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Abstract

A wild bootstrap method for nonparametric hypothesis tests based on kernel dis-
tribution embeddings is proposed. This bootstrap method is used to construct
provably consistent tests that apply to random processes, for which the naive
permutation-based bootstrap fails. It applies to a large group of kernel tests
based on V-statistics, which are degenerate under the null hypothesis, and non-
degenerate elsewhere. To illustrate this approach, we construct a two-sample test,
an instantaneous independence test and a multiple lag independence test for time
series. In experiments, the wild bootstrap gives strong performance on synthetic
examples, on audio data, and in performance benchmarking for the Gibbs sampler.
The code is available at https://github.com/kacperChwialkowski/
wildBootstrap.

1 Introduction

Statistical tests based on distribution embeddings into reproducing kernel Hilbert spaces have been
applied in many contexts, including two sample testing [[18, |15} 32]], tests of independence [17, 33}
4], tests of conditional independence [14} 133]], and tests for higher order (Lancaster) interactions
[24]]. For these tests, consistency is guaranteed if and only if the observations are independent and
identically distributed. Much real-world data fails to satisfy the i.i.d. assumption: audio signals,
EEG recordings, text documents, financial time series, and samples obtained when running Markov
Chain Monte Carlo, all show significant temporal dependence patterns.

The asymptotic behaviour of kernel test statistics becomes quite different when temporal dependen-
cies exist within the samples. In recent work on independence testing using the Hilbert-Schmidt
Independence Criterion (HSIC) [8]], the asymptotic distribution of the statistic under the null hy-
pothesis is obtained for a pair of independent time series, which satisfy an absolute regularity or
a ¢-mixing assumption. In this case, the null distribution is shown to be an infinite weighted sum
of dependent *-variables, as opposed to the sum of independent >-variables obtained in the i.i.d.
setting [17]. The difference in the asymptotic null distributions has important implications in prac-
tice: under the i.i.d. assumption, an empirical estimate of the null distribution can be obtained by
repeatedly permuting the time indices of one of the signals. This breaks the temporal dependence
within the permuted signal, which causes the test to return an elevated number of false positives,
when used for testing time series. To address this problem, an alternative estimate of the null distri-
bution is proposed in [8]], where the null distribution is simulated by repeatedly shifting one signal
relative to the other. This preserves the temporal structure within each signal, while breaking the
cross-signal dependence.
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A serious limitation of the shift procedure in [§] is that it is specific to the problem of independence
testing: there is no obvious way to generalise it to other testing contexts. For instance, we might
have two time series, with the goal of comparing their marginal distributions - this is a generalization
of the two-sample setting to which the shift approach does not apply.

We note, however, that many kernel tests have a test statistic with a particular structure: the Maxi-
mum Mean Discrepancy (MMD), HSIC, and the Lancaster interaction statistic, each have empirical
estimates which can be cast as normalized V -statistics, —— Yi<iriy<n M Ziys s Zi,,), where

Ziyy ey Z;,,, are samples from a random process at the time points {i1,...,%,}. We show that a
method of external randomization known as the wild bootstrap may be applied [21} 28] to simulate
from the null distribution. In brief, the arguments of the above sum are repeatedly multiplied by
random, user-defined time series. For a test of level «, the 1 — « quantile of the empirical distri-
bution obtained using these perturbed statistics serves as the test threshold. This approach has the
important advantage over [8] that it may be applied to all kernel-based tests for which V -statistics

are employed, and not just for independence tests.

The main result of this paper is to show that the wild bootstrap procedure yields consistent tests
for time series, i.e., tests based on the wild bootstrap have a Type I error rate (of wrongly rejecting
the null hypothesis) approaching the design parameter «, and a Type II error (of wrongly accepting
the null) approaching zero, as the number of samples increases. We use this result to construct a
two-sample test using MMD, and an independence test using HSIC. The latter procedure is applied
both to testing for instantaneous independence, and to testing for independence across multiple time
lags, for which the earlier shift procedure of [8] cannot be applied.

