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Abstract

The recently established RPCA [4] method provides a coevgnvay to restore
low-rank matrices from grossly corrupted observations.ilgvélegant in theory
and powerful in reality, RPCA is not an ultimate solution ke tlow-rank ma-
trix recovery problem. Indeed, its performance may not bdege even when
data are strictly low-rank. This is because RPCA ignorestehing structures of
the data which are ubiquitous in applications. As the nunuferduster grows,
the coherence of data keeps increasing, and accordinglyretovery perfor-
mance of RPCA degrades. We show that the challenges raisedhgyent data
(i.e., data with high coherence) could be alleviated by lRank Representation
(LRR) [13], provided that the dictionary in LRR is configuragpropriately. More
precisely, we mathematically prove that if the dictionasglf is low-rank then
LRR is immune to the coherence parameter which increasastmaétunderlying
cluster number. This provides an elementary principle falithg with coherent
data and naturally leads to a practical algorithm for olajiproper dictionaries
in unsupervised environments. Experiments on randomlgigéad matrices and
real motion sequences verify our clain8ee the full paper at arXiv:1404.4032.

1 Introduction

Nowadays our data are often high-dimensional, massive @hdffgross errors (e.g., corruptions,
outliers and missing measurements). In the presence of grogrs, the classical Principal Com-
ponent Analysis (PCA) method, which is probably the mosteljidised tool for data analysis and
dimensionality reduction, becomes brittle — A single greissr could render the estimate produced
by PCA arbitrarily far from the desired estimate. As a consaqge, it is crucial to develop new sta-
tistical tools for robustifying PCA. A variety of methodsueabeen proposed and explored in the
literature over several decades, e.g., [2, 3,4, 8,9, 102,124, 13, 16, 19, 25]. One of the most ex-
citing methods is probably the so-called RPCA (Robust RyadcComponent Analysis) method [4],
which was built upon the exploration of the following lowatamatrix recovery problem:

Problem 1 (Low-Rank Matrix Recovery) Suppose we have a data mattik € R”*™ and we
know it can be decomposed as

X = Lo + S, (1.1)

whereL, € R™*" is a low-rank matrix each column of which is a data point drafrom some
low-dimensional subspace, ait§ € R™*" is a sparse matrix supported ¢ C {1,--- ,m} x
{1,---,n}. Except these mild restrictions, both components are i@tyit The rank ofL, is un-
known, the support sé? (i.e., the locations of the nonzero entries%f) and its cardinality (i.e.,
the amount of the nonzero entries %) are unknown either. In particular, the magnitudes of the
nonzero entries ity may be arbitrarily large. GivenX, can we recover botli, and Sy, in a
scalable and exact fashion?
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Figure 1: Exemplifying the extra structures of low-rankal@ach entry of the data matrix is a grade
that a user assigns to a movie. It is often the case that suahadalow-rank, as there exist wide
correlations among the grades that different users assitfretsame movie. Also, such data could
own some clustering structure, since the preferences ofahee type of users are more similar to
each other than to those with different gender, personalitfure and education background. In
summary, such data (1) are often low-rank and (2) exhibitesolmstering structure.

The theory of RPCA tells us that, very generally, when the-tamnk matrixL, is meanwhilénco-
herent(i.e., with low coherence), both the low-rank and the spara&ices can bexactlyrecovered
by using the following convex, potentially scalable pragra

I?igHLH*-i-/\HSHla st. X=L+38, (1.2)

where|| - || is the nuclear norm [7] of a matriX] - ||; denotes the; norm of a matrix seen as
a long vector, and\ > 0 is a parameter. Besides of its elegance in theory, RPCA asaybod
empirical performance in many practical areas, e.g., inpageessing [26], computer vision [18],
radar imaging [1], magnetic resonance imaging [17], etc.

