorithm 2. Given a large enough batch B and a small enough learning rate
⌘ such that |B| � T

max

/L
max

and ⌘ < L�1

max

/4, we have

EP(

e
✓

(s)

)� P(

b
✓) 

✓
k

µ⌘(1� 4⌘L
max

)m
+

4⌘L
max

(m+ 1)

(1� 4⌘L
max

)m

◆
s

[P(

e
✓

(0)

)� P(

b
✓)].

Here we only present a sketch. The detailed proof is provided in Appendix B. The expected succes-
sive descent of the objective value is composed of two terms: The first one is the same as the ex-
pected successive descent of the “batch” RBCD methods; The second one is the variance introduced
by the stochastic sampling. The descent term can be bounded by taking the average of the successive
descent over all blocks of coordinates. The variance term can be bounded using Lemma 4.1. The
mini-batch sampling and adjustments of µ’s guarantees that the variance asymptotically goes to zero
at a proper scale. By taking expectation over the randomness of component functions and blocks of
coordinates throughout all iterations, we derive a geometric rate of convergence.

The next corollary present the concrete iteration complexity of the MRBCD-II method.
Corollary 4.3. Suppose that Assumptions 2.1-2.3 hold. Let |B| = T

max

/L
max

, m = 65kL
max

/µ,
and ⌘ = L�1

max

/16. Given the target accuracy ✏ and some ⇢ 2 (0, 1), for any

s � 3 log[P(

e
✓

(0)

)� P(

b
✓)/⇢] + 3 log(1/✏),

we have P(

e
✓

(s)

)� P(

b
✓)  ✏ with at last probability 1� ⇢.

Corollary 4.3 is a direct result of Theorem 4.2 and Markov inequality. The detailed proof is provided
in Appendix C.

To characterize the overall iteration complexity, we count the number of partial gradients we es-
timate. In each iteration of the outer loop, we calculate an exact gradient. Thus the number of
estimated partial gradients is O(nk). Within each iteration of the inner loop (m in total), we esti-
mate the partial gradients based on a mini-batch B. Thus the number of estimate partial gradients
is O(m|B|). If we choose ⌘, m, and B as in Corollary (4.3) and consider ⇢ as a constant, then
the iteration complexity of the MRBCD-II method with respect to the number of estimated partial
gradients is

O ((nk + kT
max

/µ) · log(1/✏)) ,
which is much lower than that of existing “batch” RBCD methods, O (nkL

max

/µ · log(1/✏)).
Remark 4.4 (Connection to the MRBCD-III method). There still exists a gap between the theory
and empirical success of the active set strategy and its in existing literature, even for the “batch”
RBCD methods. When incorporating the active set strategy to the RBCD-style methods, we have
known that the empirical performance can be greatly boosted. How to exactly characterize the
theoretical speed up is still largely unknown. Therefore Theorem 4.2 and 4.3 can only serve as an
imprecise characterization of the MRBCD-III method. A rough understanding is that if the solution
has at most q nonzero entries throughout all iterations, then the MRBCD-III method should have an
approximate overall iteration complexity

O ((nk + qT
max

/µ) · log(1/✏)) .

4.2 Nonstrongly Convex Functions

When P(✓) is not strongly convex, we can adopt a perturbation approach. Instead of solving (1.1),
we consider the minimization problem as follows,

~
✓ = argmin

✓2Rd

F(✓) + �||✓(0) � ✓||2 +R(✓), (4.1)

where � is some positive perturbation parameter, and ✓

(0) is the initial value. If we consider eF(✓) =

F(✓)+ �||✓(0) �✓||2 in (4.1) as the smooth empirical risk function, then eF(✓) is a strongly convex
function. Thus Corollary 4.3 can be applied to (4.1): When B, m, ⌘, and ⇢ are suitably chosen, given

s � 3 log([P(✓

(0)

)� P(

~
✓)� �||✓(0) � ~

✓||2]/⇢) + 3 log(2/✏),
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we have P(

e
✓

(s)

)� P(

~
✓)� �||✓(0) � ~

✓||2  ✏/2 with at least probability 1� ⇢. We then have

P(

e
✓

(s)

)� P(

b
✓)  P(

e
✓

(s)

)� P(

b
✓)� �||✓(0) � b

✓||2 + �||✓(0) � b
✓||2

 P(

e
✓

(s)

)� P(

~
✓)� �||✓(0) � ~

✓||2 + �||✓(0) � b
✓||2  ✏/2 + �||✓(0) � b

✓||2.
where the second inequality comes from the fact that P(

~
✓)+�||✓(0)� ~

✓||2  P(✓)+�||✓(0)� b
✓||2,

because ~
✓ is the minimizer to (4.1). If we choose � = ✏/||✓(0)� b

✓||2, we have P(

e
✓

(s)

)�P(

b
✓)  ✏.

Since � depends on the desired accuracy ✏, the number of estimated partial gradients also depends
on ✏. Thus if we consider ||✓(0) � b

✓||2 as a constant, then the overall iteration complexity of the
perturbation approach becomes O ((nk + kT

max

/✏) · log(1/✏)).

5 Numerical Simulations

The first sparse learning problem of our interest is Lasso, which solves

b
✓ = argmin

✓2Rd

1

n

nX

i=1

f
i

(✓) + �||✓||
1

with f
i

=

1

2

(y
i

� x

T

i

✓)

2. (5.1)

We set n = 2000 and d = 1000, and all covariate vectors x

i

’s are independently sampled from a
1000-dimensional Gaussian distribution with mean 0 and covariance matrix ⌃, where ⌃

jj

= 1 and
⌃

jk

= 0.5 for all k 6= j. The first 50 entries of the regression coefficient vector ✓ are independently
samples from a uniform distribution over support (�2,�1)

S
(+1,+2). The responses y

i

’s are
generated by the linear model y

i

= x

T

i

✓ + ✏
i

, where all ✏
i

’s are independently sampled from a
standard Gaussian distribution N(0, 1).

