
Recursive Inversion Models for Permutations

Christopher Meek
Microsoft Research

Redmond, Washington 98052
meek@microsoft.com

Marina Meilă
University of Washington
Seattle, Washington 98195

mmp@stat.washington.edu

Abstract

We develop a new exponential family probabilistic model for permutations that
can capture hierarchical structure and that has the Mallows and generalized Mal-
lows models as subclasses. We describe how to do parameter estimation and pro-
pose an approach to structure search for this class of models. We provide experi-
mental evidence that this added flexibility both improves predictive performance
and enables a deeper understanding of collections of permutations.

1 Introduction

Among the many probabilistic models over permutations, models based on penalizing inversions
with respect to a reference permutation have proved particularly elegant, intuitive, and useful. Typi-
cally these generative models “construct” a permutation in stages by inserting one item at each stage.
An example of such models are the Generalized Mallows Models (GMMs) of Fligner and Verducci
(1986). In this paper, we propose a superclass of the GMM, which we call the recursive inversion
model (RIM), which allows more flexibility than the original GMM, while preserving its elegant and
useful properties of compact parametrization, tractable normalization constant, and interpretability
of parameters. Essentially, while the GMM constructs a permutation sequentially by a stochastic
insertion sort process, the RIM constructs one by a stochastic merge sort. In this sense, the RIM is a
compactly parametrized Riffle Independence (RI) model (Huang & Guestrin, 2012) defined in terms
of inversions rather than independence.

2 Recursive Inversion Models

We are interested in probabilistic models of permutations of a set of elements E = {e1, ..., en}. We
use π ∈ SE to denote a permutation (a total ordering) of the elements in E, and use ei <π ej to
denote that two elements are ordered. We define an n× n (lower diagonal) discrepancy matrix Dij

that captures the discrepancies between two permutations.

Dij(π, π0) =

{
1 i <π j ∧ j <π0 i
0 otherwise

(1)

We call the first argument of Dij(·, ·) the test permutation (typically π) and the second argument the
reference permutation (typically π0).

Two classic models for permutations are the Mallows and the generalized Mallows models. The
Mallows model is defined in terms of the inversion distance d(π, π0) =

∑
ij Dij(π, π0) which

is the total number of inversions between π and π0 (Mallows, 1957). The Mallows models is
then P (π|π0, θ) = 1

Z(θ) exp(−θd(π, π0)), θ ∈ R. Note that the normalization constant does
not depend on π0 but only on the concentration parameter θ. The Generalized Mallows model
(GMM) of Fligner and Verducci (1986) extends the Mallows model by introducing a parame-
ter for each of the elements in E and decomposes the inversion distance into a per element dis-

1

tance1. In particular, we define vj(π, π0) to be the number of inversions for element j in π
with respect to π0 is vj(π, π0) =

∑
i>π0 j

Dij(π, π0). In this case, the GMM is defined as
P (π|π0, θ) = 1

Z(θ) exp(−
∑
e∈E θeve) θ ∈ Rn. The GMM can be thought of as a stagewise

model in which each of the elements in E are inserted according to the reference permutation π0
into a list where the parameter θe controls how likely the insertion of element e will yield an inver-
sion with respect to the reference permutation. For both of these models the normalization constant
can be computed in closed form

Our RIMs generalize the GMM by replacing the sequence of single element insertions with a se-
quence of recursive merges of subsequences where the relative order within the subsequences is pre-
served. For example, the sequence [a, b, c, d, e] can be obtained by merging the two subsequences
[a, b, c] with [d, e] with zero inversions and the sequence [a, d, b, e, c] can be obtained from these
subsequences with 3 inversions. The RIM generates a permutation recursively by merging subse-
quences defined by a binary recursive decomposition of the elements in E and where the number of
inversions is controlled by a separate parameter associated with each merge operation.

More formally, a RIM τ(θ) for a set of elements E = {e1, . . . , en}, has a structure τ that repre-
sents a recursive decomposition of the set E and a set of parameters θ ∈ Rn−1. We represent a
RIM as a binary tree with n = |E| leaves, each associated with a distinct element of E. We denote
the set of internal vertices of the binary tree by I and each internal vertex is represented as a triple
i = (θi, iL, iR) where iL (iR) is the left (right) subtree, and θi controls the number of inversions
when merging the subsequences generated from each of the subtrees. Traversing the tree τ in pre-
order, with the left child preceding the right child induces a permutation on E called the reference
permutation of the RIM which we denote as πτ .