We begin our presentation in Section [2] with a review of the 7-mixing assumption required of the
time series, as well as of V -statistics (of which MMD and HSIC are instances). We also introduce
the form taken by the wild bootstrap. In Section |3] we establish a general consistency result for
the wild bootstrap procedure on V-statistics, which we apply to MMD and to HSIC in Section [4]
Finally, in Section[5] we present a number of empirical comparisons: in the two sample case, we test
for differences in audio signals with the same underlying pitch, and present a performance diagnostic
for the output of a Gibbs sampler (the MCMC M.D.); in the independence case, we test for inde-
pendence of two time series sharing a common variance (a characteristic of econometric models),
and compare against the test of [4] in the case where dependence may occur at multiple, potentially
unknown lags. Our tests outperform both the naive approach which neglects the dependence struc-
ture within the samples, and the approach of [4], when testing across multiple lags. Detailed proofs
are found in the appendices of an accompanying technical report [9], which we reference from the
present document as needed.

2 Background

The main results of the paper are based around two concepts: 7-mixing [10], which describes the
dependence within the time series, and V -statistics [27]], which constitute our test statistics. In this
section, we review these topics, and introduce the concept of wild bootstrapped V -statistics, which
will be the key ingredient in our test construction.

7-mixing. The notion of 7-mixing is used to characterise weak dependence. It is a less restrictive
alternative to classical mixing coefficients, and is covered in depth in [10]. Let { Z;, F; }+en be a sta-
tionary sequence of integrable random variables, defined on a probability space €2 with a probability
measure P and a natural filtration F;. The process is called 7-dependent if
1 T >
r(r)y=sup> sup  7(Fo,(Zi,, - Ziy)) — 0, where
1en 1 r<in<.. <q
r,3) = B (sup | [ a0 Paatat) - [ atopxtan) )

geEA

and A is the set of all one-Lipschitz continuous real-valued functions on the domain of X. 7(M, X)

can be interpreted as the minimal L; distance between X and X* such that X 2 X* and X*
is independent of M C F. Furthermore, if F is rich enough, this X* can be constructed (see
Proposition din the Appendix). More information is provided in the Appendix



V-statistics. The test statistics considered in this paper are always V -statistics. Given the ob-
servations Z = {Z,;};_,, a V-statistic of a symmetric function h taking m arguments is given by

1
Vih2)=— ZieN"l MZi,, o Zi), (1)

where N™ is a Cartesian power of a set N = {1,...,n}. For simplicity, we will often drop the
second argument and write simply V'(h).

We will refer to the function h as to the core of the V-statistic V' (h). While such functions
are usually called kernels in the literature, in this paper we reserve the term kernel for positive-
definite functions taking two arguments. A core h is said to be j-degenerate if for each z1,. .., z;
Eh(z1,...,25, 254, Zy,) = 0, where Z7 ..., Z}, are independent copies of Z1. If h is
j-degenerate for all j < m — 1, we will say that it is canonical. For a one-degenerate core
h, we define an auxiliary function hg, called the second component of the core, and given by
ho(z1,22) = Eh(z1,22,25,...,2},). Finally we say that nV (h) is a normalized V -statistic, and
that a V -statistic with a one-degenerate core is a degenerate V -statistic. This degeneracy is common
to many kernel statistics when the null hypothesis holds [[15} 17, [24].

Our main results will rely on the fact that ho governs the asymptotic behaviour of normalized degen-
erate V-statistics. Unfortunately, the limiting distribution of such V -statistics is quite complicated
- it is an infinite sum of dependent x?-distributed random variables, with a dependence determined
by the temporal dependence structure within the process {Z; } and by the eigenfunctions of a certain
integral operator associated with ho [5, [8]]. Therefore, we propose a bootstrapped version of the
V -statistics which will allow a consistent approximation of this difficult limiting distribution.

Bootstrapped V -statistic. We will study two versions of the bootstrapped V -statistics

Vialh 2) = =37 Wi aWapah(Ziys o 22, ), @

Voa(h, Z) nm ZzeNm iv Wiz nh(Ziys -y Zi,, ), 3)

where {W; ,, }1<¢<x is an auxiliary wild bootstrap process and th =Win— % Z?=1 W . This
auxiliary process, proposed by [28| 21], satisfies the following assumption:

Bootstrap assumption: {Wy ,}1<i<n is a row-wise strictly stationary triangular array independent
of all Z; such that EW, ,, = 0 and sup,, & |ij"| < oo for some o > 0. The autocovariance of the
process is given by EWS nWt n = p(|s — t|/l,,) for some function p, such that lim,,_,¢ p(u) = 1
and ) ) Lo(Ir]/1n) = . The sequence {I,} is taken such that I,, = o(n) but lim, o I, =

oo. The variables Wt,n are 7- weakly dependent with coefficients 7(r) < C(Tn forr = 1,...,n
¢€(0,1)and C € R.

