
Communication Efficient Distributed Machine
Learning with the Parameter Server

Mu Li∗†, David G. Andersen∗, Alexander Smola∗‡, and Kai Yu†
∗Carnegie Mellon University †Baidu ‡Google

{muli, dga}@cs.cmu.edu, alex@smola.org, yukai@baidu.com

Abstract

This paper describes a third-generation parameter server framework for distributed
machine learning. This framework offers two relaxations to balance system per-
formance and algorithm efficiency. We propose a new algorithm that takes ad-
vantage of this framework to solve non-convex non-smooth problems with con-
vergence guarantees. We present an in-depth analysis of two large scale machine
learning problems ranging from `1-regularized logistic regression on CPUs to re-
construction ICA on GPUs, using 636TB of real data with hundreds of billions of
samples and dimensions. We demonstrate using these examples that the param-
eter server framework is an effective and straightforward way to scale machine
learning to larger problems and systems than have been previously achieved.

1 Introduction

In realistic industrial machine learning applications the datasets range from 1TB to 1PB. For ex-
ample, a social network with 100 million users and 1KB data per user has 100TB. Problems in
online advertising and user generated content analysis have complexities of similar order of magni-
tudes [12]. Such huge quantities of data allow learning powerful and complex models with 109 to
1012 parameters [9], at which scale a single machine is often not powerful enough to complete these
tasks in time.

Distributed optimization is becoming a key tool for solving large scale machine learning problems
[1, 3, 10, 21, 19]. The workloads are partitioned into worker machines, which access the globally
shared model as they simultaneously perform local computations to refine the model. However, ef-
ficient implementations of the distributed optimization algorithms for machine learning applications
are not easy. A major challenge is the inter-machine data communication:

• Worker machines must frequently read and write the global shared parameters. This massive
data access requires an enormous amount of network bandwidth. However, bandwidth is one
of the scarcest resources in datacenters [6], often 10-100 times smaller than memory bandwidth
and shared among all running applications and machines. This leads to a huge communication
overhead and becomes a bottleneck for distributed optimization algorithms.

• Many optimization algorithms are sequential, requiring frequent synchronization among worker
machines. In each synchronization, all machines need to wait the slowest machine. However,
due to imperfect workload partition, network congestion, or interference by other running jobs,
slow machines are inevitable, which then becomes another bottleneck.

In this work, we build upon our prior work designing an open-source third generation parameter
server framework [4] to understand the scope of machine learning algorithms to which it can be
applied, and to what benefit. Figure 1 gives an overview of the scale of the largest machine learning
experiments performed on a number of state-of-the-art systems. We confirmed with the authors of
these systems whenever possible.

1

101 102 103 104104

105

106

107

108

109

1010

1011

of cores

of

 s
ha

re
d

pa
ra

m
et

er
s

Distbelief (DNN)

VW (LR)
Yahoo!LDA (LDA)

Graphlab (LDA)

Naiad (LR)

REEF (LR)

Petuum (Lasso)

MLbase (LR)

Parameter server (Sparse LR)

Figure 1: Comparison of the public largest machine
learning experiments each system performed. The
results are current as of April 2014.

Compared to these systems, our parame-
ter server is several orders of magnitude
more scalable in terms of both parameters
and nodes. The parameter server commu-
nicates data asynchronously to reduce the
communication cost. The resulting data in-
consistency is a trade-off between the sys-
tem performance and the algorithm conver-
gence rate. The system offers two relax-
ations to address data (in)consistency: First,
rather than arguing for a specific consistency
model [29, 7, 15], we support flexible con-
sistency models. Second, the system allows
user-specific filters for fine-grained consis-
tency management. Besides, the system pro-
vides other features such as data replication,
instantaneous failover, and elastic scalability.

Motivating Application. Consider the following general regularized optimization problem:

minimize
w

F (w) where F (w) := f(w) + h(w) and w ∈ Rp, (1)

We assume that the loss function f : Rp → R is continuously differentiable but not necessarily
convex, and the regularizer h : Rp → R is convex, left side continuous, block separable, but
possibly non-smooth.

The proposed algorithm solves this problem based on the proximal gradient method [23]. However,
it differs with the later in four aspects to efficiently tackle very high dimensional and sparse data:

• Only a subset (block) of coordinates is updated in each time: (block) Gauss-Seidel updates are
shown to be efficient on sparse data [36, 27].

