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Abstract

The Birkhoff polytope (the convex hull of the set of permutation matrices), which
is represented using ©(n?) variables and constraints, is frequently invoked in for-
mulating relaxations of optimization problems over permutations. Using a recent
construction of Goemans [1], we show that when optimizing over the convex hull
of the permutation vectors (the permutahedron), we can reduce the number of
variables and constraints to ©(n log n) in theory and ©(n log® n) in practice. We
modify the recent convex formulation of the 2-SUM problem introduced by Fogel
et al. [2] to use this polytope, and demonstrate how we can attain results of similar
quality in significantly less computational time for large n. To our knowledge, this
is the first usage of Goemans’ compact formulation of the permutahedron in a con-
vex optimization problem. We also introduce a simpler regularization scheme for
this convex formulation of the 2-SUM problem that yields good empirical results.

1 Introduction

A typical workflow for converting a discrete optimization problem over the set of permutations of n
objects into a continuous relaxation is as follows: (1) use permutation matrices to represent permu-
tations; (2) relax to the convex hull of the set of permutation matrices — the Birkhoff polytope; (3)
relax other constraints to ensure convexity/continuity. Instances of this procedure appear in [3| [2]].
Representation of the Birkhoff polytope requires ©(n?) variables, significantly more than the n
variables required to represent the permutation directly. The increase in dimension is unappealing,
especially if we are only interested in optimizing over permutation vectors, as opposed to permuta-
tions of a more complex object, such as a graph. The obvious alternative of using a relaxation based
on the convex hull of the set of permutations (the permutahedron) is computationally infeasible,
because the permutahedron has exponentially many facets (whereas the Birkhoff polytope has only
n? facets). We can achieve a better trade-off between the number of variables and facets by using
sorting networks to construct polytopes that can be linearly projected to recover the permutahedron.
This construction, introduced by Goemans [1]], can have as few as ©(nlogn) facets, which is op-
timal up to constant factors. In this paper, we use a relaxation based on these polytopes, which we
call “sorting network polytopes.”

We apply the sorting network polytope to the noisy seriation problem, defined as follows. Given
a noisy similarity matrix A, recover a symmetric row/column ordering of A for which the entries
generally decrease with distance from the diagonal. Fogel et al. [2] introduced a convex relaxation
of the 2-SUM problem to solve the noisy seriation problem. They proved that the solution to the 2-
SUM problem recovers the exact solution of the seriation problem in the “noiseless” case (in which
an ordering exists that ensures monotonic decrease of similarity measures with distance from the
diagonal). They further show that the formulation allows side information about the ordering to be
incorporated, and is more robust to noise than a spectral formulation of the 2-SUM problem de-



scribed by Atkins et al. [4]. The formulation in [2] makes use of the Birkhoff polytope. We propose
instead a formulation based on the sorting network polytope. Performing convex optimization over
the sorting network polytope requires different techniques from those described in [2]]. In addition,
we describe a new regularization scheme, applicable both to our formulation and that of [2], that is
more natural for the 2-SUM problem and has good practical performance.

The paper is organized as follows. We begin by describing polytopes for representing permutations
in Section[2] In Section[3] we introduce the seriation problem and the 2-SUM problem, describe two
continuous relaxations for the latter, (one of which uses the sorting network polytope) and introduce
our regularization scheme for strengthening the relaxations. Issues that arise in using the sorting
network polytope are discussed in Sectionfd] In Section[5} we provide experimental results showing
the effectiveness of our approach. The extended version of this paper [S]] includes some additional
computational results, along with several proofs. It also describes an efficient algorithm for taking a
conditional gradient step for the convex formulation, for the case in which the formulation contains
no side information.

2 Permutahedron, Birkhoff Polytope, and Sorting Networks

We use n throughout the paper to refer to the length of the permutation vectors. 77, = (1,2,...,n)%
denotes the identity permutation. (When the size n can be inferred from the context, we write the
identity permutation as 7;.) P™ denotes the set of all permutations vectors of length n. We use
m € P™ to denote a generic permutation, and denote its components by 7 (i), ¢ = 1,2,...,n. We
use 1 to denote the vector of length n whose components are all 1.

