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Abstract

Several problems such as network intrusion, community detection, and disease
outbreak can be described by observations attributed to nodes or edges of a graph.
In these applications presence of intrusion, community or disease outbreak is char-
acterized by novel observations on some unknown connected subgraph. These
problems can be formulated in terms of optimization of suitable objectives on
connected subgraphs, a problem which is generally computationally difficult. We
overcome the combinatorics of connectivity by embedding connected subgraphs
into linear matrix inequalities (LMI). Computationally efficient tests are then re-
alized by optimizing convex objective functions subject to these LMI constraints.
We prove, by means of a novel Euclidean embedding argument, that our tests are
minimax optimal for exponential family of distributions on 1-D and 2-D lattices.
We show that internal conductance of the connected subgraph family plays a fun-
damental role in characterizing detectability.

1 Introduction

Signals associated with nodes or edges of a graph arise in a number of applications including sensor
network intrusion, disease outbreak detection and virus detection in communication networks. Many
problems in these applications can be framed from the perspective of hypothesis testing between null
and alternative hypothesis. Observations under null and alternative follow different distributions.
The alternative is actually composite and identified by sub-collections of connected subgraphs.

To motivate the setup consider the disease outbreak problem described in [1]. Nodes there are
associated with counties and observations associated with each county correspond to reported cases
of a disease. Under the null distribution, observations at each county are assumed to be poisson
distributed and independent across different counties. Under the alternative there are a contiguous
sub-collection of counties (connected sub-graph) that each experience elevated cases on average
from their normal levels but are otherwise assumed to be independent. The eventual shape of the
sub-collection of contiguous counties is highly unpredictable due to uncontrollable factors.

In this paper we develop a novel approach for signal detection on graphs that is both statistically
effective and computationally efficient. Our approach is based on optimizing an objective function
subject to subgraph connectivity constraints, which is related to generalized likelihood ratio tests
(GLRT). GLRTs maximize likelihood functions over combinatorially many connected subgraphs,
which is computationally intractable. On the other hand statistically, GLRTSs have been shown to be
asymptotically minimax optimal for exponential class of distributions on Lattice graphs & Trees [2]
thus motivating our approach.We deal with combinatorial connectivity constraints by obtaining a
novel characterization of connected subgraphs in terms of convex Linear Matrix Inequalities (LMIs).
In addition we show how our LMI constraints naturally incorporate other features such as shape
and size. We show that the resulting tests are essentially minimax optimal for exponential family



of distributions on 1-D and 2-D lattices. Conductance of the subgraph, a parameter in our LMI
constraint, plays a central role in characterizing detectability.

Related Work: The literature on signal detection on graphs can be organized into parametric and
non-parametric methods, which can be further sub-divided into computational and statistical analy-
sis themes. Parametric methods originated in the scan statistics literature [3] with more recent work
including that of [4, 5, 6, 1, 7, 8] focusing on graphs. Much of this literature develops scanning
methods that optimize over rectangles, circles or neighborhood balls [5, 6] across different regions
of the graphs. However, the drawbacks of simple shapes and the need for non-parametric methods
to improve detection power is well recognized. This has led to new approaches such as simulated
annealing [5, 4] but is lacking in statistical analysis. More recent work in ML literature [9] describes
semi-definite programming algorithm for non-parametric shape detection, which is similar to our
work here. However, unlike us their method requires a heuristic rounding step, which does not lend
itself to statistical analysis. In this context a number of recent papers have focused on statistical
analysis [10, 2, 11, 12] with non-parametric shapes. They derive fundamental bounds for signal
detection for the elevated means testing problem in the Gaussian setting on special graphs such as
trees and lattices. In this setting under the null hypothesis the observations are assumed to be inde-
pendent identically distributed (IID) with standard normal random variables. Under the alternative
the Gaussian random variables are assumed to be standard normal except on some connected sub-
graph where the mean p is elevated. They show that GLRT achieves “near”’-minimax optimality
in a number of interesting scenarios. While this work is interesting the suggested algorithms are
computationally intractable. To the best of our knowledge only [13, 14] explores a computationally
tractable approach and also provides statistical guarantees. Nevertheless, this line of work does not
explicitly deal with connected subgraphs (complex shapes) but deals with more general clusters.
These are graph partitions with small out-degree. Although this appears to be a natural relaxation of
connected subgraphs/complex-shapes it turns out to be quite loose! and leads to substantial gap in
statistical effectiveness for our problem. In contrast we develop a new method for signal detection
of complex shapes that is not only statistically effective but also computationally efficient.