As noted in in [21, Remark 2], a simple realization of a process that satisfies this assumption is
Win = e‘l/ant,l,n + V1 — e—2/lne, where Wo,n and €1, .. ., €, are independent standard nor-
mal random variables. For simplicity, we will drop the index n and write W; instead of Wy ,,. A
process that fulfils the bootstrap assumption will be called bootstrap process. Further discussion of
the wild bootstrap is provided in the Appendix [Al The versions of the bootstrapped V -statistics in
and were previously studied in [21] for the case of canonical cores of degree m = 2. We
extend their results to higher degree cores (common within the kernel testing framework), which are
not necessarily one-degenerate. When stating a fact that applies to both V31 and Vjo, we will simply
write V3, and the argument Z will be dropped when there is no ambiguity.

3 Asymptotics of wild bootstrapped V -statistics

In this section, we present main Theorems that describe asymptotic behaviour of V-statistics. In
the next section, these results will be used to construct kernel-based statistical tests applicable to
dependent observations. Tests are constructed so that the V -statistic is degenerate under the null
hypothesis and non-degenerate under the alternative. Theorem [I] guarantees that the bootstrapped
V -statistic will converge to the same limiting null distribution as the simple V -statistic. Following
[21], we will establish the convergence of the bootstrapped distribution to the desired asymptotic



distribution in the Prokhorov metric ¢ [13} Section 11.3]), and ensure that this distance approaches
zero in probability as n — oo. This two-part convergence statement is needed due to the additional
randomness introduced by the W ,,.

Theorem 1. Assume that the stationary process {Z;} is T-dependent with 7(r) = O(r=%7¢) for
some € > 0. If the core h is a Lipschitz continuous, one-degenerate, and bounded function of m
arguments and its ho-component is a positive definite kernel, then o(n (ZL) Vo(h, Z),nV (h,Z)) = 0
in probability as n — 0o, where ¢ is Prokhorov metric.

Proof. By Lemma [3 and Lemma P respectively, ¢ (nV;(h),nV;(hs)) and o(nV (h),n(3)V (hs))
converge to zero. By [21, Theorem 3.1], nV},(h2) and nV (ha, Z) have the same limiting distribution,
i.e., o(nVy(hg),nV (ha, Z)) — 0in probability under certain assumptions. Thus, it suffices to check
these assumptions hold: Assumption A2. (i) hs is one-degenerate and symmetric - this follows from
Lemma , (ii) ho is a kernel - is one of the assumptions of this Theorem; (iii) Eho(Z1, Z1) < oo -by
Lemma(/| hs is bounded and therefore has a finite expected value; (iv) ho is Lipschitz continuous
- follows from Lemma Assumption Bl. >."_ r*\/7(r) < oc. Since 7(r) = O(r=%7¢) then
S r2/r(r) < CY"_ r717/2 < co. Assumption B2. This assumption about the auxiliary
process {W, } is the same as our Bootstrap assumption. O

On the other hand, if the V' -statistic is not degenerate, which is usually true under the alternative, it
converges to some non-zero constant. In this setting, Theorem [2] guarantees that the bootstrapped
V -statistic will converge to zero in probability. This property is necessary in testing, as it implies
that the test thresholds computed using the bootstrapped V -statistics will also converge to zero, and
so will the corresponding Type II error. The following theorem is due to Lemmas 4] and 5]

Theorem 2. Assume that the process {Z,} is T-dependent with a coefficient T(r) = O(r=67¢).
If the core h is a Lipschitz continuous, symmetric and bounded function of m arguments, then
nVia(h) converges in distribution to some non-zero random variable with finite variance, and V1 (h)
converges to zero in probability.

Although both V}2 and Vj,; converge to zero, the rate and the type of convergence are not the same:
nVyo converges in law to some random variable while the behaviour of nV}; is unspecified. As a
consequence, tests that utilize V35 usually give lower Type II error then the ones that use V31. On the
other hand, V}; seems to better approximate V -statistic distribution under the null hypothesis. This
agrees with our experiments in Section[5]as well as with those in [21} Section 5]).

4 Applications to Kernel Tests

In this section, we describe how the wild bootstrap for V -statistics can be used to construct ker-
nel tests for independence and the two-sample problem, which are applicable to weakly dependent
observations. We start by reviewing the main concepts underpinning the kernel testing framework.

