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Abstract

We examine an important setting for engineered systems in which low-power dis-
tributed sensors are each making highly noisy measurements of some unknown
target function. A center wants to accurately learn this function by querying a
small number of sensors, which ordinarily would be impossible due to the high
noise rate. The question we address is whether local communication among sen-
sors, together with natural best-response dynamics in an appropriately-defined
game, can denoise the system without destroying the true signal and allow the
center to succeed from only a small number of active queries. By using techniques
from game theory and empirical processes, we prove positive (and negative) re-
sults on the denoising power of several natural dynamics. We then show experi-
mentally that when combined with recent agnostic active learning algorithms, this
process can achieve low error from very few queries, performing substantially
better than active or passive learning without these denoising dynamics as well as
passive learning with denoising.

1 Introduction

Active learning has been the subject of significant theoretical and experimental study in machine
learning, due to its potential to greatly reduce the amount of labeling effort needed to learn a given
target function. However, to date, such work has focused only on the single-agent low-noise setting,
with a learning algorithm obtaining labels from a single, nearly-perfect labeling entity. In large
part this is because the effectiveness of active learning is known to quickly degrade as noise rates
become high [5]. In this work, we introduce and analyze a novel setting where label information
is held by highly-noisy low-power agents (such as sensors or micro-robots). We show how by first
using simple game-theoretic dynamics among the agents we can quickly approximately denoise the
system. This allows us to exploit the power of active learning (especially, recent advances in agnostic
active learning), leading to efficient learning from only a small number of expensive queries.

We specifically examine an important setting relevant to many engineered systems where we have a
large number of low-power agents (e.g., sensors). These agents are each measuring some quantity,
such as whether there is a high or low concentration of a dangerous chemical at their location,
but they are assumed to be highly noisy. We also have a center, far away from the region being
monitored, which has the ability to query these agents to determine their state. Viewing the agents
as examples, and their states as noisy labels, the goal of the center is to learn a good approximation
to the true target function (e.g., the true boundary of the high-concentration region for the chemical
being monitored) from a small number of label queries. However, because of the high noise rate,
learning this function directly would require a very large number of queries to be made (for noise
rate η, one would necessarily require Ω( 1

(1/2−η)2 ) queries [4]). The question we address in this
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paper is to what extent this difficulty can be alleviated by providing the agents the ability to engage
in a small amount of local communication among themselves.

What we show is that by using local communication and applying simple robust state-changing
rules such as following natural game-theoretic dynamics, randomly distributed agents can modify
their state in a way that greatly de-noises the system without destroying the true target boundary.
This then nicely meshes with recent advances in agnostic active learning [1], allowing for the center
to learn a good approximation to the target function from a small number of queries to the agents.
In particular, in addition to proving theoretical guarantees on the denoising power of game-theoretic
agent dynamics, we also show experimentally that a version of the agnostic active learning algorithm
of [1], when combined with these dynamics, indeed is able to achieve low error from a small number
of queries, outperforming active and passive learning algorithms without the best-response denoising
step, as well as outperforming passive learning algorithms with denoising. More broadly, engineered
systems such as sensor networks are especially well-suited to active learning because components
may be able to communicate among themselves to reduce noise, and the designer has some control
over how they are distributed and so assumptions such as a uniform or other “nice” distribution on
data are reasonable. We focus in this work primarily on the natural case of linear separator decision
boundaries but many of our results extend directly to more general decision boundaries as well.

1.1 Related Work
There has been significant work in active learning (e.g., see [11, 15]) including active learning in
the presence of noise [9, 4, 1], yet it is known active learning can provide significant benefits in low
noise scenarios only [5]. There has also been extensive work analyzing the performance of simple
dynamics in consensus games [6, 8, 14, 13, 3, 2]. However this work has focused on getting to some
equilibria or states of low social cost, while we are primarily interested in getting near a specific
desired configuration, which as we show below is an approximate equilibrium.

2 Setup
We assume we have a large number N of agents (e.g., sensors) distributed uniformly at random
in a geometric region, which for concreteness we consider to be the unit ball in Rd. There is
an unknown linear separator such that in the initial state, each sensor on the positive side of this
separator is positive independently with probability≥ 1−η, and each on the negative side is negative
independently with probability ≥ 1− η. The quantity η < 1/2 is the noise rate.

2.1 The basic sensor consensus game

The sensors will denoise themselves by viewing themselves as players in a certain consensus game,
and performing a simple dynamics in this game leading towards a specific ε-equilibrium.