The RIM is defined in terms of the vertex discrepancy, the number of inversions at (internal) vertex
i = (θi, iL, iR) of τ(θ) for test permutation π is vi(π, πτ) =

∑
l∈Li

∑
r∈Ri Dlr(π, πτ) where Li

(Ri) is the subset of elements E that appear as leaves of iL (iR), the left (right) subtree of internal
vertex i. Note that the sum of the vertex discrepancies over the internal vertices is the inversion
distance between π and the reference permutation πτ . Finally, the likelihood of a permutation π
with respect to RIM τ(θ) is as follows:

P (π|τ) ∝
∏
i∈I

exp(−θivi(π, πτ)) (2)

Example: For elements E = {a, b, c, d},
Figure 1 shows a RIM τ for preferences over
four types of fruit. The reference permuta-
tion for this model is πτ = (a, b, c, d) and the
modal permutation is (c, d, a, b) due to the
sign of the root vertex. For test permutation
π = (d, a, b, c), we have that vroot(π, πτ) =
2, vleft = 0, and vright = 1. Note that the
model captures strong preferences between
the pairs (a, b) and (c, d) and weak prefer-
ences between (c, a),(d, a),(c, b) and (d, b).
This is an example of a set of preferences that
cannot be captured in a GMM as choosing
a strong preference between the pairs (a, b)
and (c, d) induces a strong preference be-
tween either (a, d) or (c, b) which differs in
both strength and order from the example.

apple banana cherry durian

0.8 1.6

-0.1

Figure 1: An example of a RIM for fruit pref-
erences among (a)pple, (b)anana, (c)herry, and
(d)urian. The parameter for internal vertices indi-
cates the preference between items in the left and
right subtree with 0 indicating no preference and
a negative number indicating the right items are
more preferable than the left items.

Naive computation of the partition function Z(τ(θ)) for a recursive inversion model would require
a sum with n! summands (all permutations). We can, however, use the recursive structure of τ(θ) to
compute it as follows:

1Note that a GMM can be parameterized in terms of n− 1 parameters due to the fact that vn = 0.

2

Proposition 1

Z(τ(θ)) =
∏
i∈I

G(|Li|, |Ri|; exp(−θi)). (3)

G(n,m; q) =
(q)n+m

(q)n(q)m

def
≡ Zn,m(q) . (4)

In the above G(n,m; q) is the Gaussian polynomial (Andrews, 1985) and (q)n =
∏n
i=1(1 − qi).

The Gaussian polynomial is not defined for q = 1 so we extend the definition so that G(n,m, 1) =(
n+m
m

)
which corresponds to the limit of the Gaussian polynomial as q approaches 1 (and θ ap-

proaches 0).

Note that when all θi ≥ 0 the reference permutation πτ is also a modal permutation and that this
modal permutation is unique when all θi > 0. Also note that a GMM can be represented by using
a chain-like tree structure in which each element in the reference permutation is split from the
remaining elements one at a time.

3 Estimating Recursive Inversion Models

In this section, we present a Maximum Likelihood (ML) approach to parameter and structure esti-
mation from an observed data D = {π1, π2, . . . πN} of permutations over E.

Parameter estimation is straight-forward. Given a structure τ , we see from (2) that the likelihood
factors according to the structure. In particular, a RIM is a product of exponential family models,
one for each internal node i ∈ I. Consequently, the (negative) log-likelihood given D decomposes
into a sum

− lnP (D|τ(θ)) =
∑
i∈I

[θiV̄i + lnZ|Li|,|Ri|(e
−θi)]︸ ︷︷ ︸

score(i,θi)

(5)

with V̄i = 1
|D|
∑
π∈D vi(π, πτ) representing the sufficient statistic for node i from data. This is

a convex function of the parameters θi, and hence the ML estimate can be obtained numerically
solving a set of univariate minimization problems. In the remainder of the paper we use D to
be the sum of the discrepancy matrices for all of the observed data D with respect to the identity
permutation. Note that this matrix provides a basis for efficiently computing the sufficient statistics
of any RIM.