We choose � =

p
log d/n, and compare the proposed MRBCD-I and MRBCD-II methods with the

“batch” proximal gradient (BPG) method [11], the stochastic proximal variance reduced gradient
method (SPVRG) [21], and the “batch” randomized block coordinate descent (BRBCD) method
[12]. We set k = 100. All blocks are of the same size (10 coordinates). For BPG, the step
size is 1/T , where T is the largest singular value of 1

n

P
n

i=1

x

i

x

T

i

. For BRBCD, the step size
as 1/L, where L is the maximum over the largest singular values of 1

n

P
n

i=1

[x

i

]

Gj of all blocks.
For SPVRG, we choose m = n, and the step size is 1/(4T ). For MRBCD-I, the step size is
1/(Ldt/8000e), where t is the iteration index. For MRBCD-II, we choose m = n, and the step size
is 1/(4L). Note that the step size and number of iterations m within each inner loop for MRBCD-II
and SPVRG are tuned over a refined grid such that the best computational performance is obtained.
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(a) Comparison between different methods for a sin-
gle regularization parameter.
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Figure 5.1: [a] The vertical axis corresponds to objective value gaps P(✓) � P(

b
✓) in log scale.

The horizontal axis corresponds to numbers of partial gradient estimates. [b] The horizontal axis
corresponds to indices of regularization parameters. The vertical axis corresponds to numbers of
partial gradient estimates in log scale. We see that MRBCD attains the best performance among all
methods for both settings

We evaluate the computational performance by the number of estimated partial gradients, and the
results averaged over 100 replications are presented in Figure 5.1 [a]. As can be seen, MRBCD-II
outperforms SPVRG, and attains the best performance among all methods. The BRBCD and BPG
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perform worse than MRBCD-II and SPVRG due to high computational complexity within each
iteration. MRBCD-I is actually the fastest among all methods at the first few iterations, and then
falls behind SPG and SPVRG due to its sublinear rate of convergence.

We then compare the proposed MRBCD-III method with SPVRG and BRBCD for a sequence of
regularization parameters. The sequence contains 21 regularization parameters {�

0

, ...,�
20

}. We
set �

0

= || 1
n

P
i

y
i

x

i

||
1

, which yields a null solution (all entries are zero), and �
20

=

p
log d/n.

For K = 1, ..., 19, we set �
K

= ↵�
K�1

, where ↵ = (�
20

/�
0

)

1/20. When solving (5.1) with
respect to �

K

, we use the output solution for �
K�1

as the initial solution. The above setting is
often referred to the warm start scheme in existing literature, and it is very natural to sparse learning
problems, since we always need to tune the regularization parameter � to secure good finite sample
performance. For each regularization parameter, the algorithm terminates the iteration when the
approximate KKT condition is satisfied with ✏ = 10

�10.

The results over 50 replications are presented in Figure 5.1 [b]. As can be seen, MRBCD-III outper-
forms SPVRG and BRBCD, and attains the best performance among all methods. Since BRBCD
is also combined with the active set strategy, it attains better performance than SPVRG. See more
detailed results in Table E.1 in Appendix E

6 Real Data Example

The second sparse learning problem is the elastic-net regularized logistic regression, which solves

b
✓ = argmin

✓2Rd

1

n

nX

i=1

f
i

(✓) + �
1

||✓||
1

with f
i

= log(1 + exp(�y
i

x

T

i

✓)) +

�
2

2

||✓||2.

We adopt the rcv1 dataset with n = 20242 and d = 47236. We set k = 200, and each block contains
approximately 237 coordinates.

We choose �
2

= 10

�4, and �
1

= 10

�4, and compare MRBCD-II with SPVRG and BRBCD.
For BRBCD, the step size as 1/(4L), where L is the maximum of the largest singular values of
1

n

P
n

i=1

[x

i

]

Gj over all blocks for BRBCD. For SPVRG, m = n and the step size is 1/(16T ), where
T is the largest singular value of 1/ 1

n

P
n

i=1

x

i

x

T

i

. For MRBCD-II, m = n and the step size is
1/(16T ). For BRBCD, the step size as 1/(4L), where L =

1

n

max

j

P
n

i=1

[x

i

]

2

j

for BRBCD. Note
that the step size and number of iterations m within each inner loop for MRBCD-II and SPVRG are
tuned over a refined grid such that the best computational performance is obtained.

The results averaged over 30 replications are presented in Figure F.1 [a] of Appendix F. As can be
seen, MRBCD-II outperforms SPVRG, and attains the best performance among all methods. The
BRBCD performs worse than MRBCD-II and SPVRG due to high computational complexity within
each iteration.

We then compare the proposed MRBCD-III method with SPVRG and BRBCD for a sequence of
regularization parameters. The sequence contains 11 regularization parameters {�

0

, ...,�
10

}. We set
�
0

= || 1 P
i

rf
i

(0)||
1

, which yields a null solution (all entries are zero), and �
10

= 1e � 4. For
K = 1, ..., 9, we set �

K

= ↵�
K�1

, where ↵ = (�
10

/�
0

)

1/10. For each regularization parameter,
we set ✏ = 10

�7 for the approximate KKT condition.

The results over 30 replications are presented in Figure F.1 [b] of Appendix F. As can be seen,
MRBCD-III outperforms SPVRG and BRBCD, and attains the best performance among all meth-
ods. Since BRBCD is also combined with the active set strategy, it attains better performance than
SPVRG.
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