• The model a worker maintains is only partially consistent with other machines, due to asyn-
chronous data communication.

• The proximal operator uses coordinate-specific learning rates to adapt progress to sparsity pat-
tern inherent in the data.

• Only coordinates that would change the associated model weights are communicated to reduce
network traffic.

We demonstrate the efficiency of the proposed algorithm by applying it to two challenging prob-
lems: (1) non-smooth `1-regularized logistic regression on sparse text datasets with over 100 billion
examples and features; (2) a non-convex and non-smooth ICA reconstruction problem [18], extract-
ing billions of sparse features from dense image data. We show that the combination of the proposed
algorithm and system effectively reduces both the communication cost and programming effort. In
particular, 300 lines of codes suffice to implement `1-regularized logistic regression with nearly no
communication overhead for industrial-scale problems.

Outline: We first provide background in Section 2. Next, we address the two relaxations in Section 3
and the proposed algorithm in Section 4. In Section 5 (and also Appendix B and C), we present the
applications with the experimental results. We conclude with a discussion in Section 6.

2 Background

Related Work. The parameter server framework [29] has proliferated both in academia and in
industry. Related systems have been implemented at Amazon, Baidu, Facebook, Google [10], Mi-
crosoft, and Yahoo [2]. There are also open source codes, such as YahooLDA [2] and Petuum [15].

As introduced in [29, 2], the first generation of the parameter servers lacked flexibility and perfor-
mance. The second generation parameter servers were application specific, exemplified by Dist-
belief [10] and the synchronization mechanism in [20]. Petuum modified YahooLDA by imposing
bounded delay instead of eventual consistency and aimed for a general platform [15], but it placed

2

more constraints on the threading model of worker machines. Compared to previous work, our
third generation system greatly improves system performance, and also provides flexibility and fault
tolerance.

Beyond the parameter server, there exist many general-purpose distributed systems for machine
learning applications. Many mandate synchronous and iterative communication. For example, Ma-
hout [5], based on Hadoop [13] and MLI [30], based on Spark [37], both adopt the iterative MapRe-
duce framework [11]. On the other hand, Graphlab [21] supports global parameter synchronization
on a best effort basis. These systems scale well to few hundreds of nodes, primarily on dedicated
research clusters. However, at a larger scale the synchronization requirement creates performance
bottlenecks. The primary advantage over these systems is the flexibility of consistency models of-
fered by the parameter server.

There is also a growing interest in asynchronous algorithms. Shotgun [7], as a part of Graphlab,
performs parallel coordinate descent for solving `1 optimization problems. Other methods partition
observations over several machines and update the model in a data parallel fashion [34, 17, 38, 3,
1, 19]. Lock-free variants were proposed in Hogwild [26]. Mixed variants which partition data and
parameters into non-overlapping components were introduced in [33], albeit at the price of having
to move or replicate data on several machines. Lastly, the NIPS framework [31] discusses general
non-convex approximate proximal methods.

The proposed algorithm differs from existing approaches mainly in two aspects. First, we focus on
solving large scale problems. Given the size of data and the limited network bandwidth, neither
the shared memory approach of Shotgun and Hogwild nor moving the entire data during training is
desirable. Second, we aim at solving general non-convex and non-smooth composite objective func-
tions. Different to [31], we derive a convergence theorem with weaker assumptions, and furthermore
we carry out experiments that are of many orders of magnitude larger scale.

The Parameter Server Architecture. An instance of the parameter server [4] contains a server
group and several worker groups, in which a group has several machines. Each machine in the server
group maintains a portion of the global parameters, and all servers communicate with each other to
replicate and/or migrate parameters for reliability and scaling.

A worker stores only a portion of the training data and it computes the local gradients or other
statistics. Workers communicate only with the servers to retrieve and update the shared parameters.
In each worker group, there might be a scheduler machine, which assigns workloads to workers as
well as monitors their progress. When workers are added or removed from the group, the scheduler
can reschedule the unfinished workloads. Each worker group runs an application, thus allowing for
multi-tenancy. For example, an ad-serving system and an inference algorithm can run concurrently
in different worker groups.

The shared model parameters are represented as sorted (key,value) pairs. Alternatively we can view
this as a sparse vector or matrix that interacts with the training data through the built-in multi-
threaded linear algebra functions. Data exchange can be achieved via two operations: push and
pull. A worker can push all (key, value) pairs within a range to servers, or pull the corresponding
values from the servers.