For every symmetric, positive definite function, i.e., kernel k : X x X — R, there is an associated
reproducing kernel Hilbert space Hy, [3, p. 19]. The kernel embedding of a probability measure P
on X is an element yu,(P) € Hy, given by pui(P) = [ k(-, z) dP(x) [3.129]. If a measurable kernel
k is bounded, the mean embedding px(P) exists for all probability measures on X, and for many
interesting bounded kernels k, including the Gaussian, Laplacian and inverse multi-quadratics, the
kernel embedding P — pu(P) is injective. Such kernels are said to be characteristic [31]]. The
RKHS-distance ||pg(Py) — “k(Pv)”iLk between embeddings of two probability measures P, and
P, is termed the Maximum Mean Discrepancy (MMD), and its empirical version serves as a popular
statistic for non-parametric two-sample testing [[15]. Similarly, given a sample of paired observations
{(X;,Y;)}'-y ~ Pyy, and kernels k and [ respectively on X and Y domains, the RKHS-distance

[lptr (Pry) — pin (PuPy) ”iu between embeddings of the joint distribution and of the product of the

marginals, measures dependence between X and Y. Here, x((z,y), (2',vy")) = k(z,2")l(y,y)
is the kernel on the product space of X and Y domains. This quantity is called Hilbert-Schmidt
Independence Criterion (HSIC) [[16}17]. When characteristic RKHSs are used, the HSIC is zero iff
X 'Y this follows from [22, Lemma 3.8] and [30} Proposition 2]. The empirical statistic is written

H/S-I\C,.i = n%Tr(K HLH) for kernel matrices K and L and the centering matrix H = I — %11T.



4.1 Wild Bootstrap For MMD

Denote the observations by {X;};'*; ~ P,, and {Y;}7%, ~ P,. Our goal is to test the null hypothe-
sis Hp : P, = P, vs. the alternative H; : P, # P,. In the case where samples have equal sizes, i.e.,
ng = n,, application of the wild bootstrap to MMD-based tests on dependent samples is straight-
forward: the empirical MMD can be written as a V-statistic with the core of degree two on pairs
zi = (x4, y;) given by h(z1, 22) = k(z1, 22)—k(x1, y2)—k(z2, y1)+k(y1, y2). Itis clear that when-
ever k is Lipschitz continuous and bounded, so is h. Moreover, h is a valid positive definite kernel,
since it can be represented as an RKHS inner product (k(-,z1) — k(-,y1), k(-, 22) — k(-,y2)) 4,
Under the null hypothesis, & is also one-degenerate, i.e., Eh ((x1,y1), (X2,Y2)) = 0. Therefore,
we can use the bootstrapped statistics in (2) and (3) to approximate the null distribution and attain a
desired test level.

When n, # n,, however, it is no longer possible to write the empirical MMD as a one-sample
V-statistic. We will therefore require the following bootstrapped version of MMD

MMDy, , = ZZW(‘T W(m k(x;, x;) — ZZW(U)W(U (¥, Y5)
z i=1 j=1 Nz i=1 j=1
2 NN g ) )
— W W k(x;, @)
P ]Zl ( yj)
here W(i) 90 _ 1 an W (z) W( Y) — W(y) 1 Z"y W(y) {W 517)} and {W(y)}
W t t ny 2ej=1"Vj "5 t t

are two auxiliary w1ld bootstrap processes that are independent of { X} and {Y;} and also indepen-
dent of each other, both satisfying the bootstrap assumption in Section 2] The following Proposi-
tion shows that the bootstrapped statistic has the same asymptotic null distribution as the empirical
MMD. The proof follows that of [21, Theorem 3.1], and is given in the Appendix.

Proposition 1. Ler k be bounded and Lipschitz continuous, and let {X;} and {Y;} both be
T-dependent with coefficients 7(r) = O(r=%7¢), but independent of each other. Further, let
Ng = pgn and ny = pyn where n = ng + ny. Then, under the null hypothesis P, = P,,

%) (prpanlTM\Dk, pmpan\TM\Dk’b) — 0 in probability as n — oo, where  is the Prokhorov metric

and mk is the MMD between empirical measures.