While complete in theory and powerful in reality, RPCA cahbe an ultimate solution to the low-
rank matrix recovery Problem 1. Indeed, the method mighpnaduce perfect recovery even when
Ly is strictly low-rank. This is because RPCA captures only ldwe-rankness property, which
however is not the only property of our data, but essentigihpres theextra structuregbeyond
low-rankness) widely existing in data: Given the low-rae&s constraint that the data points (i.e.,
columns vectors of.() locate on a low-dimensional subspace, it is unnecessathéodata points

to locate on the subspacaiformly at randonmand it is quite normal that the data may have some
extra structures, which specify in more detailwthe data points locate on the subspace. Figure 1
demonstrates a typical example of extra structures; thttésclustering structures which are ubig-
uitous in modern applications. Whenever the data are diddgisome clustering structures, RPCA
is no longer a method of perfection. Because, as will be shiowhis paper, while the rank df, is
fixed and the underlying cluster number goes large, the eolcerofL, keeps heightening and thus,
arguably, the performance of RPCA drops.

To better handle coherent data (i.e., the cases whgigas large coherence parameters), a seem-
ingly straightforward idea is tavoidthe coherence parametersiaf. However, as explained in [4],
the coherence parameters are indeed necessary (if theseadditional condition assumed on the
data). This paper shall further indicate that the coherpacameters are related in nature to some
extra structures intrinsically existing iy and therefore cannot be discarded simply. Interestingly,
we show that it is possible tavoidthe coherence parameters by using some additional comslitio
which are easy to obey in supervised environment and carbalspproximately achieved in un-
supervised environment. Our study is based on the followonyex program termed Low-Rank
Representation (LRR) [13]:

min || Z]l. + A[S|h, st X =AZ+S, (1.3)

whereA € R™*4 is a sized dictionary matrix constructed in advaricand\ > 0 is a parameter. In
order for LRR to avoid the coherence parameters which iseradth the cluster number underlying

LIt is not crucial to determine the exact valuedfSupposeZ* is the optimal solution with respect 8.
Then LRR usesi Z™ to restorelo. LRR falls back to RPCA wher = I (identity matrix). Furthermore, it can
be proved that the recovery produced by LRR is the same as Rif@Aever the dictionary is orthogonal.



Ly, we prove that it is sufficient to construct in advance a diwiry A which is low-rank by itself.
This gives a generic prescription to defend the possibkziidns raised by coherent data, providing
an elementary criteria for learning the dictionary mattixSubsequently, we propose a simple and
effective algorithm that utilizes the output of RPCA to ctyost the dictionary in LRR. Our exten-
sive experiments demonstrated on randomly generatedaesitaind motion data show promising
results. In summary, the contributions of this paper ineltiee following:

o For the first time, this paper studies the problem of reconglow-rank, and coherent (or
less incoherent as equal) matrices from their corruptesiaes. We investigate the physical
regime where coherent data arise. For example, the widésyirex clustering structures
may lead to coherent data. We prove some basic theoriesdolvieg the problem, and
also establish a practical algorithm that outperforms RRCdur experimental study.

o Our studies help reveal thghysicalmeaning of coherence, which is now standard and
widely used in various literatures, e.g., [2, 3, 4, 25, 15]e #how that the coherence
parameters are not “assumptions” for a proof, but ratheresertellent quantities that
relate in nature to thextra structuregbeyond low-rankness) intrinsically existing Ir.

o This paper provides insights regarding the LRR model pregty [13]. While the special
case ofA = X has been extensively studied, the LRR model (1.3) with gdkéetionaries
is not fully understood yet. We show that LRR (1.3) equippétthveroper dictionaries
could well handle coherent data.

¢ The idea of replacind. with AZ is essentially related to the spirit of matrix factorizatio
which has been explored for long, e.g., [20, 23]. In that eetie explorations of this paper
help to understand why factorization techniques are useful

2 Summary of Main Notations

Capital letters such a8l are used to represent matrices, and accordifiyly;; denotes itg:, j)th
entry. Letterd/, V, Q and their variants (complements, subscripts, etc.) aszved for left singular
vectors, right singular vectors and support set, respagtiWe shall abuse the notatiéh(resp.V)

to denote the linear space spanned by the columns(@ésp.V), i.e., the column space (resp. row
space). The projection onto the column spéicés denoted byP;; and given byPy (M) = UUT M,
and similarly for the row spacBy (M) = MV V™. We shall also abuse the notatifinto denote
the linear space of matrices supportedbnThenPq, andPg . respectively denote the projections
ontoQ) andQ¢ such thatPg, + P, = Z, whereZ is the identity operator. The symbg)*+ denotes
the Moore-Penrose pseudoinverse of a mathikt = Vi, %, U}, for a matrix M with Singular