Specifically, the game is defined as follows, and is parameterized by a communication radius r,
which should be thought of as small. Consider a graph where the sensors are vertices, and any two
sensors within distance r are connected by an edge. Each sensor is in one of two states, positive or
negative. The payoff a sensor receives is its correlation with its neighbors: the fraction of neighbors
in the same state as it minus the fraction in the opposite state. So, if a sensor is in the same state as all
its neighbors then its payoff is 1, if it is in the opposite state of all its neighbors then its payoff is−1,
and if sensors are in uniformly random states then the expected payoff is 0. Note that the states of
highest social welfare (highest sum of utilities) are the all-positive and all-negative states, which are
not what we are looking for. Instead, we want sensors to approach a different near-equilibrium state
in which (most of) those on the positive side of the target separator are positive and (most of) those
on the negative side of the target separator are negative. For this reason, we need to be particularly
careful with the specific dynamics followed by the sensors.

We begin with a simple lemma that for sufficiently large N , the target function (i.e., all sensors on
the positive side of the target separator in the positive state and the rest in the negative state) is an
ε-equilibrium, in that no sensor has more than ε incentive to deviate.

Lemma 1 For any ε, δ > 0, for sufficiently large N , with probability 1− δ the target function is an
ε-equilibrium.

PROOF SKETCH: The target function fails to be an ε-equilibrium iff there exists a sensor for which
more than an ε/2 fraction of its neighbors lie on the opposite side of the separator. Fix one sensor
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x and consider the probability this occurs to x, over the random placement of the N − 1 other
sensors. Since the probability mass of the r-ball around x is at least (r/2)d (see discussion in proof
of Theorem 2), so long as N − 1 ≥ (2/r)d ·max[8, 4

ε2 ] ln(2N
δ ), with probability 1 − δ

2N , point x
will have mx ≥ 2

ε2 ln( 2N
δ ) neighbors (by Chernoff bounds), each of which is at least as likely to be

on x’s side of the target as on the other side. Thus, by Hoeffding bounds, the probability that more
than a 1

2 + ε
2 fraction lie on the wrong side is at most δ

2N + δ
2N = δ

N . The result then follows by
union bound over allN sensors. For a bit tighter argument and a concrete bound onN , see the proof
of Theorem 2 which essentially has this as a special case.

Lemma 1 motivates the use of best-response dynamics for denoising. Specifically, we consider a
dynamics in which each sensor switches to the majority vote of all the other sensors in its neigh-
borhood. We analyze below the denoising power of this dynamics under both synchronous and
asynchronous update models. In supplementary material, we also consider more robust (though less
practical) dynamics in which sensors perform more involved computations over their neighborhoods.

3 Analysis of the denoising dynamics

3.1 Simultaneous-move dynamics

We start by providing a positive theoretical guarantee for one-round simultaneous move dynamics.
We will use the following standard concentration bound:

Theorem 1 (Bernstein, 1924) Let X =
∑N
i=1Xi be a sum of independent random variables such

that |Xi − E[Xi]| ≤M for all i. Then for any t > 0, P[X − E[X] > t] ≤ exp
(

−t2
2(Var[X]+Mt/3)

)
.

Theorem 2 If N ≥ 2

(r/2)d(
1
2−η)

2
ln

(
1

(r/2)d(
1
2−η)

2δ

)
+ 1 then, with probability ≥ 1− δ, after one

synchronous consensus update every sensor at distance≥ r from the separator has the correct label.

Note that since a band of width 2r about a linear separator has probability mass O(r
√
d), Theorem

2 implies that with high probability one synchronous update denoises all but an O(r
√
d) fraction of

the sensors. In fact, Theorem 2 does not require the separator to be linear, and so this conclusion
applies to any decision boundary with similar surface area, such as an intersection of a constant
number of halfspaces or a decision surface of bounded curvature.

Proof (Theorem 2): Fix a point x in the sample at distance ≥ r from the separator and consider the
ball of radius r centered at x. Let n+ be the number of correctly labeled points within the ball and
n− be the number of incorrectly labeled points within the ball. Now consider the random variable
∆ = n− − n+. Denoising x can give it the incorrect label only if ∆ ≥ 0, so we would like to
bound the probability that this happens. We can express ∆ as the sum of N −1 independent random
variables ∆i taking on value 0 for points outside the ball around x, 1 for incorrectly labeled points
inside the ball, or −1 for correct labels inside the ball. Let V be the measure of the ball centered
at x (which may be less than rd if x is near the boundary of the unit ball). Then since the ball lies
entirely on one side of the separator we have

E[∆i] = (1− V ) · 0 + V η − V (1− η) = −V (1− 2η).