4.2 Wild Bootstrap For HSIC

Using HSIC in the context of random processes is not new in the machine learning literature. For
a l-approximating functional of an absolutely regular process [6], convergence in probability of
the empirical HSIC to its population value was shown in [34]]. No asymptotic distributions were
obtained, however, nor was a statistical test constructed. The asymptotics of a normalized V -statistic
were obtained in [8] for absolutely regular and ¢-mixing processes [12]. Due to the intractability
of the null distribution for the test statistic, the authors propose a procedure to approximate its null
distribution using circular shifts of the observations leading to tests of instantaneous independence,
ie., of X; l'Y;, Vt. This was shown to be consistent under the null (i.e., leading to the correct
Type I error), however consistency of the shift procedure under the alternative is a challenging open
question (see [8, Section A.2] for further discussion). In contrast, as shown below in Propositions
and [3] (which are direct consequences of the Theorems [T] and [2), the wild bootstrap guarantees test
consistency under both hypotheses: null and alternative, which is a major advantage. In addition, the
wild bootstrap can be used in constructing a test for the harder problem of determining independence
across multiple lags simultaneously, similar to the one in [4].

Following symmetrisation, it is shown in [[17, 8] that the empirical HSIC can be written as a degree
four V -statistic with core given by

h(21,22,23,24 4| Z 71'(1))xﬂ'(Q))[l(yﬂ(l)7y7T(2)) + l(y‘n'(?))ayﬂ'(4)) - 21(9w(2);yw(3))]7
TESy
where we denote by S, the group of permutations over n elements. Thus, we can directly apply
the theory developed for higher-order V -statistics in Section [3] We consider two types of tests:
instantaneous independence and independence at multiple time lags.



Table 1: Rejection rates for two-sample experiments. MCMC: sample size=500; a Gaussian kernel
with bandwidth o = 1.7 is used; every second Gibbs sample is kept (i.e., after a pass through both
dimensions). Audio: sample sizes are (n,,n,) = {(300,200), (600,400), (900, 600)}; a Gaussian
kernel with bandwidth o = 14 is used. Both: wild bootstrap uses blocksize of [,, = 20; averaged
over at least 200 trials. The Type II error for all tests was zero

experiment \ method permutation MMDy, Vi | Vae
MCMC iid. vsii.d. (Ho) .040 .025 .012 | .070
i.i.d. vs Gibbs (Hy) 528 .100 .052 | .105
Gibbs vs Gibbs (Hp) .680 110 .060 | .100
Audio H, 970,965,995} | {.145,.120,.114}
H, LI} {.600,.898,.995}

Test of instantaneous independence Here, the null hypothesis Hy is that X; and Y; are indepen-
dent at all times ¢, and the alternative hypothesis Hj is that they are dependent.

Proposition 2. Under the null hypothesis, if the stationary process Zy = (X;,Y}) is T-dependent
with a coefficient 7(r) = O (r=57) for some € > 0, then ©(6nV;,(h),nV (h)) — 0 in probability,
where  is the Prokhorov metric.

Proof. Since k and [ are bounded and Lipschitz continuous, the core h is bounded and Lipschitz
continuous. One-degeneracy under the null hypothesis was stated in [17, Theorem 2], and that hs is
a kernel is shown in [17, section A.2, following eq. (11)]. The result follows from Theoremm O

The following proposition holds by the Theorem [2} since the core h is Lipschitz continuous, sym-
metric and bounded.

Proposition 3. If the stationary process Z; is T-dependent with a coefficient 7(r) = O (7‘_6_6)
for some € > 0, then under the alternative hypothesis nVys(h) converges in distribution to some
random variable with a finite variance and Vi) converges to zero in probability.

Lag-HSIC Propositions 2] and 3] also allow us to construct a test of time series independence that
is similar to one designed by [4]. Here, we will be testing against a broader null hypothesis: X; and
Y} are independent for |t — t'| < M for an arbitrary large but fixed M. In the Appendix, we show
how to construct a test when M — oo, although this requires an additional assumption about the
uniform convergence of cumulative distribution functions.

Since the time series Z; = (X, Y;) is stationary, it suffices to check whether there exists a de-
pendency between X; and Y;4,, for —M < m < M. Since each lag corresponds to an indi-
vidual hypothesis, we will require a Bonferroni correction to attain a desired test level a. We
therefore define ¢ = 1 — 53755 The shifted time series will be denoted Z;" = (Xi, Yiim).
Let Sy, = nV(h,Z™) denote the value of the normalized HSIC statistic calculated on the
shifted process Z;*. Let F},, denote the empirical cumulative distribution function obtained by
the bootstrap procedure using nVj,(h, Z). The test will then reject the null hypothesis if the event