Distributed Subgradient Descent. For the motivating example introduced in (1), we can im-
plement a standard distributed subgradient descent algorithm [34] using the parameter server. As
illustrated in Figure 2 and Algorithm 1, training data is partitioned and distributed among all the
workers. The model w is learned iteratively. In each iteration, each worker computes the local gra-
dients using its own training data, and the servers aggregate these gradients to update the globally
shared parameter w. Then the workers retrieve the updated weights from the servers.

A worker needs the model w to compute the gradients. However, for very high-dimensional training
data, the model may not fit in a worker. Fortunately, such data are often sparse, and a worker
typically only requires a subset of the model. To illustrate this point, we randomly assigned samples
in the dataset used in Section 5 to workers, and then counted the model parameters a worker needed
for computing gradients. We found that when using 100 workers, the average worker only needs
7.8% of the model. With 10,000 workers this reduces to 0.15%. Therefore, despite the large total
size of w, the working set of w needed by a particular worker can be cached trivially.

3

Algorithm 1 Distributed Subgradient Descent
Solving (1) in the Parameter Server

Worker r = 1, . . . ,m:
1: Load a part of training data {yik , xik}

nr

k=1

2: Pull the working set w(0)
r from servers

3: for t = 1 to T do
4: Gradient g(t)r ←

∑nr

k=1 ∂`(xik , yik , w
(t)
r)

5: Push g(t)r to servers
6: Pull w(t+1)

r from servers
7: end for

Servers:
1: for t = 1 to T do
2: Aggregate g(t) ←

∑m
r=1 g

(t)
r

3: w(t+1) ← w(t) − η
(
g(t) + ∂h(w(t)

)
4: end for

worker 1

�������������

�������������

��������������

��������������

g1 +... +gm

w

��������������
����������
��������������

servers g1

w1

gm

wm

����������������
���������
���������

worker m

...2. push

training
data

4. pull

4. pull

2. push

3. update

1. compute

1. compute

Figure 2: One iteration of Algorithm 1. Each
worker only caches the working set of w.

3 Two Relaxations of Data Consistency

We now introduce the two relaxations that are key to the proposed system. We encourage the reader
interested in systems details such as server key layout, elastic scalability, and continuous fault toler-
ance, to see our prior work [4].

3.1 Asynchronous Task Dependency

We decompose the workloads in the parameter server into tasks that are issued by a caller to a remote
callee. There is considerable flexibility in terms of what constitutes a task: for instance, a task can be
a push or a pull that a worker issues to servers, or a user-defined function that the scheduler issues
to any node, such as an iteration in the distributed subgradient algorithm. Tasks can also contains
subtasks. For example, a worker performs one push and one pull per iteration in Algorithm 1.

Tasks are executed asynchronously: the caller can perform further computation immediately after
issuing a task. The caller marks a task as finished only once it receives the callee’s reply. A reply
could be the function return of a user-defined function, the (key,value) pairs requested by the pull,
or an empty acknowledgement. The callee marks a task as finished only if the call of the task is
returned and all subtasks issued by this call are finished.

iter 10:

iter 11:

iter 12:

gradient

gradient

gradient

push & pull

push & pull

pu

By default callees execute tasks in parallel for best
performance. A caller wishing to render task execu-
tion sequential can insert an execute-after-finished
dependency between tasks. The diagram on the
right illustrates the execution of three tasks. Tasks
10 and 11 are independent, but 12 depends on 11. The callee therefore begins task 11 immediately
after the gradients are computed in task 10. Task 12, however, is postponed to after pull of 11.

Task dependencies aid implementing algorithm logic. For example, the aggregation logic at servers
in Algorithm 1 can be implemented by having the updating task depend on the push tasks of all
workers. In this way, the weight w is updated only after all worker gradients have been aggregated.

3.2 Flexible Consistency Models via Task Dependency Graphs

The dependency graph introduced above can be used to relax consistency requirements. Independent
tasks improve the system efficiency by parallelizing the usage of CPU, disk and network bandwidth.
However, this may lead to data inconsistency between nodes. In the diagram above, the worker r
starts iteration 11 before the updated model w(11)

r is pulled back, thus it uses the outdated model
w

(10)
r and compute the same gradient as it did in iteration 10, namely g(11)r = g

(10)
r . This inconsis-

4

tency can potentially slows down the convergence speed of Algorithm 1. However, some algorithms
may be less sensitive to this inconsistency. For example, if only a block of w is updated in each
iteration of Algorithm 2, starting iteration 11 without waiting for 10 causes only a portion of w to
be inconsistent.