Since |∆i| ≤ 1 we can take M = 2 in Bernstein’s theorem. We can also calculate that Var[∆i] ≤
E[∆2

i ] = V . Thus the probability that the point x is updated incorrectly is

P

[
N−1∑
i=1

∆i ≥ 0

]
= P

[
N−1∑
i=1

∆i − E
[N−1∑
i=1

∆i

]
≥ (N − 1)V (1− 2η)

]

≤ exp

(
−(N − 1)2V 2(1− 2η)2

2
(
(N − 1)V + 2(N − 1)V (1− 2η)/3

))

≤ exp

(
−(N − 1)V (1− 2η)2

2 + 4(1− 2η)/3

)
≤ exp

(
−(N − 1)V ( 1

2 − η)2
)

≤ exp
(
−(N − 1)(r/2)d( 1

2 − η)2
)
,
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where in the last step we lower bound the measure V of the ball around r by the measure of the
sphere of radius r/2 inscribed in its intersection with the unit ball. Taking a union bound over all N

points, it suffices to have e−(N−1)(r/2)
d(

1
2−η)

2

≤ δ/N , or equivalently

N − 1 ≥ 1

(r/2)d( 1
2 − η)2

(
lnN + ln

1

δ

)
.

Using the fact that lnx ≤ αx− lnα− 1 for all x, α > 0 yields the claimed bound on N .

We can now combine this result with the efficient agnostic active learning algorithm of [1]. In
particular, applying the most recent analysis of [10, 16] of the algorithm of [1], we get the following
bound on the number of queries needed to efficiently learn to accuracy 1− ε with probability 1− δ.

Corollary 1 There exists constant c1 > 0 such that for r ≤ ε/(c1
√
d), and N satisfying the bound

of Theorem 2, if sensors are each initially in agreement with the target linear separator indepen-
dently with probability at least 1−η, then one round of best-response dynamics is sufficient such that
the agnostic active learning algorithm of [1] will efficiently learn to error ε using only O(d log 1/ε)
queries to sensors.

In Section 5 we implement this algorithm and show that experimentally it learns a low-error decision
rule even in cases where the initial value of η is quite high.

3.2 A negative result for arbitrary-order asynchronous dynamics

We contrast the above positive result with a negative result for arbitrary-order asynchronous moves.
In particular, we show that for any d ≥ 1, for sufficiently large N , with high probability there exists
an update order that will cause all sensors to become negative.

Theorem 3 For some absolute constant c > 0, if r ≤ 1/2 and sensors begin with noise rate η, and

N ≥ 16

(cr)dφ2

(
ln

8

(cr)dφ2
+ ln

1

δ

)
,

where φ = φ(η) = min(η, 12 − η), then with probability at least 1 − δ there exists an ordering of
the agents so that asynchronous updates in this order cause all points to have the same label.

PROOF SKETCH: Consider the case d = 1 and a target function x > 0. Each subinterval of [−1, 1]
of width r has probability mass r/2, and letm = rN/2 be the expected number of points within such
an interval. The given value of N is sufficiently large that with high probability, all such intervals
in the initial state have both a positive count and a negative count that are within ±φ4m of their
expectations. This implies that if sensors update left-to-right, initially all sensors will (correctly) flip
to negative, because their neighborhoods have more negative points than positive points. But then
when the “wave” of sensors reaches the positive region, they will continue (incorrectly) flipping to
negative because the at least m(1 − φ

2 ) negative points in the left-half of their neighborhood will
outweigh the at most (1 − η + φ

4 )m positive points in the right-half of their neighborhood. For a
detailed proof and the case of general d > 1, see supplementary material.

3.3 Random order dynamics

While Theorem 3 shows that there exist bad orderings for asynchronous dynamics, we now show
that we can get positive theoretical guarantees for random order best-response dynamics.