Definition 2.1. The permutahedron PH", the convex hull of P", is defined as follows:
S|
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The permutahedron PH™ has 2™ —2 facets, which prevents us from using it in optimization problems
directly. (We should note however that the permutahedron is a submodular polyhedron and hence
admits efficient algorithms for certain optimization problems.) Relaxations are commonly derived
from the set of permutation matrices (the set of n X n matrices containing zeros and ones, with a
single one in each row and column) and its convex hull instead.

Definition 2.2. The convex hull of the set of n X n permutation matrices is the Birkhoff polytope 5",
which is the set of all doubly-stochastic n x n matrices {X € R"™*" | X >0,X1=1,X71=1}.

The Birkhoff polytope has been widely used in the machine learning and computer vision com-
munities for various permutation problems (see for example [2], [3]]). The permutahedron can be
represented as the projection of the Birkhoff polytope from R™*" to R™ by x; = 2?21 J-Xi;. The
Birkhoff polytope is sometimes said to be an extended formulation of the permutahedron.

A natural question to ask is whether a more compact extended formulation exists for the permuta-
hedron. Goemans [I]] answered this question in the affirmative by constructing one with ©(n logn)
constraints and variables, which is optimal up to constant factors. His construction is based on sort-
ing networks, a collection of wires and binary comparators that sorts a list of numbers. Figure [T
displays a sorting network on 4 variables. (See [6] for further information on sorting networks.)

Given a sorting network on n inputs with m comparators (we will subsequently always use m to
refer to the number of comparators), an extended formulation for the permutahedron with O(m)
variables and constraints can be constructed as follows [1]. Referring to the notation in the right
subfigure in Figure [I| we introduce a set of constraints for each comparator k = 1,2,...,m to
indicate the relationships between the two inputs and the two outputs of each comparator:

wgn, top) + xén, bot) — (Eﬁ)u[’ top) + xﬁ)ut, bot)» xﬁ)ut, top) S mécin, top)? and xﬁ)ut, top) S xfin, bot)* (1)
Note that these constraints require the sum of the two inputs to be the same as the sum of the two
outputs, but the inputs can be closer together than the outputs. Let zi" and i =1,2,...,n
denote the x variables corresponding to the ¢th input and ith output of the ent1re sorting network,
respectively. We introduce the additional constraints

" =4, fori € [n)]. )
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Figure 1: A bitonic sorting network on 4 variables (left) and the k-th comparator (right). The input
to the sorting network is on the left and the output is on the right. At each comparator, we take the
two input values and sort them such that the smaller value is the one at the top in the output. Sorting
takes place progressively as we move from left to right through the network, sorting pairs of values
as we encounter comparators.

The details of this construction depend on the particular choice of sorting network (see Section [4)),
but we will refer to it generically as the sorting network polytope SN". Each element in this
polytope can be viewed as a concatenation of two vectors: the subvector associated with the network
inputs ™ = (2", 2, ..., z"), and the rest of the coordinates x", which includes all the internal
variables as well as the outputs. The following theorem attests to the fact that any input vector z™
vector that is part of a feasible vector for the entire network is a point in the permutahedron:

Theorem 2.3 (Goemans [1]]). The set {z™ | (z™, ") € SN} is the permutahedron PH".

3 Convex Relaxations of 2-SUM via Sorting Network Polytope

In this section we will briefly describe the seriation problem, and some of the continuous relaxations
of the combinatorial 2-SUM problem that can be used to solve this problem.

The Noiseless Seriation Problem. The term seriation generally refers to data analysis techniques
that arrange objects in a linear ordering in a way that fits available information and thus reveals
underlying structure of the system [[7]. We adopt here the definition of the seriation problem from
[4]]. Suppose we have n objects arranged along a line, and a similarity function that increases with
distance between objects in the line. The similarity matrix is the symmetric n X n matrix whose
(i, 4) entry is the similarity measure between the ith and jth objects in the linear arrangement. This
similarity matrix is a R-matrix, according to the following definition.

Definition 3.1. A symmetric matrix A is a Robinson matrix (R-matrix) if for all points (i, j) where
i > j, we have Aj; < min(A_1y,;, A; (j4+1))- A symmetric matrix A is a pre-R matrix if 1T AIL is
R for some permutation 11.

In other words, a symmetric matrix is a R-matrix if the entries are nonincreasing as we move away
from the diagonal in either the horizontal or vertical direction. The goal of the noiseless seriation
problem is to recover the ordering of the variables along the line from the pairwise similarity data,
which is equivalent to finding the permutation that recovers an R-matrix from a pre-R-matrix.