In the remainder of this section, we consider the problem of estimating the structure of a RIM from
observed data beginning with a brief exploration of the degree to which the structure of a RIM can
be identified.

3.1 Identifiability

First, we consider whether the structure of a RIM can be identified from data. From the previous
section, we know that the parameters are identifiable given the structure. However, the structure of
a RIM can only be identified under suitable assumptions.

The first type of non-identifiability occurs when some θi parameters are zero. In this case, the
permutation πτ is not identifiable, because switching the left and right child of node i with θi = 0
will not change the distribution represented by the RIM. In fact, as shown by the next proposition, the
left and right children can be swapped without changing the distribution if the sign of the parameter
is changed.

Proposition 2 Let τ(θ) be a RIM over E, D a matrix of sufficient statistics and i any internal node
of τ , with parameter θi and iL, iR its left and right children. Denote by τ ′(θ′) the RIM obtained
from τ(θ) by switching iL, iR, and setting θ′i = −θi. Then, P (π|τ(θ)) = P (π|τ ′(θ′)) for all
permutations π of E.

This proposition demonstrates that the structure of a RIM cannot be identified in general and that
there is an equivalence class of alternative structures among which we cannot distinguish. We elimi-

3

nate this particular type of non-identifiability by considering RIM that are in canonical form. Propo-
sition 2 provides a way to put any τ(θ) in canonical form.

Algorithm 1 Algorithm CANONICALPERMUTATION

Input any τ(θ)
for each internal node i with parameter θi do

if θi < 0 then
θi ← −θi; switch left child with right child

end if
end for

Proposition 3 For any matrix of sufficient statistics D, and any RIM τ(θ), Algorithm CANONI-
CALPERMUTATION does not change the log-likelihood.

The proof of correctness follows from repeated application of Proposition 2. Moreover, if θi 6= 0
before applying CANONICALPERMUTATION, then the output of the algorithm will have all θi > 0.

A further non identifiability arises when parameters of the generating model are equal. It is easy to
see that if all the parameters θi are equal to the same value θ, then the likelihood of a permutation
π would be P (π|τ, (θ, . . . θ)) ∝ exp(−θd(π, πτ)), which is the likelihood corresponding to the
Mallows model. In this case πτ is identifiable, but the internal structure is not. Similarly, if all the
parameters θi are equal in a subtree of τ , then the structure in that subtree is not identifiable.

We say that a RIM τ(θ) is locally identifiable iff θi 6= 0, i ∈ I and |θi| 6= |θi′ | whenever i is a
child of i′. We say that a RIM τ(θ) is identifiable if there is a unique canonical RIM that represents
the same distribution. The following proposition captures the degree to which one can identify the
structure of a RIM.

Proposition 4 A RIM τ(θ) is identifiable iff it is locally identifiable.

3.2 ML estimation or τ for fixed πτ is tractable

We first consider ML estimation when we fix πτ , the reference permutation over the leaves in E.
For the remainder of this section we assume that the optimal value of θ̂i for any internal node i is
available (e.g., via the convex optimization problem described in the previous section). Hence, what
remains to be estimated is the internal tree structure

Proposition 5 For any set E, permutation πτ over E, and observed data D, the Maximum Likeli-
hood RIM structure inducing this πτ can be computed in polynomial time by Dynamic Programming
algorithm STRUCTBYDP.

Proof sketch Note that there is a one-to-one correspondence between tree structures representing
alternative binary recursive partitioning over a fixed permutation of E and alternative ways in which
the one can parenthesize the permutation of E. The negative log-likelihood decomposes according
to the structure of the model with the cost of a subtree rooted at i depending only on the structure
of this subtree. Furthermore, this cost can be decomposed recursively into a sum of score(i, θ̂i)
and the costs of iL, iR the subtrees of i. The recursion is identical to the recursion of the “optimal
matrix chain multiplication” problem, or to the “inside” part of the Inside-Outside algorithm in string
parsing by SCFGs (Earley, 1970).