The high level idea of the analysis is to partition the sensors into three sets: those that are within
distance r of the target separator, those at distance between r and 2r from the target separator, and
then all the rest. For those at distance < r from the separator we will make no guarantees: they
might update incorrectly when it is their turn to move due to their neighbors on the other side of the
target. Those at distance between r and 2r from the separator might also update incorrectly (due to
“corruption” from neighbors at distance < r from the separator that had earlier updated incorrectly)
but we will show that with high probability this only happens in the last 1/4 of the ordering. I.e.,
within the first 3N/4 updates, with high probability there are no incorrect updates by sensors at
distance between r and 2r from the target. Finally, we show that with high probability, those at
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distance greater than 2r never update incorrectly. This last part of the argument follows from two
facts: (1) with high probability all such points begin with more correctly-labeled neighbors than
incorrectly-labeled neighbors (so they will update correctly so long as no neighbors have previously
updated incorrectly), and (2) after 3N/4 total updates have been made, with high probability more
than half of the neighbors of each such point have already (correctly) updated, and so those points
will now update correctly no matter what their remaining neighbors do. Our argument for the sensors
at distance in [r, 2r] requires r to be small compared to ( 1

2 − η)/
√
d, and the final error is O(r

√
d),

so the conclusion is we have a total error less than ε for r < cmin[ 12 − η, ε]/
√
d for some absolute

constant c.

We begin with a key lemma. For any given sensor, define its inside-neighbors to be its neighbors
in the direction of the target separator and its outside-neighbors to be its neighbors away from the
target separator. Also, let γ = 1/2− η.

Lemma 2 For any c1, c2 > 0 there exist c3, c4 > 0 such that for r ≤ γ

c3
√
d

and N ≥
c4

(r/2)dγ2 ln( 1
rdγδ

), with probability 1−δ, each sensor x at distance between r and 2r from the target
separator has mx ≥ c1

γ2 ln(4N/δ) neighbors, and furthermore the number of inside-neighbors of x
that move before x is within ± γ

c2
mx of the number of outside neighbors of x that move before x.

Proof: First, the guarantee on mx follows immediately from the fact that the probability mass of
the ball around each sensor x is at least (r/2)d, so for appropriate c4 the expected value of mx is at
least max[8, 2c1γ2 ] ln(4N/δ), and then applying Hoeffding bounds [12, 7] and the union bound. Now,
fix some sensor x and let us first assume the ball of radius r about x does not cross the unit sphere.
Because this is random-order dynamics, if x is the kth sensor to move within its neighborhood,
the k − 1 sensors that move earlier are each equally likely to be an inside-neighbor or an outside-
neighbor. So the question reduces to: if we flip k−1 ≤ mx fair coins, what is the probability that the
number of heads differs from the number of tails by more than γ

c2
mx. For mx ≥ 2( c2γ )2 ln(4N/δ),

this is at most δ/(2N) by Hoeffding bounds. Now, if the ball of radius r about x does cross the
unit sphere, then a random neighbor is slightly more likely to be an inside-neighbor than an outside-
neighbor. However, because x has distance at most 2r from the target separator, this difference in
probabilities is only O(r

√
d), which is at most γ

2c2
for appropriate choice of constant c3.1 So, the

result follows by applying Hoeffding bounds to the γ
2c2

gap that remains.

Theorem 4 For some absolute constants c3, c4, for r ≤ γ

c3
√
d

and N ≥ c4
(r/2)dγ2 ln( 1

rdγδ
), in

random order dynamics, with probability 1 − δ all sensors at distance greater than 2r from the
target separator update correctly.

PROOF SKETCH: We begin by using Lemma 2 to argue that with high probability, no points at
distance between r and 2r from the separator update incorrectly within the first 3N/4 updates (which
immediately implies that all points at distance greater than 2r update correctly as well, since by
Theorem 2, with high probability they begin with more correctly-labeled neighbors than incorrectly-
labeled neighbors and their neighborhood only becomes more favorable). In particular, for any given
such point, the concern is that some of its inside-neighbors may have previously updated incorrectly.
However, we use two facts: (1) by Lemma 2, we can set c4 so that with high probability the total
contribution of neighbors that have already updated is at most γ8mx in the incorrect direction (since
the outside-neighbors will have updated correctly, by induction), and (2) by standard concentration

1We can analyze the difference in probabilities as follows. First, in the worst case, x is at distance exactly
2r from the separator, and is right on the edge of the unit ball. So we can define our coordinate system to view
x as being at location (2r,