The seriation problem was introduced in the archaeology literature [8]], and has applications across
a wide range of areas including clustering [9]], shotgun DNA sequencing [2], and taxonomy [10]].
R-matrices are useful in part because of their relation to the consecutive-ones property in a matrix
of zeros and ones, where the ones in each column form a contiguous block. A matrix M with the
consecutive-ones property gives rise to a R-matrix M MT .

Noisy Seriation, 2-SUM and Continuous Relaxations. Given a binary symmetric matrix A, the
2-SUM problem can be expressed as follows:

: A (m(3) — ()2, 3
i 33 Astr() - 7(0) )
A slightly simpler but equivalent formulation, defined via the Laplacian L4 = diag(A1) — A, is

min TI'TLATI'. 4
TeEP™



The seriation problem is closely related to the combinatorial 2-SUM problem, and Fogel et al. [2]
proved that if A is a pre- R-matrix such that each row/column has unique entries, then the solution to
the 2-SUM problem also solves the noiseless seriation problem. In another relaxation of the 2-SUM
problem, Atkins et al. [4] demonstrate that finding the second smallest eigenvalue, also known as the
Fiedler value, solves the noiseless seriation problem. Hence, the 2-SUM problem provides a good
model for the noisy seriation problem, where the similarity matrices are close to, but not exactly,
pre-R matrices.

The 2-SUM problem is known to be /N P-hard [[11]], so we seek efficient relaxations. We describe
below two continuous relaxations that are computationally practical. (Other relaxations of these
problems require solution of semidefinite programs and are intractable in practice for large n.)

The spectral formulation of [4] seeks the Fiedler value by searching over the space orthogonal to the
vector 1, which is the eigenvector that corresponds to the zero eigenvalue. The Fiedler value is the
optimal objective value of the following problem:
m]'%n y"Lay suchthat y71=0, |y[o=1. 3)
yERn
This problem is non-convex, but its solution can be found efficiently from an eigenvalue decom-
position of L 4. With Fiedler vector y, one can obtain a candidate solution to the 2-SUM problem
by picking the permutation m € P" to have the same ordering as the elements of y. The spectral
formulation (3) is a continuous relaxation of the 2-SUM problem ().

The second relaxation of (@), described by Fogel et al. [2]], makes use of the Birkhoff polytope B".
The basic version of the formulation is

. T
min 77 [I° LyIln 6
HeBn I A I, ( )

(recall that 7 is the identity permutation (1,2, ...,n)T), which is a convex quadratic program over

the n? components of TI. Fogel et al. augment and enhance this formulation as follows.

e Introduce a “tiebreaking” constraint e{Hm +1< 63;1_[71' 1 to resolve ambiguity about the
direction of the ordering, where ez, = (0,...,0,1,0,...,0)” with the 1 in position .

e Average over several perturbations of 7; to improve robustness of the solution.

e Add a penalty to maximize the Frobenius norm of the matrix IT, which pushes the solution
closer to a vertex of the Birkhoff polytope.

o Incorporate additional ordering constraints of the form z; — z; < i, to exploit prior
knowledge about the ordering.

With these modifications, the problem to be solved is

min 1Trace(YTHTL ATTY) — B||PTI)2 suchthat DIIr; <6, (7)
es” p P

where each column of Y € R"*? is a slightly perturbed version of a permutationﬂ w is the regu-
larization coefficient, the constraint DII7; < § contains the ordering information and tiebreaking
constraints, and the operator P = [ — %llT is the projection of II onto elements orthogonal to
the all-ones matrix. The penalization is applied to || PII||% rather than to ||II||% directly, thus en-
suring that the program remains convex if the regularization factor is sufficiently small (for which
a sufficient condition is 11 < A2(La)A1(YYT)). We will refer to this regularization scheme as
the matrix-based regularization, and to the formulation (/) as the matrix-regularized Birkhoff-based
convex formulation.

Figure[2]illustrates the permutahedron in the case of n = 3, and compares minimization of the objec-
tive y* L 4y over the permutahedron (as attempted by the convex formulation) with minimization of
the same objective over the constraints in the spectral formulation (3). The spectral method returns
good solutions when the noise is low, and it is computationally efficient since there are many fast
algorithms and software for obtaining selected eigenvectors. However, the Birkhoff-based convex
formulation can return a solution that is significantly better in situations with high noise or sig-
nificant additional ordering information. For the rest of this section, we will focus on the convex
formulation.