2 Problem Formulation

Let G = (V, E) denote an undirected unweighted graph with |V| = n nodes and |E| = m edges.
Associated with each node, v € V, are observations x,, € RP. We assume observations are dis-
tributed Py under the null hypothesis. The alternative is composite and the observed distribution,
Pg, is parameterized by S C V belonging to a class of subsets A C S, where S is the superset.
We denote by Si¢ C S the collection of size-K subsets. Eg = {(u,v) € E:u € S,v € S} de-
notes the induced edge set on S. We let g denote the collection of random variables on the subset
S C V. S¢denotes nodes V' — S. Our goal is to design a decision rule, 7, that maps observations
2" = (xy)vev to {0, 1} with zero denoting null hypothesis and one denoting the alternative. We
formulate risk following the lines of [12] and combine Type I and Type II errors:

R(r) = Po(m(a") = 1)+ maxPs (n(a") = 0) (1)

Definition 1 (6-Separable). We say that the composite hypothesis problem is §-separable if there
exists a test 7 such that, R(7w) < 0.

We next describe asymptotic notions of detectability and separability. These notions requires us to
consider large-graph limits. To this end we index a sequence of graphs G,, = (V,,, E,,) withn — oo
and an associated sequence of tests 7,,.

Definition 2 (Separability). We say that the composite hypothesis problem is asymptotically J-
separable if there is some sequence of tests, 7,,, such that R(m, ) < ¢ for sufficiently large n. It is
said to be asymptotically separable if R(m,,) — 0. The composite hypothesis problem is said to be
asymptotically inseparable if no such test exists.

Sometimes, additional granular measures of performance are often useful to determine asymptotic
behavior of Type I and Type II error. This motivates the following definition:

"' A connected subgraph on a 2-D lattice of size K has out-degree at least Q(v/ K) while set of subgraphs with

out-degree Q2(+/ K) includes disjoint union of (v K /4) nodes. So statistical requirements with out-degree
constraints can be no better than those for arbitrary K-sets.



Definition 3 (§-Detectability). We say that the composite hypothesis testing problem is j-detectable
if there is a sequence of tests, 7, such that,

n—oo

sup Pg(m, (") =0) — 0, limsupPy(m,(z")=1) <§
SeA n

In general §-detectability does not imply separability. For instance, consider x Y (0,02) and

z N(p, %2) It is §-detectable for £ > 2, /log 1 but not separable.

Generalized Likelihood Ratio Test (GLRT) is often used as a statistical test for composite hy-
pothesis testing. Suppose ¢g(z™) and ¢g(x™) are probability density functions associated with Py
and Pg respectively. The GLRT test thresholds the “best-case” likelihood ratio, namely,

H
' ps(x")
GLRT:  lpax(2™) = max/lg(z™) 2 n, Lg(x)=Ilo 2
( ) SEA S( ) Ijo 77 S( ) g¢0(xn) ()

Local Behavior: Without additional structure, the likelihood ratio, £g(z) for a fixed S € Ais a
function of observations across all nodes. Many applications exhibit local behavior, namely, the
observations under the two hypothesis behave distinctly only on some small subset of nodes (as
in disease outbreaks). This justifies introducing local statistical models in the following section.
Combinatorial: The class A is combinatorial such as collections of connected subgraphs and GLRT
is not generally computationally tractable. On the other hand GLRT is minimax optimal for special
classes of distributions and graphs and motivates development of tractable algorithms.

2.1 Statistical Models & Subgraph Classes

The foregoing discussion motivates introducing local models, which we present next. Then informed
by existing results on separability we categorize subgraph classes by shape, size and connectivity.

2.1.1 Local Statistical Models

Signal in Noise Models arise in sensor network (SNET) intrusion [7, 15] and disease outbreak de-
tection [1]. They are modeled with Gaussian (SNET) and Poisson (disease outbreak) distributions.