Without loss of generality, we consider that πτ is the identity, πτ = (e1, . . . en). For any subse-
quence ej , . . . em of length l = m − j + 1, we define the variables cost(j,m), θ(j,m), Z(j,m)
that will store respectively the negative log-likelihood, the parameter at the root, and the Z for the
root node of the optimal tree over the subsequence ej , . . . em. If all the values of cost(j,m) are
known for m − j + 1 < l, then the values of cost(j, j + l − 1), θ(j, j + l − 1), Z(j, j + l − 1)
are obtained recursively from the existing values. We also maintain the pointers back(j,m) that
indicate which subtrees were used in obtaining cost(j,m). When cost(1, n) and the corresponding
θ and Z are obtained, the optimal structure and its parameters have been found, and they can be read

4

recursively by following the pointers back(j,m). Note that in the innermost loop, the quantities
score(j,m), θ(j,m), V̄ are recalculated for each k.

We call the algorithm implementing this optimization STRUCTBYDP.

Algorithm 2 Algorithm STRUCTBYDP

1: Input sample discrepancy matrix D computed from the observed data
2: for m = 1 : n do
3: cost(m,m)← 0
4: end for
5: for l← 2 . . . n do
6: for j ← 1 : n− l + 1 do
7: m← j + l − 1
8: cost(j,m)←∞
9: for k ← j : m− 1 do

10: calculate V̄ =
∑k
j′=j

∑m
m′=kDm′j′

11: L = k − j + 1, R = m− k
12: estimate θjm from L,R, V̄
13: calculate score(j,m) by (5)
14: s← cost(j, k) + cost(k + 1,m) + score(j,m)
15: if s < cost(j,m) then
16: cost(j,m)← s, back(j,m)← k
17: store θ(j,m), ZLR(j,m)
18: end if
19: end for
20: end for
21: end for

Algorithm 3 Algorithm SASEARCH

Input set E, discrepancy matrix D computed from observed data, inverse temperature β
Initialize Estimate GMM τ0 by BRANCH&BOUND , τ best = τ0
for t = 1, 2, . . . tmax do

while accept= FALSE do
sample π ∼ P (π|τt−1)
τ ′ ← STRUCTBYDP(π,D)
τ ′ ←CANONICALPERMUTATION(τ ′)
π′ ← reference order of τ ′
τ ′ ← STRUCTBYDP(π′, D)
accept=TRUE, u ∼ uniform[0, 1)

if e−β(lnP (D|τt−1)−lnP (D|τ ′)) < u then
accept← FALSE

end if
end while
τt ← τ ′ (store accepted new model)
if P (D|τt) > P (D|τ best) then
τ best ← τt

end if
end for
Output τ best

To evaluate the running time of STRUCTBYDP algorithm, we consider the inner loop over k for
a given l. This loop computes V̄ , θ̂, Z for each L,R split of l, with L + R = l. Apparently, this
would take time cubic in l, since V̄ is a summation over LR terms. However, one can notice that
in the calculations of all V̄ values over this submatrix of size l × l, for L = 1, 2, . . . l − 1, each
of the Drl elements is added once to the sum, is kept in the sum for a number of steps, then is
removed. Therefore, the total number of additions and subtractions is no more than twice l(l−1)/2,
the number of submatrix elements . Estimating θ and the score involved computing Z by (3) (for

5

the score) and its gradient (for the θ estimation). These take min(L,R) < l operations per iteration.
If we consider the number of iterations to convergence a constant, then the inner loop over k will
take O(l2) operations. Since there are n − l subsequences of length l, it is easy now to see that the
running time of the whole STRUCTBYDP algorithm is of the the order n4.

3.3 A local search algorithm

Next we develop a local search algorithm for the structure when a reference permutation is not
provided. In part, this approach can be motivated by previous work on structure estimation for the
Mallows model, where the structure is a permutation. For these problems, researchers have found
that an approach in which one greedily improves the log-likelihood by transposing adjacent elements
coupled with a good initialization is a very effective approximate optimization method (Schalekamp
& van Zuylen, 2009; Ali & Meila, 2011).