'In [2]], each column of Y is said to contain a perturbation of 77, but in a response to referees of their paper,
the authors say that they used sorted uniform random vectors instead in the revised version.
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Figure 2: A geometric interpretation of spectral and convex formulation solutions on the 3-
permutahedron. The left image shows the 3-permutahedron in 3D space and the dashed line shows
the eigenvector 1 corresponding to the zero eigenvalue. The right image shows the projection of
the 3-permutahedron along the trivial eigenvector together with the elliptical level curves of the
objective function y” L 4y. Points on the circumscribed circle have an f5-norm equal to that of a
permutation, and the objective is minimized over this circle at the point denoted by a cross. The
vertical line in the right figure enforces the tiebreaking constraint that 1 must appear before 3 in the
ordering; the red dot indicates the minimizer of the objective over the resulting triangular feasible
region. Without the tiebreaking constraint, the minimizer is at the center of the permutahedron.

A Compact Convex Relaxation via the Permutahedron/Sorting Network Polytope and a New
Regularization Scheme. We consider now a different relaxation for the 2-SUM problem (@)). Tak-
ing the convex hull of P™ directly, we obtain
min 27 Lax. )
TEPH"

This is essentially a permutahedron-based version of (6). In fact, two problems are equivalent, except
that formulation (8) is more compact when we enforce « € PH via the sorting network constraints

T e {xin| (Iin,zresl) c SN”},

where SN incorporates the comparator constraints (I) and the output constraints (2). This for-
mulation can be enhanced and augmented in a similar fashion to (6). The tiebreaking constraint
for this formulation can be expressed simply as z; + 1 < x,,, since 2" consists of the subvec-
tor (z1,22,...,2,). (In both and @, having at least one additional constraint is necessary to
remove the trivial solution given by the center of the permutahedron or Birkhoff polytope; see Fig-
ure[2]) This constraint is the strongest inequality that will not eliminate any permutation (assuming
that a permutation and its reverse are equivalent); we include a proof of this fact in [3].

It is also helpful to introduce a penalty to force the solution x to be closer to a permutation, that is, a
vertex of the permutahedron. To this end, we introduce a vector-based regularization scheme. The
following statement is an immediate consequence of strict convexity of norms.

Proposition 3.2. Let v € R", and let X be the convex hull of all permutations of v. Then, the points
in X with the highest £, norm, for 1 < p < oo, are precisely the permutations of v.

It follows that adding a penalty to encourage ||z||2 to be large might improve solution quality. How-
ever, directly penalizing the negative of the 2-norm of x would destroy convexity, since L4 has a
zero eigenvalue. Instead we penalize Pz, where P = I — %llT projects onto the subspace orthog-
onal to the trivial eigenvector 1. (Note that this projection of the permutahedron still satisfies the
assumptions of Proposition [3.2]) When we include a penalty on || Pz|3 in the formulation () along
with side constraints Dz < § on the ordering, we obtain the objective 7 L 4o — p||Pz||5 which
leads to

. T
La— uP)x h th Dx <.
mé%l%z x' (La — pP)x  such that z <4 9)

This objective is convex when p < Ay(L ), a looser condition on y than is the case in matrix-based
regularization. We will refer to (9) as the regularized permutahedron-based convex formulation.



Vector-based regularization can also be incorporated into the Birkhoff-based convex formulation.
Instead of maximizing the || PII||3 term in formulation (7) to force the solution to be closer to a per-
mutation, we could maximize || PITY||3. The vector-regularized version of () with side constraints
can be written as follows:

1
nin —Trace(YTII"(Ly — pP)ITY) such that DIIm < 6. (10)
chn p

We refer to this formulation as the vector-regularized Birkhoff-based convex formulation. Vector-
based regularization is in some sense more natural than the regularization in (7). It acts directly
on the set that we are optimizing over, rather than an expanded set. The looser condition p <
A2(L 4) allows for stronger regularization. Experiments reported in [5]] show that the vector-based
regularization produces permutations that are consistently better those obtained from the Birkhoff-
based regularization.

The regularized permutahedron-based convex formulation is a convex QP with O(m) variables and
constraints, where m is the number of comparators in its sorting network, while the Birkhoff-based
one is a convex QP with O(n?) variables. The one feature in the Birkhoff-based formulations that
the permutahedron-based formulations do not have is the ability to average the solution over multiple
vectors by choosing p > 1 columns in the matrix Y € R"*P. However, our experiments suggested
that the best solutions were obtained for p = 1, so this consideration was not important in practice.