Ho: 2, =wy,; Hi: zy = poy,ls(v) +w,, forsome, S€ A, uesS 3)
For Gaussian case we model p as a constant, w, as IID standard normal variables, a,, as the
propagation loss from source node v € S to the node v. In disease outbreak detection yu = 1,
Qyy ~ Pois(AN,) and w, ~ Pois(N,) are independent Poisson random variables, and N, is
the population of county v. In these cases {g(z) takes the following local form where 7, is a
normalizing constant.

ls(z) = Ls(zs) o< Y (Uy(zy) — log(Zy))1s(v) (4)
veV
We characterize 1o, A\g as the minimum value that ensures separability for the different models:

po = inf{p € R™ | Im,, le R(m,) = 0}, Ao =inf{\ € RT | 3m,,, li_>m R(m,) =0} ()

Correlated Models arise in textured object detection [16] and protein subnetwork detection [17]. For
instance consider a common random signal z on S, which results in uniform correlation p > 0 on
S.

Ho: 2y, =wy; Hi: z,=(/p(l—p)~Hzlg(v)+w,, for some, S €A, (6)
z, w, are standard IID normal random variables. Again we obtain {s(z) = {s(xg). These examples
motivate the following general setup for local behavior:
Definition 4. The distributions Py and Pg are said to exhibit local structure if they satisfy:
(1) Markovianity: The null distribution [Py satisfies the properties of a Markov Random Field (M-
RF). Under the distribution Pg the observations x g are conditionally independent of g when con-
ditioned on annulus S; NS¢, where S1 = {v € V | d(v,w) < 1, w € S}, is the 1-neighborhood of
S. (2) Mask: Marginal distributions of observations under Py and Pg on nodes in S¢ are identical:
Po(zge € A) =Pg(xge € A), VA € A, the o-algebra of measurable sets.

Lemma 1 ([7]). Under conditions (1) and (2) it follows that Lg(x) = ls(xg, ).



2.1.2 Structured Subgraphs

Existing works [10, 2, 12] point to the important role of size, shape and connectivity in determining
detectability. For concreteness we consider the signal in noise model for Gaussian distribution and
tabulate upper bounds from existing results for 1o (Eq. 5). The lower bounds are messier and differ
by logarithmic factors but this suffices for our discussion here. The table reveals several important
points. Larger sets are easier to detect — yo decreases with size; connected K-sets are easier to
detect relative to arbitrary K -sets; for 2-D lattices “thick” connected shapes are easier to detect than
“thin” sets (paths); finally detectability on complete graphs is equivalent to arbitrary K -sets, i.e.,
shape does not matter. Intuitively, these tradeoffs make sense. For a constant p, “signal-to-noise”
ratio increases with size. Combinatorially, there are fewer K -connected sets than arbitrary K -sets;
fewer connected balls than connected paths; and fewer connected sets in 2-D lattices than dense
graphs. These results point to the need for characterizing the signal detection problem in terms of

Arbitrary K-Set | K-Connected Ball | K-Connected Path
Line Graph | w ( 2 log(n)) w (\/% log(n)) w <\/% 1og(n))
2-D Lattice | w (/2log(n) w ( 2 1og(n)> w (1)

Complete | w (+/2log(n) w( 210g(n)) w( 210g(n))

connectivity, size, shape and the properties of the ambient graph. We also observe that the table is
somewhat incomplete. While balls can be viewed as thick shapes and paths as thin shapes, there are
a plethora of intermediate shapes. A similar issue arises for sparse vs. dense graphs. We introduce
general definitions to categorize shape and graph structures below.