√
1− 4r2, 0, . . . , 0). Now, consider adding to x a random offset y in the r-ball. We

want to look at the probability that x + y has Euclidean length less than 1 conditioned on the first coordinate
of y being negative compared to this probability conditioned on the first coordinate of y being positive. Notice
that because the second coordinate of x is nearly 1, if y2 ≤ −cr2 for appropriate c then x + y has length less
than 1 no matter what the other coordinates of y are (worst-case is if y1 = r but even that adds at most O(r2)
to the squared-length). On the other hand, if y2 ≥ cr2 then x + y has length greater than 1 also no matter
what the other coordinates of y are. So, it is only in between that the value of y1 matters. But notice that the
distribution over y2 has maximum density O(

√
d/r). So, with probability nearly 1/2, the point is inside the

unit ball for sure, with probability nearly 1/2 the point is outside the unit ball for sure, and only with probability
O(r2

√
d/r) = O(r

√
d) does the y1 coordinate make any difference at all.
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Figure 1: The margin-based active learning algorithm after iteration k. The algorithm samples points
within margin bk of the current weight vector wk and then minimizes the hinge loss over this sample
subject to the constraint that the new weight vector wk+1 is within distance rk from wk.

inequalities [12, 7], with high probability at least 1
8mx neighbors of x have not yet updated. These

1
8mx un-updated neighbors together have in expectation a γ

4mx bias in the correct direction, and
so with high probability have greater than a γ

8mx correct bias for sufficiently large mx (sufficiently
large c1 in Lemma 2). So, with high probability this overcomes the at most γ

8mx incorrect bias
of neighbors that have already updated, and so the points will indeed update correctly as desired.
Finally, we consider the points of distance ≥ 2r. Within the first 3

4N updates, with high probability
they will all update correctly as argued above. Now consider time 3

4N . For each such point, in
expectation 3

4 of its neighbors have already updated, and with high probability, for all such points
the fraction of neighbors that have updated is more than half. Since all neighbors have updated
correctly so far, this means these points will have more correct neighbors than incorrect neighbors
no matter what the remaining neighbors do, and so they will update correctly themselves.

4 Query efficient polynomial time active learning algorithm

Recently, Awasthi et al. [1] gave the first polynomial-time active learning algorithm able to learn
linear separators to error ε over the uniform distribution in the presence of agnostic noise of rate
O(ε). Moreover, the algorithm does so with optimal query complexity of O(d log 1/ε). This algo-
rithm is ideally suited to our setting because (a) the sensors are uniformly distributed, and (b) the
result of best response dynamics is noise that is low but potentially highly coupled (hence, fitting
the low-noise agnostic model). In our experiments (Section 5) we show that indeed this algorithm
when combined with best-response dynamics achieves low error from a small number of queries,
outperforming active and passive learning algorithms without the best-response denoising step, as
well as outperforming passive learning algorithms with denoising.

Here, we briefly describe the algorithm of [1] and the intuition behind it. At high level, the algorithm
proceeds through several rounds, in each performing the following operations (see also Figure 1):

Instance space localization: Request labels for a random sample of points within a band of width
bk = O(2−k) around the boundary of the previous hypothesis wk.

Concept space localization: Solve for hypothesis vector wk+1 by minimizing hinge loss subject to
the constraint that wk+1 lie within a radius rk from wk; that is, ||wk+1 − wk|| ≤ rk.

[1, 10, 16] show that by setting the parameters appropriately (in particular, bk = Θ(1/2k) and
rk = Θ(1/2k)), the algorithm will achieve error ε using only k = O(log 1/ε) rounds, with O(d)
label requests per round. In particular, a key idea of their analysis is to decompose, in round k, the
error of a candidate classifier w as its error outside margin bk of the current separator plus its error
inside margin bk, and to prove that for these parameters, a small constant error inside the margin
suffices to reduce overall error by a constant factor. A second key part is that by constraining the
search for wk+1 to vectors within a ball of radius rk about wk, they show that hinge-loss acts as a
sufficiently faithful proxy for 0-1 loss.
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5 Experiments

In our experiments we seek to determine whether our overall algorithm of best-response dynamics
combined with active learning is effective at denoising the sensors and learning the target boundary.
The experiments were run on synthetic data, and compared active and passive learning (with Support
Vector Machines) both pre- and post-denoising.

Synthetic data. The N sensor locations were generated from a uniform distribution over the unit
ball in R2, and the target boundary was fixed as a randomly chosen linear separator through the
origin. To simulate noisy scenarios, we corrupted the true sensor labels using two different methods:
1) flipping the sensor labels with probability η and 2) flipping randomly chosen sensor labels and all
their neighbors, to create pockets of noise, with η fraction of total sensors corrupted.