4 Key Implementation Issues

Choice of Sorting Network. There are numerous possible choices of the sorting network, from
which the constraints in formulation (9) are derived. The asymptotically most compact option is
the AKS sorting network, which contains ©(n log n) comparators. This network was introduced in
[12] and subsequently improved by others, but is impractical because of its difficulty of construc-
tion and the large constant factor in the complexity expression. We opt instead for more elegant
networks with slightly worse asymptotic complexity. Batcher [[13]] introduced two sorting networks
with ©(n log® n) size — the odd-even sorting network and the bitonic sorting network — that are
popular and practical. The sorting network polytope based on these can be generated with a simple
recursive algorithm in © (n log® n) time.

Obtaining Permutations from a Point in the Permutahedron. Solution of the permutation-
based relaxation yields a point x in the permutahedron, but we need techniques to convert this point
into a valid permutation, which is a candidate solution for the 2-SUM problem (3). The most obvi-
ous recovery technique is to choose this permutation 7 to have the same ordering as the elements of
x, that is, z; < z; implies w(i) < m(j), forall 4,5 € {1,2,...,n}. We could also sample multiple
permutations, by applying Gaussian noise to the components of z prior to taking the ordering to pro-
duce 7. (We used i.i.d. noise with variance 0.5.) The 2-SUM objective (3] can be evaluated for each
permutation so obtained, with the best one being reported as the overall solution. This inexpensive
randomized recovery procedure can be repeated many times, and it yield significantly better results
over the single “obvious” ordering.

Solving the Convex Formulation. On our test machine using the Gurobi interior point solver,
we were able to solve instances of the permutahedron-based convex formulation (9) of size up to
around n = 10000. As in [2]], first-order methods can be employed when the scale is larger. In [5]],
we provide an optimal O(n logn) algorithm for step (1), in the case in which only the tiebreaking
constraint is present, with no additional ordering constraints.

5 Experiments

We compare the run time and solution quality of algorithms on the two classes of convex formula-
tions — Birkhoff-based and permutahedron-based — with various parameters. Summary results are
presented in this section. Additional results, including more extensive experiments comparing the
effects of different parameters on the solution quality, appear in [3].



Experimental Setup. The experiments were run on an Intel Xeon X5650 (24 cores @ 2.66Ghz)
server with 128GB of RAM in MATLAB 7.13, CVX 2.0 ([14],[15]), and Gurobi 5.5 [16]. We
tested four formulation-algorithm-implementation variants, as follows. (i) Spectral method using the
MATLAB eigs function, (ii) MATLAB/Gurobi on the permutahedron-based convex formulation,
(iii) MATLAB/Gurobi on the Birkhoff-based convex formulation with p = 1 (that is, formulation
with Y = ), and (iv) Experimental MATLAB code provided to us by the authors of [2]
implementing FISTA, for solving the matrix-regularized Birkhoff-based convex formulation (7)),
with projection steps solved using block coordinate ascent on the dual problem. This is the current
state-of-the-art algorithm for large instances of the Birkhoff-based convex formulation; we refer
to it as RQPS (for “Regularized QP for Seriation”). We report run time data using wall clock time
reported by Gurobi, and MATLAB timings for RQPS, excluding all preprocessing time. We used the
bitonic sorting network by Batcher [[13] for experiments with the permutahedron-based formulation.

Linear Markov Chain. The Markov chain reordering problem [2] involves recovering the order-
ing of a simple Markov chain with Gaussian noise from disordered samples. The Markov chain
consists of random variables X1, Xo,..., X, such that X; = bX;_; + ¢;, where b is a positive
constant and €; ~ N (0,02). A sample covariance matrix taken over multiple independent samples
of the Markov chain with permuted labels is used as the similarity matrix in the 2-SUM problem.
We use this problem for two different comparisons. First, we compare the solution quality and
running time of RQPS algorithm of [2] with the Gurobi interior-point solver on the regularized
permutahedron-based convex formulation, to demonstrate the performance of the formulation and
algorithm introduced in this paper compared with the prior state of the art. Second, we apply Gurobi
to both the permutahedron-based and Birkhoff-based formulations with p = 1, with the goal of
discovering which formulation is more efficient in practice.