Definition 5 (Internal Conductance). (a.k.a. Cut Ratio) Let H = (S, Fg) denote a subgraph of
G = (V,E)where S CV, Fg C Eg, written as H C G. Define the internal conductance of H as:
|05(A)]

¢(H) = min win{|A[ ]S — [} 55(A) ={(u,v) € Fs |uc A, ve S — A} 7

Apparently ¢(H ) = 0 if H is not connected. The internal conductance of a collection of subgraphs,
Y2, is defined as the smallest internal conductance:

6(%) = min 6(H)

For future reference we denote the collection of connected subgraphs by C and by C, ¢ the sub-
collections containing node a € V' with minimal internal conductance ®:

C={HCG:¢(H) >0}, Coo={H=(5Fs) SG:a€cS ¢H)=>2} ()

In 2-D lattices, for example, ¢(By ) ~ Q(1/v/K) for connected K-balls B or other thick shapes of
size K. ¢(CNSk) =~ Q(1/K) due to “snake”-like thin shapes. Thus internal conductance explicitly
accounts for shape of the sets.

3 Convex Programming

We develop a convex optimization framework for generating test statistics for local statistical mod-
els described in Section 2.1. Our approach relaxes the combinatorial constraints and the functional
objectives of the GLRT problem of Eq.(2). In the following section we develop a new characteriza-
tion based on linear matrix inequalities that accounts for size, shape and connectivity of subgraphs.

For future reference we denote A o B 2 [A;;Bijli,;-
Our first step is to embed subgraphs, H of (G, into matrices. A binary symmetric incidence matrix,
A, is associated with an undirected graph G = (V, E'), and encodes edge relationships. Formally, the

edge set E is the support of A, namely, E = Supp(A). For subgraph correspondences we consider
symmetric matrices, M, with components taking values in the unit interval, [0, 1].

M={M €[0,1]"*" | My, < My, M Symmetric}



Definition 6. M € M is said to correspond to a subgraph H = (S, Fs), written as H = M, if
S = Supp{Diag(M)}, Fs = Supp(A o M)

The role of M € M is to ensure that if u ¢ S we want the corresponding edges M,,, = 0. Note
that A o M in Defn. 6 removes the spurious edges M, # 0 for (u,v) ¢ Eg.

Our second step is to characterize connected subgraphs as convex subsets of M. Now a subgraph
H = (S, Fs) is a connected subgraph if for every u, v € S, there is a path consisting only of edges
in Fg going from w to v. This implies that for two subgraphs H;, Hy and corresponding matrices
M, and Mo, their convex combination M, = nM; + (1 — n)Ma, n € (0, 1) naturally corresponds
to H = H; U H, in the sense of Defn 6. On the other hand if H; N H, = () then H is disconnected
and so M,, is as well. This motivates our convex characterization with a common “anchor” node. To
this end we consider the following collection of matrices:

M::{MEM | Mao =1, My, SM(w}

Note that M includes star graphs induced on subsets S = Supp(Diag(M)) with anchor node a.
We now make use of the well known properties [18] of the Laplacian of a graph to characterize
connectivity. The unnormalized Laplacian matrix of an undirected graph G with incidence matrix
A is described by L(A) = diag(A1,,) — A where 1,, is the all-one vector.

Lemma 2. Graph G is connected if and only if the number of zero eigenvalues of L(A) is one.

Unfortunately, we cannot directly use this fact on the subgraph A o M because there are many zero
eigenvalues because the complement of Supp(Diag(M)) is by definition zero. We employ linear
matrix inequalities (LMI) to deal with this issue. The condition [19] F'(z) = Fy + Fix1 + -+ +
Fpx, = 0 with symmetric matrices I is called a linear matrix inequality in z; € R with respect to
the positive semi-definite cone represented by ». Note that the Laplacian of the subgraph L(A o M)
is a linear matrix function of M. We denote a collection of subgraphs as follows:

Coarla,y) 2 {H = M| M e M, L(Ao M) — vL(M) = 0} 9)

Theorem 3. The class Cparr(a, ) is connected for v > 0. Furthermore, every connected subgraph
can be characterized in this way for some a € V and vy > 0, namely, C = ¢y~ Crami(a, 7).

Proof Sketch. M € Cp,prr(a,y) implies M is connected. By definition of M, there must be a star
graph that is a subgraph on Supp(Diag(M)). This means that L(M) (hence L(A o M)) can only
have one zero eigenvalue on Supp(Diag(M)). We can now invoke Lemma 2 on Supp(Diag(M)).
The other direction is based on hyperplane separation of convex sets. Note that C, ~ is convex but
C is not. This necessitates the need for an anchor. In practice this means that we have to search for
connected sets with different anchors. This is similar to scan statistics the difference being that we
can now optimize over arbitrary shapes. We next get a handle on ~.