Denoising via best-response dynamics. In the denoising phase of the experiments, the sensors
applied the basic majority consensus dynamic. That is, each sensor was made to update its label
to the majority label of its neighbors within distance r from its location2. We used radius values
r ∈ {0.025, 0.05, 0.1, 0.2}. Updates of sensor labels were carried out both through simultaneous
updates to all the sensors in each iteration (synchronous updates) and updating one randomly chosen
sensor in each iteration (asynchronous updates).

Learning the target boundary. After denoising the dataset, we employ the agnostic active learn-
ing algorithm of Awasthi et al. [1] described in Section 4 to decide which sensors to query and
obtain a linear separator. We also extend the algorithm to the case of non-linear boundaries by im-
plementing a kernelized version (see supplementary material for more details). Here we compare
the resulting error (as measured against the “true” labels given by the target separator) against that
obtained by training a SVM on a randomly selected labeled sample of the sensors of the same size
as the number of queries used by the active algorithm. We also compare these post-denoising er-
rors with those of the active algorithm and SVM trained on the sensors before denoising. For the
active algorithm, we used parameters asymptotically matching those given in Awasthi et al [1] for
a uniform distribution. For SVM, we chose for each experiment the regularization parameter that
resulted in the best performance.

5.1 Results

Here we report the results for N = 10000 and r = 0.1. Results for experiments with other values of
the parameters are included in the supplementary material. Every value reported is an average over
50 independent trials.

Denoising effectiveness. Figure 2 (left side) shows, for various initial noise rates, the fraction of
sensors with incorrect labels after applying 100 rounds of synchronous denoising updates. In the
random noise case, the final noise rate remains very small even for relatively high levels of initial
noise. Pockets of noise appear to be more difficult to denoise. In this case, the final noise rate
increases with initial noise rate, but is still nearly always smaller than the initial level of noise.

Synchronous vs. asynchronous updates. To compare synchronous and asynchronous updates we
plot the noise rate as a function of the number of rounds of updates in Figure 2 (right side). As our
theory suggests, both simultaneous updates and asynchronous updates can quickly converge to a low
level of noise in the random noise setting (in fact, convergence happens quickly nearly every time).
Neither update strategy achieves the same level of performance in the case of pockets of noise.

Generalization error: pre- vs. post-denoising and active vs. passive. We trained both active
and passive learning algorithms on both pre- and post-denoised sensors at various label budgets,
and measured the resulting generalization error (determined by the angle between the target and
the learned separator). The results of these experiments are shown in Figure 3. Notice that, as
expected, denoising helps significantly and on the denoised dataset the active algorithm achieves
better generalization error than support vector machines at low label budgets. For example, at a

2We also tested distance-weighted majority and randomized majority dynamics and experimentally ob-
served similar results to those of the basic majority dynamic.
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Figure 2: Initial vs. final noise rates for synchronous updates (left) and comparison of synchronous
and asynchronous dynamics (right). One synchronous round updates every sensor once simultane-
ously, while one asynchronous round consists of N random updates.

label budget of 30, active learning achieves generalization error approximately 33% lower than
the generalization error of SVMs. Similar observations were also obtained upon comparing the
kernelized versions of the two algorithms (see supplementary material).
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Figure 3: Generalization error of the two learning methods with random noise at rate η = 0.35 (left)
and pockets of noise at rate η = 0.15 (right).

6 Discussion

We demonstrate through theoretical analysis as well as experiments on synthetic data that local best-
response dynamics can significantly denoise a highly-noisy sensor network without destroying the
underlying signal, allowing for fast learning from a small number of label queries. Our positive
theoretical guarantees apply both to synchronous and random-order asynchronous updates, which
is borne out in the experiments as well. Our negative result in Section 3.2 for adversarial-order
dynamics, in which a left-to-right update order can cause the entire system to switch to a single label,
raises the question whether an alternative dynamics could be robust to adversarial update orders. In
the supplementary material we present an alternative dynamics that we prove is indeed robust to
arbitrary update orders, but this dynamics is less practical because it requires substantially more
computational power on the part of the sensors. It is an interesting question whether such general
robustness can be achieved by a simple practicall update rule. Another open question is whether an
alternative dynamics can achieve better denoising in the region near the decision boundary.
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