The trade-off between algorithm efficiency and system performance depends on various factors in
practice, such as feature correlation, hardware capacity, datacenter load, etc. Unlike other systems
that force the algorithm designer to adopt a specific consistency model that may be ill-suited to
the real situations, the parameter server can provide full flexibility for different consistency models
by creating task dependency graphs, which are directed acyclic graphs defined by tasks with their
dependencies. Consider the following three examples:

0 1 2 0 1 2 0 1 2 3

(a) Sequential (b) Eventual (c) 1 Bounded delay

4

Sequential Consistency requires all tasks to be executed one by one. The next task can be started
only if the previous one has finished. It produces results identical to the single-thread imple-
mentation. Bulk Synchronous Processing uses this approach.

Eventual Consistency to the contrary allows all tasks to be started simultaneously. [29] describe
such a system for LDA. This approach is only recommendable whenever the underlying algo-
rithms are very robust with regard to delays.

Bounded Delay limits the staleness of parameters. When a maximal delay time τ is set, a new task
will be blocked until all previous tasks τ times ago have been finished (τ = 0 yields sequential
consistency and for τ =∞ we recover eventual consistency). Algorithm 2 uses such a model.

Note that dependency graphs allow for more advanced consistency models. For example, the sched-
uler may increase or decrease the maximal delay according to the runtime progress to dynamically
balance the efficiency-convergence trade-off.

3.3 Flexible Consistency Models via User-defined Filters

Task dependency graphs manage data consistency between tasks. User-defined filters allow for a
more fine-grained control of consistency (e.g. within a task). A filter can transform and selectively
synchronize the the (key,value) pairs communicated in a task. Several filters can be applied together
for better data compression. Some example filters are:

Significantly modified filter: it only pushes entries that have changed by more than a threshold
since synchronized last time.

Random skip filter: it subsamples entries before sending. They are skipped in calculations.
KKT filter: it takes advantage of the optimality condition when solving the proximal operator: a

worker only pushes gradients that are likely to affect the weights on the servers. We will discuss
it in more detail in section 5.

Key caching filter: Each time a range of (key,value) pairs is communicated because of the range-
based push and pull. When the same range is chosen again, it is likely that only values
are modified while the keys are unchanged. If both the sender and receiver have cached these
keys, the sender then only needs to send the values with a signature of the keys. Therefore, we
effectively double the network bandwidth.

Compressing filter: The values communicated are often compressible numbers, such as zeros,
small integers, and floating point numbers with more than enough precision. This filter reduces
the data size by using lossless or lossy data compression algorithms1.

4 Delayed Block Proximal Gradient Method

In this section, we propose an efficient algorithm taking advantage of the parameter server to solve
the previously defined nonconvex and nonsmooth optimization problem (1).

1Both key caching and data compressing are presented as system-level optimization in the prior work [4],
here we generalize them into user-defined filters.

5

Algorithm 2 Delayed Block Proximal Gradient Method Solving (1)
Scheduler:

1: Partition parameters into k blocks b1, . . . , bk
2: for t = 1 to T : Pick a block bit and issue the task to workers

Worker r at iteration t

1: Wait until all iterations before t− τ are finished
2: Compute first-order gradient g(t)r and coordinate-specific learning rates u(t)r on block bit
3: Push g(t)r and u(t)r to servers with user-defined filters, e.g., the random skip or the KKT filter
4: Pull w(t+1)

r from servers with user-defined filters, e.g., the significantly modified filter
Servers at iteration t

1: Aggregate g(t) and u(t)

2: Solve the generalized proximal operator (2) w(t+1) ← ProxUγt(w
(t)) with U = diag(u(t)).

Proximal Gradient Methods. For a closed proper convex function h(x) : Rp → R∪ {∞} define
the generalized proximal operator

ProxUγ (x) := argmin
y∈Rp

h(y) +
1

2γ
‖x− y‖2U where ‖x‖2U := x>Ux. (2)

The Mahalanobis norm ‖x‖U is taken with respect to a positive semidefinite matrix U � 0. Many
proximal algorithms choose U = 1. To minimize the composite objective function f(w) + h(w),
proximal gradient algorithms update w in two steps: a forward step performing steepest gradient
descent on f and a backward step carrying out projection using h. Given learning rate γt > 0 at
iteration t these two steps can be written as

w(t+1) = ProxUγt
[
w(t) − γt∇f(w(t))

]
for t = 1, 2, . . . (3)

Algorithm. We relax the consistency model of the proximal gradient methods with a block scheme
to reduce the sensitivity to data inconsistency. The proposed algorithm is shown in Algorithm 2. It
differs from the standard method as well as Algorithm 1 in four substantial ways to take advantage
of the opportunities offered by the parameter server and to handle high-dimensional sparse data.