~ encodes Shape: We will relate ~y to the internal conductance of the class C. This provides us with
a tool to choose 7 to reflect the type of connected sets that we expect for our alternative hypothesis.
In particular thick sets correspond to relatively large - and thin sets to small . In general for graphs
of fixed size the minimum internal conductance over all connected shapes is strictly positive and we
can set v to be this value if we do not a priori know the shape.
@2

).

Theorem 4. In a 2-D lattice, it follows that Cq & C Crarr(a,”y), where v = @(W

LMI-Test: We are now ready to present our test statistics. We replace indicator variables with the
corresponding matrix components in Eq. 4, i.e., 15(v) — M,,, 1g(u)lg(v) — M,, and obtain:

Elevated Mean: Oy(x) = > (Uy(xy) —log(Zy)) My
veV
Correlated Gaussian: £ (z) < > W(@y, 2y)Myy — Y My, log(l — p) (10)
(u,v)EE v
Hy
LMIT,, ., loy(x)= max Iy(x) 2 7 (11)

MeCrmi(a,y) Ho

This test explicitly makes use of the fact that alternative hypothesis is anchored at a and the internal
conductance parameter -y is known. We will refine this test to deal with the completely agnostic case
in the following section.



4 Analysis

In this section we analyze LMIT, - and the agnostic LMI tests for the Elevated Mean problem
for exponential family of distributions on 2-D lattices. For concreteness we focus on Gaussian &
Poisson models and derive lower and upper bounds for g (see Eq. 5). Our main result states that
to guarantee separability, iy ~ 2 (ﬁ), where @ is the internal conductance of the family C, ¢ of
connected subgraphs, K is the size of the subgraphs in the family, and a is some node that is common
to all the subgraphs. The reason for our focus on homogenous Gaussian/Poisson setting is that we
can extend current lower bounds in the literature to our more general setting and demonstrate that
they match the bounds obtained from our LMIT analysis. We comment on how our LMIT analysis
extends to other general structures and models later.

The proof for LMIT analysis involves two steps (see Supplementary):

1. Lower Bound: Under H; we show that the ground truth is a feasible solution. This allows
us to lower bound the objective value, £, ~(z), of Eq. 11.

2. Upper Bound: Under H, we consider the dual problem. By weak duality it follows that
any feasible solution of the dual is an upper bound for ¢, ~(z). A dual feasible solution is
then constructed through a novel Euclidean embedding argument.

We then compare the upper and lower bounds to obtain the critical value 1.

We analyze both non-agnostic and agnostic LMI tests for the homogenous version of Gaussian and
Poisson models of Eq. 3 for both finite and asymptotic 2-D lattice graphs. For the finite case the
family of subgraphs in Eq. 3 is assumed to belong to the connected family of sets, C, 0 N Sk,
containing a fixed common node a € V of size K. For the asymptotic case we let the size of the
graph approach infinity (n — o0). For this case we consider a sequence of connected family of sets
Ci o, NSk, ongraph G,, = (Vi, Ep,) with some fixed anchor node a € V;,. We will then describe
results for agnostic LMI tests, i.e., lacking knowledge of conductance ¢ and anchor node a.

Poisson Model: In Eq. 3 we let the population N, to be identically equal to one across counties.
We present LMI tests that are agnostic to shape and anchor nodes:

Hy
LMIT, : {(x) = GVT;%Z VYlar(xz) 2 0 (12)
a 2= T mian H1

where ®,,,;,, denotes the minimum possible conductance of a connected subgraph with size K,
which is 2/ K.

Theorem 5. The LMIT, ., test achieves 0-separability for N = Q(lof’((é,{ )) and the agnostic test
LMIT 4 for A = Q(log K+/logn).

Next we consider the asymptotic case and characterize tight bounds for separability.

Theorem 6. The two hypothesis Hy and H, are asymptotically inseparable if A, ®,, K, log(K,) —
0. It is asymptotically separable with LMIT, ., for A\, K, ®,,/log(K,,) — co. The agnostic LMIT 4
achieves asymptotic separability with A, / (log(K,,)v/logn) — oc.