A, = {max,MngM S > Fbj}(q)} occurs. By a simple application of the union bound,

it is clear that the asymptotic probability of the Type I error will be lim,, oo Pr, (An) < a.
On the other hand, if the alternative holds, there exists some m with |m| < M for which
V(h,Z™) = n~18,, , converges to a non-zero constant. In this case

P, (An) 2 Pty (S > Fy, (@) = Pry (7 S > 07Uy () — 1 ®)

as long as n_lFb_’i (¢) — 0, which follows from the convergence of V}, to zero in probability shown
in Proposition [3] Therefore, the Type II error of the multiple lag test is guaranteed to converge to
zero as the sample size increases. Our experiments in the next Section demonstrate that while this
procedure is defined over a finite range of lags, it results in tests more powerful than the procedure
for an infinite number of lags proposed in [4]. We note that a procedure that works for an infinite
number of lags, although possible to construct, does not add much practical value under the present
assumptions. Indeed, since the T-mixing assumption applies to the joint sequence Z; = (X;,Y;),
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Figure 1: Comparison of Shift-HSIC and tests based on V}; and V3. The left panel shows the
performance under the null hypothesis, where a larger AR coefficient implies a stronger temporal
dependence. The right panel show the performance under the alternative hypothesis, where a larger
extinction rate implies a greater dependence between processes.
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Figure 2: In both panel Type II error is plotted. The left panel presents the error of the lag-HSIC
and KCSD algorithms for a process following dynamics given by the equation (6). The errors for a
process with dynamics given by equations and (8) are shown in the right panel. The X axis is
indexed by the time series length, i.e., sample size. The Type I error was around 5%.

dependence between X; and Y}, is bound to disappear at a rate of o(m~9), i.e., the variables both
within and across the two series are assumed to become gradually independent at large lags.

5 Experiments

The MCMC M.D. We employ MMD in order to diagnose how far an MCMC chain is from its
stationary distribution [26) Section 5], by comparing the MCMC sample to a benchmark sample.
A hypothesis test of whether the sampler has converged based on the standard permutation-based
bootstrap leads to too many rejections of the null hypothesis, due to dependence within the chain.
Thus, one would require heavily thinned chains, which is wasteful of samples and computationally
burdensome. Our experiments indicate that the wild bootstrap approach allows consistent tests di-
rectly on the chains, as it attains a desired number of false positives.

To assess performance of the wild bootstrap in determining MCMC convergence, we consider the
situation where samples {X;} and {Y;} are bivariate, and both have the identical marginal distri-
bution given by an elongated normal P = N ([ 0 0], }4512 }gg . However, they could
have arisen either as independent samples, or as outputs of the Gibbs sampler with stationary distri-
bution P. Table[T|shows the rejection rates under the significance level o = 0.05. It is clear that in
the case where at least one of the samples is a Gibbs chain, the permutation-based test has a Type I
error much larger than o. The wild bootstrap using V31 (without artificial degeneration) yields the
correct Type I error control in these cases. Consistent with findings in [21, Section 5], V}; mimics

the null distribution better than Vj2. The bootstrapped statistic mk,b in (EI) which also relies on
the artificially degenerated bootstrap processes, behaves similarly to V4. In the alternative scenario
where {Y;} was taken from a distribution with the same covariance structure but with the mean set
topu = 2.5 0 ], the Type II error for all tests was zero.

Pitch-evoking sounds Our second experiment is a two sample test on sounds studied in the field
of pitch perception [19]. We synthesise the sounds with the fundamental frequency parameter of
treble C, subsampled at 10.46kHz. Each i-th period of length 2 contains d = 20 audio samples



at times 0 = t; < ... < tg < € — we treat this whole vector as a single observation X; or Y,
i.e., we are comparing distributions on R?°. Sounds are generated based on the AR process a; =
Aai—1+V1 — N2, where ag, ¢; ~ N(0, 1), with X; . = >, Zle aj s exp (—w )
Thus, a given pattern — a smoothed version of ay — slowly varies, and hence the sound deviates from
periodicity, but still evokes a pitch. We take X with 0 = 0.1Q2 and A = 0.8, and Y is either an
independent copy of X (null scenario), or has ¢ = 0.05(2 (alternative scenario) (Variation in the
smoothness parameter changes the width of the spectral envelope, i.e., the brightness of the sound).
ng is taken to be different from n,. Results in Table |1|demonstrate that the approach using the wild
bootstrapped statistic in (@) allows control of the Type I error and reduction of the Type II error with
increasing sample size, while the permutation test virtually always rejects the null hypothesis. As
in [21]] and the MCMC example, the artificial degeneration of the wild bootstrap process causes the
Type I error to remain above the design parameter of 0.05, although it can be observed to drop with
increasing sample size.