1. Only a block of parameters is updated per iteration.
2. The workers compute both gradients and coordinate-specific learning rates, e.g., the diagonal

part of the second derivative, on this block.
3. Iterations are asynchronous. We use a bounded-delay model over iterations.
4. We employ user-defined filters to suppress transmission of parts of data whose effect on the

model is likely to be negligible.

Convergence Analysis. To prove convergence we need to make a number of assumptions. As
before, we decompose the loss f into blocks fi associated with the training data stored by worker i,
that is f =

∑
i fi. Next we assume that block bt is chosen at iteration t. A key assumption is that

for given parameter changes the rate of change in the gradients of f is bounded. More specifically,
we need to bound the change affecting the very block and the amount of “crosstalk” to other blocks.

Assumption 1 (Block Lipschitz Continuity) There exists positive constants Lvar,i and Lcov,i such
that for any iteration t and all x, y ∈ Rp with xi = yi for any i /∈ bt we have

‖∇btfi(x)−∇btfi(y)‖ ≤ Lvar,i ‖x− y‖ for 1 ≤ i ≤ m (4a)
‖∇bsfi(x)−∇bsfi(y)‖ ≤ Lcov,i ‖x− y‖ for 1 ≤ i ≤ m, t < s ≤ t+ τ (4b)

where∇bf(x) is the block b of∇f(x). Further defineLvar :=
∑m
i=1 Lvar,i andLcov :=

∑m
i=1 Lcov,i.

The following Theorem 2 indicates that this algorithm converges to a stationary point under the
relaxed consistency model, provided that a suitable learning rate is chosen. Note that since the
overall objective is nonconvex, no guarantees of optimality are possible in general.

6

Theorem 2 Assume that updates are performed with a delay bounded by τ , also assume that we
apply a random skip filter on pushing gradients and a significantly-modified filter on pulling weights
with threshold O(t−1). Moreover assume that gradients of the loss are Lipschitz continuous as per
Assumption 1. Denote by Mt the minimal coordinate-specific learning rate at time t. For any ε > 0,
Algorithm 2 converges to a stationary point in expectation if the learning rate γt satisfies

γt ≤
Mt

Lvar + τLcov + ε
for all t > 0. (5)

The proof is shown in Appendix A. Intuitively, the difference between w(t−τ) and w(t) will be small
when reaching a stationary point. As a consequence, also the change in gradients will vanish. The
inexact gradient obtained by delayed and inexact model, therefore, is likely a good approximation
of the true gradient, so the convergence results of proximal gradient methods can be applied.

Note that, when the delay increase, we should decrease the learning rate to guarantee convergence.
However, a larger value is possible when careful block partition and order are chosen. For example,
if features in a block are less correlated then Lvar decreases. If the block is less related to the previous
blocks, then Lcov decreases, as also exploited in [26, 7].

5 Experiments

We now show how the general framework discussed above can be used to solve challenging machine
learning problems. Due to space constraints we only present experimental results for a 0.6PB dataset
below. Details on smaller datasets are relegated to Appendix B. Moreover, we discuss non-smooth
Reconstruction ICA in Appendix C.

Setup. We chose `1-regularized logistic regression for evaluation because that it is one of the
most popular algorithms used in industry for large scale risk minimization [9]. We collected an ad
click prediction dataset with 170 billion samples and 65 billion unique features. The uncompressed
dataset size is 636TB. We ran the parameter server on 1000 machines, each with 16 CPU cores,
192GB DRAM, and connected by 10 Gb Ethernet. 800 machines acted as workers, and 200 were
servers. The cluster was in concurrent use by other jobs during operation.

Algorithm. We adopted Algorithm 2 with upper bounds of the diagonal entries of the Hessian as
the coordinate-specific learning rates. Features were randomly split into 580 blocks according the
feature group information. We chose a fixed learning rate by observing the convergence speed.