Gaussian Model: We next consider agnostic tests for Gaussian model of Eq. 3 with no propagation
loss, i.e., iy = 1.

Theorem 7. The two hypotheses Hy and H; for the Gaussian model are asymptotically insepara-
ble if j1,®, Ky, log(Ky) — 0, are separable with LMIT, ~ if 1, K, @,/ log(K,) — oo, and are
separable with LMIT 4 if i,/ (log(K,,)v/1ogn) — oo

Our inseparability bound matches existing results on 2-D Lattice & Line Graphs by plugging in
appropriate values for ¢ for the cases considered in [2, 12]. The lower bound is obtained by spe-
cializing to a collection of “non-decreasing band” subgraphs.Yet LMIT, -, and LMIT 4 is able to
achieves the lower bound within a logarithmic factor. Furthermore, our analysis extends beyond
Poisson & Gaussian models and applies to general graph structures and models. The main reason
is that our LMIT analysis is fairly general and provides an observation-dependent bound through
convex duality. We briefly describe it here. Consider functions ¢g(x) that are positive, separable
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Figure 1: Various shapes of ground-truth anomalous clusters on a fixed 15x 10 lattice. Anomalous cluster size
is fixed at 17 nodes. (a) shows a thick cluster with a large internal conductance. (b) shows a relatively thinner
shape. (c) shows a snake-like shape which has the smallest internal conductance. (d) shows the same shape of
(b), with the background lattice more densely connected.

and bounded for simplicity. By establishing primal feasibility that the subgraph S € Cp, s (a, ) for
a suitably chosen 7y, we can obtain a lower bound for the alternative hypothesis H; and show that
By, (maxprec, (o) () = B, (3 ,c5¢s(xy)). On the other hand for the null hypothesis

we can show that, E, (maxasec; ,vr(aq) (v (2)) < B <ZUEB(a7®(ﬂ)) 65(%)). Here Ep,
and Ep, denote expectations with respect to alternative and null hypothesis and B(a, ©( /7)) is a
ball-like thick shape centered at a € V' with radius ©(,/7). Our result then follows by invoking
standard concentration inequalities. We can extend our analysis to the non-separable case such as
correlated models because of the linear objective form in Eq. 10.

S Experiments

We present several experiments to highlight key properties of LMIT and to compare LMIT against
other state-of-art parametric and non-parametric tests on synthetic and real-world data. We have
shown that agnostic LMIT is near minimax optimal in terms of asymptotic separability. However,
separability is an asymptotic notion and only characterizes the special case of zero false alarms (FA)
and missed detections (MD), which is often impractical. It is unclear how LMIT behaves with finite
size graphs when FAs and MDs are prevalent. In this context incorporating priors could indeed be
important. Our goal is to highlight how shape prior (in terms of thick, thin, or arbitrary shapes)
can be incorporated in LMIT using the parameter v to obtain better AUC performance in finite size
graphs. Another goal is to demonstrate how LMIT behaves with denser graph structures.

From the practical perspective, our main step is to solve the following SDP problem:

max : ZyZM” sit. M €Crmila,vy), tr(M) <K

We use standard SDP solvers which can scale up to n ~ 1500 nodes for sparse graphs like lattice
and n ~ 300 nodes for dense graphs with m = ©(n?) edges.

To understand the impact of shape we consider the test LMIT,, ., for Gaussian model and manually

vary 7. On a 15x10 lattice we fix the size (17 nodes) and the signal strength l‘\/@ = 3, and
consider three different shapes (see Fig. 1) for the alternative hypothesis. For each shape we syn-
thetically simulate 100 null and 100 alternative hypothesis and plot AUC performance of LMIT as
a function of «y. We observe that the optimum value of AUC for thick shapes is achieved for large ~y
and small y for thin shape confirming our intuition that vy is a good surrogate for shape. In addition
we notice that thick shapes have superior AUC performance relative to thin shapes, again confirming
intuition of our analysis.