In our approach, we take a similar approach and treat the problem as a search for good reference
permutations leveraging the STRUCTBYDP algorithm to find the structure given a reference per-
mutation. At a high level, we initialize πτ = π0 by estimating a GMM from the data D and then
improve πτ by “local changes” starting from π0.

We rely on estimation of a GMM for initialization but, unfortunately, the ML estimation of a Mal-
lows model, as well as that of a GMM, is NP-hard (Bartholdi et al., 1989). For the initialization, we
can use any of the fast heuristic methods of estimating a Mallows model, or a more computation-
ally expensive search algorithm, The latter approach, if the search space is small enough, can find a
provably optimal permutation but, in most cases, it will return a suboptimal result.

For the local search, we make two variations with respect to the previous works, and we add a local
optimization step specific to the class of Recursive Inversion models. First, we replace the greedy
search with a simulated annealing search. Thus, we will generate proposal permutations π′ near
the current π. Second, the proposals permutations π′ are not restricted to pairwise transpositions.
Instead, we sample a permutation π′ from the current RIM τt. The reason is that if some of the
pairs e ≺πτ e′ are only weakly ordered by τt (which would happen if this ordering or e, e′ is not
well supported by the data), then the sampling process will be likely to create inversions between
these pairs. Conversely, if τt puts a very high confidence on e ≺ e′, then it is probable that this
ordering is well supported by the data and reversing it will be improbable in the proposed τ .

For each accepted proposal permutation π, we estimate the optimal structure τ give this π and the
optimal parameters θ̂ given the structure τ . Rather than sampling a permutation from the RIM τ(θ̂)
we then apply CANONICALPERMUTATION, which does not change the log-likelihood, to convert
τ(θ̂) into a canonical model and perform another structure optimization step STRUCTBYDP. This
has the chance of once again increasing the log-likelihood, and experimentally we find that it often
does increase the log-likelihood significantly. We then use the estimated structure and associated
parameters to sample a new permutation. These steps are implemented by algorithm SASEARCH.

4 Related work

In addition to the Mallows and GMM models, our RIM model is related to the work of Manilla
& Meek (2000). To understand the connection between this work and our RIM model consider a
restricted RIM model in which parameter values can either be 0 or ∞. Such a model provides
a uniform distribution over permutations consistent with a series-parallel partial order defined in
terms of the binary recursive partition where a parameter whose value is 0 corresponds to a parallel
combination and a parameter value of∞ corresponds to a series combination. The work of Manilla
& Meek (2000) considers the problem of learning the structures and estimating the parameters of
mixtures of these series-parallel RIM models using a local greedy search over recursive partitions of
elements.

Another close connection exists between RIM models and the riffle independence models (RI) pro-
posed by Huang et al. (2009); Huang & Guestrin (2012); Huang et al. (2012). Both approaches use
a recursive partitioning of the set of elements to define a distribution over permutations. Unlike the
RIM model, the RI model is not defined in terms of inversions but rather in terms of independence
between the merging processes. The RI model requires exponentially more parameters than the

6

Irish Meath elections Sushi

Figure 2: Log-likelihood scores for the models alph, HG, and GMM as differences from the log-
likelihood of SASEARCH output, on held-out sets from Meath elections data (left) and Sushi data
(middle). Train/test set split was 90/2400, respectively 300/4700, with 50 random replications.
Negative score indicate that a model has lower likelihood than the model obtained by SASEARCH.
The far outlier(s) in meath represent one run where SA scored poorly on the test set. Right: Most
common structure and typical parameters learned for the sushi data. Interior nodes contain the asso-
ciated parameter value, with higher values and darker green indicating a stronger ordering between
the items in the left and right subtrees. The leaves are the different types of sushi.

RIM model due to the fact that the model defines a general distribution over mergings which grows
exponentially in the cardinality of the left and right sets of elements. In addition, the RI models
do not have the same ease of interpretation as the RIM model. For instance, one cannot easily ex-
tract a reference permutation or modal permutation from a given a RI model, and the comparison
of alternative RI models, even when the two RI models have the same structure, is limited to the
comparison of rank marginals and Fourier coefficients.