We designed a Karush-Kuhn-Tucker (KKT) filter to skip inactive coordinates. It is analogous to
the active-set selection strategies of SVM optimization [16] and active set selectors [22]. Assume
wk = 0 for coordinate k and gk the current gradient. According to the optimality condition of the
proximal operator, also known as soft-shrinkage operator, wk will remain 0 if |gk| ≤ λ. Therefore,
it is not necessary for a worker to send gk (as well as uk). We use an old value ĝk to approximate gk
to further avoid computing gk. Thus, coordinate k will be skipped in the KKT filter if |ĝk| ≤ λ− δ,
where δ ∈ [0, λ] controls how aggressive the filtering is.

Implementation. To the best of our knowledge, no open source system can scale sparse logistic
regression to the scale described in this paper. Graphlab provides only a multi-threaded, single
machine implementation. We compared it with ours in Appendix B. Mlbase, Petuum and REEF do
not support sparse logistic regression (as confirmed with the authors in 4/2014). We compare the
parameter server with two special-purpose second general parameter servers, named System A and
B, developed by a large Internet company.

Both system A and B adopt the sequential consistency model, but the former uses a variant of L-
BFGS while the latter runs a similar algorithm as ours. Notably, both systems consist of more than
10K lines of code. The parameter server only requires 300 lines of code for the same functionality
as System B (the latter was developed by an author of this paper). The parameter server successfully
moves most of the system complexity from the algorithmic implementation into reusable compo-
nents.

7

10
−1

10
0

10
1

10
10.6

10
10.7

time (hours)

o
b

je
c
ti
v
e

 v
a

lu
e

System−A
System−B
Parameter Server

Figure 3: Convergence of sparse logistic regres-
sion on a 636TB dataset.

System−A System−B Parameter Server
0

1

2

3

4

5

ti
m

e
 (

h
o

u
rs

)

computing
waiting

Figure 4: Average time per worker spent on
computation and waiting during optimization.

0 1 2 4 8 16
0

0.5

1

1.5

2

ti
m

e
 (

h
o

u
rs

)

maximal delays

computing

waiting

Figure 5: Time to reach the same convergence
criteria under various allowed delays.

key caching compressing KKT Filter
0

20

40

60

80

100

re
la

tiv
e

ne
tw

or
k

tra
ffi

c
(%

)

server
worker

Figure 6: The reduction of sent data size when
stacking various filters together.

Experimental Results. We compare these systems by running them to reach the same conver-
gence criteria. Figure 3 shows that System B outperforms system A due to its better algorithm. The
parameter server, in turn, speeds up System B in 2 times while using essentially the same algorithm.
It achieves this because the consistency relaxations significantly reduce the waiting time (Figure 4).

Figure 5 shows that increasing the allowed delays significantly decreases the waiting time though
slightly slows the convergence. The best trade-off is 8-delay, which results in a 1.6x speedup com-
paring the sequential consistency model. As can be seen in Figure 6, key caching saves 50% network
traffic. Compressing reduce servers’ traffic significantly due to the model sparsity, while it is less
effective for workers because the gradients are often non-zeros. But these gradients can be filtered
efficiently by the KKT filter. In total, these filters give 40x and 12x compression rates for servers
and workers, respectively.

6 Conclusion

This paper examined the application of a third-generation parameter server framework to modern
distributed machine learning algorithms. We show that it is possible to design algorithms well
suited to this framework; in this case, an asynchronous block proximal gradient method to solve
general non-convex and non-smooth problems, with provable convergence. This algorithm is a
good match to the relaxations available in the parameter server framework: controllable asynchrony
via task dependencies and user-definable filters to reduce data communication volumes. We showed
experiments for several challenging tasks on real datasets up to 0.6PB size with hundreds billions
samples and features to demonstrate its efficiency. We believe that this third-generation parameter
server is an important and useful building block for scalable machine learning. Finally, the source
codes are available at http://parameterserver.org.

8

http://parameterserver.org

References

[1] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In IEEE CDC, 2012.
[2] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J. Smola. Scalable inference in latent variable

models. In WSDM, 2012.
[3] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola. Distributed large-scale

natural graph factorization. In WWW, 2013.
[4] M. Li, D. G. Andersen, J. Park h, A. J. Smola, A. Amhed, V. Josifovski, J. Long, E. Shekita, and B. Y. Su.