To understand the impact of dense graph structures we consider performance of LMIT with neigh-
borhood size. On the lattice of the previous experiment we vary neighborhood by connecting each
node to its 1-hop, 2-hop, and 3-hop neighbors to realize denser structures with each node having 4,
8 and 12 neighbors respectively. Note that all the different graphs have the same vertex set. This is
convenient because we can hold the shape under the alternative fixed for the different graphs. As
before we generate 100 alternative hypothesis using the thin set of the previous experiment with the
same mean £ and 100 nulls. The AUC curves for the different graphs highlight the fact that higher
density leads to degradation in performance as our intuition with complete graphs suggests. We also
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Figure 2: (a) demonstrates AUC performances with fixed lattice structure, signal strength p and size (17
nodes), but different shapes of ground-truth clusters, as shown in Fig.1. (b) demonstrates AUC performances
with fixed signal strength p, size (17 nodes) and shape (Fig.1(b)), but different lattice structures.

see that as density increases a larger  achieves better performance confirming our intuition that as
density increases the internal conductance of the shape increases.

In this part we compare LMIT against existing state-of-art approaches on a 300-node lattice, a 200-
node random geometric graph (RGG), and a real-world county map graph (129 nodes) (see Fig.3.4).
We incorporate shape priors by setting ~y (internal conductance) to correspond to thin sets. While
this implies some prior knowledge, we note that this is not necessarily the optimal value for y and we
are still agnostic to the actual ground truth shape (see Fig.3,4). For the lattice and RGG we use the
elevated-mean Gaussian model. Following [1] we adopt an elevated-rate independent Poisson model
for the county map graph. Here [V, is the population of county, <. Under null the number of cases at
county ¢, follows a Poisson distribution with rate INV;\g and under the alternative a rate N;\; within
some connected subgraph. We assume \; > \g and apply a weighted version of LMIT of Eq. 12,
which arises on account of differences in population. We compare LMIT against several other tests,
including simulated annealing (SA) [4], rectangle test (Rect), nearest-ball test (NB), and two naive
tests: maximum test (MaxT) and average test (AvgT). SA is a non-parametric test and works by
heuristically adding/removing nodes toward a better normalized GLRT objective while maintaining
connectivity. Rect and NB are parametric methods with Rect scanning rectangles on lattice and NB
scanning nearest-neighbor balls around different nodes for more general graphs (RGG and county-
map graph). MaxT & AvgT are often used for comparison purposes. MaxT is based on thresholding
the maximum observed value while AvgT is based on thresholding the average value.

We observe that uniformly MaxT and AvgT perform poorly. This makes sense; It is well known
that MaxT works well only for alternative of small size while AvgT works well with relatively large
sized alternatives [11]. Parametric methods (Rect/NB) performs poorly because the shape of the
ground truth under the alternative cannot be well-approximated by Rectangular or Nearest Neighbor
Balls. Performance of SA requires more explanation. One issue could be that SA does not explicitly
incorporate shape and directly searches for the best GLRT solution. We have noticed that this has the
tendency to amplify the objective value of null hypothesis because SA exhibits poor “regularization”
over the shape. On the other hand LMIT provides some regularization for thin shape and does not
admit arbitrary connected sets.

Table 1: AUC performance of various algorithms on a 300-node lattice, a 200-node RGG, and the county map
graph. On all three graphs LMIT significantly outperforms the other tests consistently for all SNR levels.

SNR lattice (;1/[S]/0) RGG (111/15]/0) map (A1/Ao)
5] 2 [ 3 5] 2 [ 3 LT [ I3 [ L5
LMIT 0.728 | 0.780 | 0.882 | 0.642 | 0.723 | 0.816 || 0.606 | 0.842 | 0.948
SA 0.672 | 0.741 | 0.827 || 0.627 | 0.677 | 0.756 | 0.556 | 0.744 | 0.854
Rect(NB) || 0.581 | 0.637 | 0.748 || 0.584 | 0.632 | 0.701 || 0.514 | 0.686 | 0.791
MaxT 0.531 | 0.547 | 0.587 || 0.529 | 0.562 | 0.624 || 0.525 | 0.559 | 0.543
AvgT 0.565 | 0.614 | 0.705 || 0.545 | 0.623 | 0.690 || 0.536 | 0.706 | 0.747
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