Instantaneous independence To examine instantaneous independence test performance, we com-
pare it with the Shift-HSIC procedure [8] on the ’Extinct Gaussian’ autoregressive process proposed
in the [8, Section 4.1]. Using exactly the same setting we compute type I error as a function of the
temporal dependence and type II error as a function of extinction rate. Figure[I|shows that all three
tests (Shift-HSIC and tests based on V31 and Vj2) perform similarly.

Lag-HSIC The KCSD [4] is, to our knowledge, the only test procedure to reject the null hypoth-
esis if there exist ¢,t’ such that Z; and Z; are dependent. In the experiments, we compare lag-HSIC
with KCSD on two kinds of processes: one inspired by econometrics and one from [4]].

In lag-HSIC, the number of lags under examination was equal to max{10,logn}, where n is the
sample size. We used Gaussian kernels with widths estimated by the median heuristic. The cumu-
lative distribution of the V' -statistics was approximated by samples from n V2. To model the tail of
this distribution, we have fitted the generalized Pareto distribution to the bootstrapped samples ([23]]
shows that for a large class of underlying distribution functions such an approximation is valid).
The first process is a pair of two time series which share a common variance,

X, =102, YVi=ex02,02 =14+045(X2 , +Y2 ), e = N(0,1), ie{l,2}. (6)

The above set of equations is an instance of the VEC dynamics [2]] used in econometrics to model
market volatility. The left panel of the Figure [2] presents the Type II error rate: for KCSD it remains
at 90% while for lag-HSIC it gradually drops to zero. The Type I error, which we calculated by
sampling two independent copies (Xt(l), Yt(l)) and (Xt@)7 Yt(Q)) of the process and performing the
tests on the pair (Xt(l), Yt(z)), was around 5% for both of the tests.

Our next experiment is a process sampled according to the dynamics proposed by [4]],

X = cos(de1), G0 =Pr—11 +0.1ers + 21 f1Ts, €14 v N(0,1), (7)
Y, = 24 Csin(¢p1)] cos(bra), bra = dr_12+0.deas + 27 foTs, €24 =" N(0,1), (8)

with parameters C = 4, fi = 4Hz,fo = 20Hz, and frequency % = 100Hz. We compared
performance of the KCSD algorithm, with parameters set to vales recommended in [4], and the
lag-HSIC algorithm. The Type II error of lag-HSIC, presented in the right panel of the Figure [2}
is substantially lower than that of KCSD. The Type I error (C' = 0) is equal or lower than 5% for
both procedures. Most oddly, KCSD error seems to converge to zero in steps. This may be due
to the method relying on a spectral decomposition of the signals across a fixed set of bands. As
the number of samples increases, the quality of the spectrogram will improve, and dependence will
become apparent in bands where it was undetectable at shorter signal lengths.

References
[1] M.A. Arcones. The law of large numbers for U-statistics under absolute regularity. Electron. Comm.
Probab, 3:13-19, 1998.

[2] L. Bauwens, S. Laurent, and J.V.K. Rombouts. Multivariatt GARCH models: a survey. J. Appl. Econ.,
21(1):79-109, January 2006.

[3] A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and Statistics.
Kluwer, 2004.



(4]
(3]
(6]
(7]

(8]
(9]

(10]
(11]

[12]
[13]
(14]

[15]
(16]
(17]
(18]
(19]
(20]
[21]

(22]
(23]
[24]

[25]

(26]

[27]
(28]
(29]

(30]
(31]
(32]
(33]

(34]

M. Besserve, N.K. Logothetis, and B. Schlkopf. Statistical analysis of coupled time series with kernel
cross-spectral density operators. In NIPS, pages 2535-2543. 2013.

L.S. Borisov and N.V. Volodko. Orthogonal series and limit theorems for canonical U- and V-statistics of
stationary connected observations. Siberian Adv. Math., 18(4):242-257, 2008.

S. Borovkova, R. Burton, and H. Dehling. Limit theorems for functionals of mixing processes with
applications to U-statistics and dimension estimation. Trans. Amer. Math. Soc., 353(11):4261-4318, 2001.

R. Bradley et al. Basic properties of strong mixing conditions. a survey and some open questions. Prob-
ability surveys, 2(107-44):37, 2005.