It is worth noting that there have been a wide range of approaches that use multiple reference per-
mutations. One benefit of such approaches is that they enable the model to capture multi-modal
distributions over permutations. Examples of such approaches include the mixture modeling ap-
proaches of Manilla & Meek (2000) discussed above and the work of Lebanon & Lafferty (2002)
and Klementiev et al. (2008), where the model is a weighted product of a set of Mallows models each
with their own reference order. It is natural to consider both mixtures and products of RIM models.

5 Experiments

We performed experiments on synthetic data and real-world data sets. In our synthetic experiments
we found that our approach was typically able to identify both the structure and parameters of the
generative model. More specifically, we ran extensive experiments with n = 16 and n = 33, choos-
ing the model structures to have varying degrees of balance, and choosing the parameters randomly
chosen with exp(−θi) between 0.4 and 0.9. We then used these RIMs to generate datasets con-
taining varying numbers of permutations to investigate whether the true model could be recovered.
We found that all models were recoverable with high probability when using between 200-1000
SASEARCH iterations. We did find that the identification of the correct tree structure in its entirety
typically required a large sample size. We note that failures to identify the correct structure were typ-
ically due to the fact that alternative structures had higher likelihood than the generating structure in
a particular sample rather than a failure of the search algorithm. While our experiments had at most
n = 33 this was not due to the running time of the algorithms. For instance, STRUCTBYDP ran in a
few seconds for domains with 33 items. For the smaller domains and for the real-world data below,
the whole search with hundreds of accepted proposals typically ran in less than three minutes. In
particular, this search was faster than the BRANCH&BOUND search for GMM models.

In our experiments on real-world data sets we examine two datasets. The first data set is an Irish
House of Parliament election dataset from the Meath constituency in Ireland. The parliament uses
the single transferable vote election system, in which voters rank candidates. There were 14 candi-

7

dates in the 2002 election, running for five seats. Candidates are associated with the two major rival
political parties, as well as a number of smaller parties. We use the roughly 2500 fully ranked ballots
from the election. See Gormley & Murphy (2007) for more details about the dataset. The second
dataset consists of 5,000 permutations of 10 different types of sushi where the permutation captures
preferences about sushi (Kamisha, 2003). The different types of sushi considered are: anago (sea
eel), ebi (shrimp), ika (squid), kappa-maki (cucumber roll), maguro (tuna), sake (salmon), tamago
(egg), tekka-maki (tuna roll), toro (fatty tuna), uni (sea urchin).

We compared a set of alternative recursive inversion models and approaches for identifying their
structure. Our baseline approach, denoted alph, is one where the reference permutation is alphabet-
ical and fixed and we estimate the optimal structure given that order by STRUCTBYDP. Our second
approach, GMM, is to use the BRANCH&BOUND algorithm of Mandhani & Meila (2009)2 to esti-
mate a generalized Mallows Model. A third approach, HG, is to fit the optimal RIM parametrization
to the hierarchical tree structure identified by Huang & Guestrin (2012) on the same data.3 Finally,
we search over both structures and orderings with SASEARCH, with 150 (100) iterations for Meath
(sushi) at temperature 0.02.

The quantitative results are shown in Figure 2. We plot the difference in test log-likelihood for each
model as compared with SASEARCH. We see that on the Meath data SASEARCH outperforms
alph in 94% of the runs, HG in 75%, and GMM in 98%; on the Sushi data, SASEARCH is always
superior to alph and GMM, and has higher likelihood than GMM in 75% of runs. On the training sets,
SASEARCH had always the best fit (not shown).

We also investigated the structure and parameters of the learned models. For the Meath data we
found that there was significant variation in the learned structure across runs. Despite the variation
there were a number of substructures common to the learned models. Similar to the findings in
Huang & Guestrin (2012) on the structure of a learned riffle independence model, we found that
candidates from the same party were typically separated from candidates of other parties as a group.
In addition, within these political clusters we found systematic preference orderings among the can-
didates. Thus, many substructures in our trees were also found in the HG tree. In addition, again as
found by Huang & Guestrin (2012), we found that a single candidate in an extreme political party
is typically split near the top of the hierarchy, with a θ ≈ 0, indicating that this candidate can be
inserted anywhere in a ranking. We suspect that the inability of a GMM to capture such dependen-
cies leads to the poor empirical performance relative to HG and full search which can capture such
dependencies. We note that alph is allowed to have θi < 0, and therefore the alphabetic reference
permutation does not represent a major handicap.