For both sets of experiments, we fixed b = 0.999 and ¢ = 0.5 and generate 50 chains to form a sam-
ple covariance matrix. We chose n € {500, 2000, 5000} to see how algorithm performance scales
with n. For each n, we perform 10 independent runs, each based on a different set of samples of the
Markov chain (and hence a different sample covariance matrix). We added n ordering constraints
for each run. Each ordering constraint is of the form x; + 7(j) — 7(¢) < x;, where 7 is the (known)
permutation that recovers the original matrix, and 4, j € [n] is a pair randomly chosen but satisfying
7w(j) — m(i) > 0. We used a regularization parameter of u = 0.9A2(L 4) on all formulations.

RQPS and the Permutahedron-Based Formulation. We compare the RQPS code for the matrix-
regularized Birkhoff-based convex formulation (7)) to the regularized permutahedron-based convex
formulation, solved with Gurobi. We fixed a time limit for each value of n, and ran the RQPS
algorithm until the limit was reached. At fixed time intervals, we query the current solution and
sample permutations from that point.
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Figure 3: Plot of 2-SUM objective over time (in seconds) for n € {500, 2000, 5000}. We choose the
run (out of ten) that shows the best results for RQPS relative to the interior-point algorithm for the
regularized permutahedron-based formulation. We test four different variants of RQPS. The curves
represent performance of the RQPS code for varying values of p (1 for red/green and n for blue/cyan)
and the cap on the maximum number of iterations for the projection step (10 for red/blue and 100 for
green/cyan). The white square represents the spectral solution, and the magenta diamond represents
the solution returned by Gurobi for the permutahedron-based formulation. The horizontal axis in
each graph is positioned at the 2-SUM objective corresponding to the permutation that recovers the
original labels for the sample covariance matrix.



For RQPS, with a cap of 10 iterations within each projection step, the objective tends to descend
rapidly to a certain level, then fluctuates around that level (or gets slightly worse) for the rest of the
running time. For a limit of 100 iterations, there is less fluctuation in 2-SUM value, but it takes some
time to produce a solution as good as the previous case. In contrast to experience reported in [2],
values of p greater than 1 do not seem to help; our runs for p = n plateaued at higher values of the
2-SUM objective than those with p = 1.

In most cases, the regularized permutahedron-based formulation gives a better solution value than
the RQPS method, but there are occasional exceptions to this trend. For example, in the third run for
n = 500 (the left plot in Figure[3), one variant of RQPS converges to a solution that is significantly
better. Despite its very fast runtimes, the spectral method does not yield solutions of competitive
quality, due to not being able to make use of the side constraint information.

Direct Comparison of Birkhoff and Permutahedron Formulations For the second set of exper-
iments, we compare the convergence rate of the objective value in the Gurobi interior-point solver
applied to two equivalent formulations: the vector-regularized Birkhoff-based convex formulation
(I0) with p = 1 and the regularized permutahedron-based convex formulation (9). For each choice
of input matrix and sampled ordering information, we ran the Gurobi interior-point method In Fig-
ure[d] we plot at each iteration the difference between the primal objective and T.
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Figure 4: Plot of the difference of the 2-SUM objective from the baseline objective over time (in
seconds) for n € {2000, 5000}. The red curve represents performance of the permutahedron-based
formulation; the blue curve represents the performance of the Birkhoff-based formulation. We dis-
play the best run (out of ten) for the Birkhoff-based formulation for each n. When n = 2000, the
permutahedron-based formulation converges slightly faster in most cases. However, once we scale
up to n. = 5000, the permutahedron-based formulation converges significantly faster in all tests.

Our comparisons show that the permutahedron-based formulation tends to yield better solutions in
faster times than Birkhoff-based formulations, regardless of the algorithm used to solve the latter.
The advantage of the permutahedron-based formulation is more pronounced when n is large.

6 Future Work and Acknowledgements

We hope that this paper spurs further interest in using sorting networks in the context of other more
general classes of permutation problems, such as graph matching or ranking. A direct adaptation of
this approach is inadequate, since the permutahedron does not uniquely describe a convex combina-
tion of permutations, which is how the Birkhoff polytope is used in many such problems. However,
when the permutation problem has a solution in the Birkhoff polytope that is close to an actual per-
mutation, we should expect that the loss of information when projecting this point in the Birkhoff
polytope to the permutahedron to be insignificant.
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