K. Chwialkowski and A. Gretton. A kernel independence test for random processes. In ICML, 2014.

Kacper Chwialkowski, Dino Sejdinovic, and Arthur Gretton. A wild bootstrap for degenerate kernel tests.
tech. report. arXiv preprint arXiv:1408.5404, 2014.

J. Dedecker, P. Doukhan, G. Lang, S. Louhichi, and C. Prieur. Weak dependence: with examples and
applications, volume 190. Springer, 2007.

Jérdbme Dedecker and Clémentine Prieur. New dependence coefficients. examples and applications to
statistics. Probability Theory and Related Fields, 132(2):203-236, 2005.

P. Doukhan. Mixing. Springer, 1994.
R.M. Dudley. Real analysis and probability, volume 74. Cambridge University Press, 2002.

K. Fukumizu, A. Gretton, X. Sun, and B. Scholkopf. Kernel measures of conditional dependence. In
NIPS, volume 20, pages 489—-496, 2007.

A. Gretton, K.M. Borgwardt, M.J. Rasch, B. Scholkopf, and A. Smola. A kernel two-sample test. J.
Mach. Learn. Res., 13:723-773, 2012.

A. Gretton, O. Bousquet, A. Smola, and B. Scholkopf. Measuring statistical dependence with Hilbert-
Schmidt norms. In Algorithmic learning theory, pages 63—77. Springer, 2005.

A. Gretton, K. Fukumizu, C Teo, L. Song, B. Scholkopf, and A. Smola. A kernel statistical test of
independence. In NIPS, volume 20, pages 585-592, 2007.

Z. Harchaoui, F. Bach, and E. Moulines. Testing for homogeneity with kernel Fisher discriminant analysis.
In NIPS. 2008.

P. Hehrmann. Pitch Perception as Probabilistic Inference. PhD thesis, Gatsby Computational Neuro-
science Unit, University College London, 2011.

A. Leucht. Degenerate U- and V-statistics under weak dependence: Asymptotic theory and bootstrap
consistency. Bernoulli, 18(2):552-585, 2012.

A. Leucht and M.H. Neumann. Dependent wild bootstrap for degenerate U- and V-statistics. Journal of
Multivariate Analysis, 117:257-280, 2013.

R. Lyons. Distance covariance in metric spaces. Ann. Probab., 41(5):3051-3696, 2013.
J. Pickands III. Statistical inference using extreme order statistics. Ann. Statist., pages 119-131, 1975.

D. Sejdinovic, A. Gretton, and W. Bergsma. A kernel test for three-variable interactions. In NIPS, pages
1124-1132, 2013.

D. Sejdinovic, B. Sriperumbudur, A. Gretton, and K. Fukumizu. Equivalence of distance-based and
RKHS-based statistics in hypothesis testing. Ann. Statist., 41(5):2263-2702, 2013.

D. Sejdinovic, H. Strathmann, M. Lomeli Garcia, C. Andrieu, and A. Gretton. Kernel Adaptive
Metropolis-Hastings. In ICML, 2014.

R. Serfling. Approximation Theorems of Mathematical Statistics. Wiley, New York, 1980.
X. Shao. The dependent wild bootstrap. J. Amer. Statist. Assoc., 105(489):218-235, 2010.

A.J Smola, A. Gretton, L. Song, and B. Scholkopf. A Hilbert space embedding for distributions. In Al-
gorithmic Learning Theory, volume LNAI4754, pages 13-31, Berlin/Heidelberg, 2007. Springer-Verlag.
B. Sriperumbudur, K. Fukumizu, and G. Lanckriet. Universality, characteristic kernels and RKHS em-
bedding of measures. J. Mach. Learn. Res., 12:2389-2410, 2011.

B. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanckriet, and B. Scholkopf. Hilbert space embeddings
and metrics on probability measures. J. Mach. Learn. Res., 11:1517-1561, 2010.

M. Sugiyama, T. Suzuki, Y. Itoh, T. Kanamori, and M. Kimura. Least-squares two-sample test. Neural
Networks, 24(7):735-751, 2011.

K. Zhang, J. Peters, D. Janzing, B., and B. Scholkopf. Kernel-based conditional independence test and
application in causal discovery. In UAI, pages 804-813, 2011.

X. Zhang, L. Song, A. Gretton, and A. Smola. Kernel measures of independence for non-iid data. In
NIPS, volume 22, 2008.