For the sushi data roughly 90% of the runs had the structure shown in Figure 2 with the other
variants being quite similar. The structure found is interesting in a number of different ways. First,
the model captures a strong preference between different varieties of tuna (toro, maguro and tekka)
which corresponds with the typical price of these varieties. Second, the model captures a preference
against tamago and kappa as compared with several other types of sushi and both of these varieties
are distinct in that they are not varieties of fish but rather egg and cucumber respectively. Finally, uni
(sea urchin), which many people describe as being quite distinct in flavor, is ranked independently
of preferences between other sushi and, additionally, there is no consensus on its rank.

2www.stat.washington.edu/mmp/intransitive.html
3We would have liked to make a direct comparison with the algorithm of Huang & Guestrin (2012), but the

code was not available. Due to this, we aim only at comparing the quality of the HG structure, a structure found
to model these data well albeit with a different estimation algorithm, with the structures found by SASEARCH.

8

References
Ali, Alnur and Meila, Marina. Experiments with Kemeny ranking: What works when? Mathematics

of Social Sciences, Special Issue on Computational Social Choice, pp. (in press), 2011.
Andrews, G.E. The Theory of Partitions. Cambridge University Press, 1985.
Bartholdi, J., Tovey, C. A., and Trick, M. Voting schemes for which it can be difficult to tell who

won. Social Choice and Welfare, 6(2):157–165, 1989. proof that consensus ordering is NP hard.
Earley, Jay. An efficient context-free parsing algorithm. Communications of the ACM, 13(2):94–102,

1970.
Fligner, M. A. and Verducci, J. S. Distance based ranking models. Journal of the Royal Statistical

Society B, 48:359–369, 1986.
Gormley, I. C. and Murphy, T. B. A latent space model for rank data. In Proceedings of the 24th

Annual International Conference on Machine Learning, pp. 90–102, New York, 2007. ACM.
Huang, Jonathan and Guestrin, Carlos. Uncovering the riffled independence structure of ranked

data. Electronic Journal of Statistics, 6:199–230, 2012.
Huang, Jonathan, Guestrin, Carlos, and Guibas, Leonidas. Fourier theoretic probabilistic inference

over permutations. Journal of Machine Learning Research, 10:997–1070, May 2009.
Huang, Jonathan, Kapoor, Ashish, and Guestrin, Carlos. Riffled independence for efficient inference

with partial rankings. Journal of Artificial Intelligence Research, 44:491–532, 2012.
Kamisha, T. Nantonac collaborative filtering: recommendation based on order responses. In Pro-

ceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 583–588, New York, 2003. ACM.

Klementiev, Alexandre, Roth, Dan, and Small, Kevin. Unsupervised rank aggregation with distance-
based models. In Proceedings of the 25th International Conference on Machine Learning, pp.
472–479, New York, NY, USA, 2008. ACM.

Lebanon, Guy and Lafferty, John. Cranking: Combining rankings using conditional probability
models on permutations. In Proceedings of the 19th International Conference on Machine Learn-
ing, pp. 363–370, 2002.

Mallows, C. L. Non-null ranking models. Biometrika, 44:114–130, 1957.
Mandhani, Bhushan and Meila, Marina. Better search for learning exponential models of rank-

ings. In VanDick, David and Welling, Max (eds.), Artificial Intelligence and Statistics AISTATS,
number 12, 2009.

Manilla, Heiki and Meek, Christopher. Global partial orders from sequential data. In Proceedings
of the Sixth Annual Confrerence on Knowledge Discovery and Data Mining (KDD), pp. 161–168,
2000.

Schalekamp, Frans and van Zuylen, Anke. Rank aggregation: Together we’re strong. In Finocchi,
Irene and Hershberger, John (eds.), Proceedings of the Workshop on Algorithm Engineering and
Experiments, ALENEX 2009, New York, New York, USA, January 3, 2009, pp. 38–51. SIAM,
2009.

9