Scaling Distributed Machine Learning with the Parameter Server. In OSDI, 2014
[5] Apache Foundation. Mahout project, 2012. http://mahout.apache.org.
[6] L. A. Barroso and H. Hölzle. The datacenter as a computer: An introduction to the design of warehouse-

scale machines. Synthesis lectures on computer architecture, 4(1):1–108, 2009.
[7] J.K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent for L1-regularized loss

minimization. In ICML, 2011.
[8] J. Byers, J. Considine, and M. Mitzenmacher. Simple load balancing for distributed hash tables. In

Peer-to-peer systems II, pages 80–87. Springer, 2003.
[9] K. Canini. Sibyl: A system for large scale supervised machine learning. Technical Talk, 2012.

[10] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, and A. Ng. Large scale distributed deep networks. In NIPS, 2012.

[11] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. CACM, 2008.
[12] Domo. Data Never Sleeps 2.0, 2014. http://www.domo.com/learn.
[13] The Apache Software Foundation. Apache hadoop, 2009. http://hadoop.apache.org/core/.
[14] S. H. Gunderson. Snappy https://code.google.com/p/snappy/.
[15] Q. Ho, J. Cipar, H. Cui, S. Lee, J. Kim, P. Gibbons, G. Gibson, G. Ganger, and E. Xing. More effective

distributed ml via a stale synchronous parallel parameter server. In NIPS, 2013.
[16] T. Joachims. Making large-scale SVM learning practical. Advances in Kernel Methods, 1999
[17] J. Langford, A. J. Smola, and M. Zinkevich. Slow learners are fast. In NIPS, 2009.
[18] Q.V. Le, A. Karpenko, J. Ngiam, and A.Y. Ng. ICA with reconstruction cost for efficient overcomplete

feature learning. NIPS, 2011.
[19] M. Li, D. G. Andersen, and A. J. Smola. Distributed delayed proximal gradient methods. In NIPS

Workshop on Optimization for Machine Learning, 2013.
[20] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D.G. Andersen, and A. J. Smola. Parameter server for distributed

machine learning. In Big Learning NIPS Workshop, 2013.
[21] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Distributed graphlab: A

framework for machine learning and data mining in the cloud. In PVLDB, 2012.
[22] S. Matsushima, S.V.N. Vishwanathan, and A.J. Smola. Linear support vector machines via dual cached

loops. In KDD, 2012.
[23] N. Parikh and S. Boyd. Proximal algorithms. In Foundations and Trends in Optimization, 2013.
[24] K. B. Petersen and M. S. Pedersen. The matrix cookbook, 2008. Version 20081110.
[25] A. Phanishayee, D. G. Andersen, H. Pucha, A. Povzner, and W. Belluomini. Flex-kv: Enabling high-

performance and flexible KV systems. In Management of big data systems, 2012.
[26] B. Recht, C. Re, S.J. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic

gradient descent. NIPS, 2011.
[27] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods for

minimizing a composite function. Mathematical Programming, 2012.
[28] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing for large-scale

peer-to-peer systems. In Distributed Systems Platforms, 2001.
[29] A. J. Smola and S. Narayanamurthy. An architecture for parallel topic models. In VLDB, 2010.
[30] E. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. Gonzalez, M. J. Franklin, M. I. Jordan, and

T. Kraska. MLI: An API for distributed machine learning. 2013.
[31] S. Sra. Scalable nonconvex inexact proximal splitting. In NIPS, 2012.
[32] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer

lookup service for internet applications. SIGCOMM Computer Communication Review, 2001.
[33] C. Teflioudi, F. Makari, and R. Gemulla. Distributed matrix completion. In ICDM, 2012.
[34] C. H. Teo, S. V. N. Vishwanthan, A. J. Smola, and Q. V. Le. Bundle methods for regularized risk mini-

mization. JMLR, January 2010.
[35] R. van Renesse and F. B. Schneider. Chain replication for supporting high throughput and availability. In

OSDI, 2004.
[36] G. X. Yuan, K. W. Chang, C. J. Hsieh, and C. J. Lin. A comparison of optimization methods and software

for large-scale l1-regularized linear classification. JMLR, 2010.
[37] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mccauley, M. J. Franklin, S. Shenker, and I.

Stoica. Fast and interactive analytics over hadoop data with spark. USENIX ;login:, August 2012.
[38] M. Zinkevich, A. J. Smola, M. Weimer, and L. Li. Parallelized stochastic gradient descent. In NIPS, 2010.

9

http://mahout.apache.org
http://www.domo.com/learn
https://code.google.com/p/snappy/