Value Decomposition (SVB)U S Vi

Six different matrix norms are used in this paper. The firsteémorms are functions of the singular
values: 1) The operator norm (i.e., the largest singulauejatienoted by M ||, 2) the Frobenius
norm (i.e., square root of the sum of squared singular vallesoted by| M || 7, and 3) the nuclear
norm (i.e., the sum of singular values) denoted||By||.. The other three are thg, ¢ (i.e.,
sup-norm) and’s, o, norms of a matrix:||M ||, = >_, . [[M]], [[M|, = max;;{|[M];[} and

[ M5 o = max;{,/>;[M]3}, respectively.
The Greek letter:, and its variants (e.qg., subscripts and superscripts) asgved for the coherence
parameters of a matrix. We shall also reserve two lower eter$;n andn, to respectively denote

the data dimension and the number of data points, and we esellibwing two symbols throughout
this paper:

ny = max(m,n) and ns = min(m,n).

3 OntheRecovery of Coherent Data

In this section, we shall firstly investigate the physicainee that raises coherent (or less incoher-
ent) data, and then discuss the problem of recovering cohdegta from corrupted observations,
providing some basic principles and an algorithm for reisgjthe problem.

2In this paper, SVD always refers to skinny SVD. For a rankatrix M € R™*", its SVD is of the form
UMEMV]&;, with Ups € R™*7, ¥ € R™*" andVy, € R™*7,




3.1 CoherenceParametersand Their Properties

As the rank function cannot fully capture all charactecs®f L, it is necessary to define some
guantities to measure the effects of various extra strast(lreyond low-rankness) such as the clus-
tering structure as demonstrated in Figure 1. dleerencg@arameters defined in [3, 4] are excellent
exemplars of such quantities.

3.1.1 CoherenceParameters. u1, o, i3

For anm x n matrix Lo with rankro and SVDL, = UgXo V', some important properties can
be characterized by three coherence parameters, denotgd;asand i3, respectively. The first
coherence parametdr,< p1(Lo) < m, which characterizes the column space identified/pyis
defined as

m
Ly) = — Lei 3.4
1 (Lo) o 121%):”HU0 eill3, (3.4)

wheree; denotes théth standard basis. The second coherence parameter»(Ly) < n, which
characterizes the row space identifiedifgy is defined as

n
p2(Lo) = — max ||V e; 3. (3.5)

o 1<5j<n

The third coherence parametér< us(Lo) < mn, which characterizes the joint space identified
by Uy Vi, is defined as

mn mn
p3(Lo) = ?(”UOVVOTHOO)Q . H}%X(|<UépeiaVOT€j>|)2- (3.6)

The analysis in RPCA [4] merges the above three parametéosairsingle one: u(Lg) =
max{p1(Lo), p2(Lo), u3(Lo)}. As will be seen later, the behaviors of those three coherpae
rameters are different from each other, and hence it is nd@guate to consider them individually.

3.1.2 puo-phenomenon

According to the analysis in [4], the success conditiongrdingL,) of RPCA is
CcrNo

1(Lo)(logn1)?’

whereu(Lg) = max{pu1(Lo), u2(Lo), #3(Lo)} ande,. > 0 is some numerical constant. Thus,
RPCA will be less successful when the coherence parame&csasiderably larger. In this subsec-
tion, we shall show that the widely existing clustering stuie can enlarge the coherence parameters
and, accordingly, downgrades the performance of RPCA.

rank (L) < (3.7)

Given the restriction thatank (Lg) = ro, the data points (i.e., column vectorsiaf) are unneces-
sarily sampled from ay-dimensional subspaemiformly at randomA more realistic interpretation
is to consider the data points as samples from the unidgnrafmber of subspaces (i.e., clusters),
and the sum of those multiple subspaces together has a donens That is to say, there are
multiple “small” subspaces inside ong-dimensional “large” subspace, as exemplified in Figure 1.
Whenever the low-rank matriX, is meanwhile exhibiting such clustering behaviors, theosdc
coherence parametgs (L) (and sous(Lg)) will increase with the number of clusters underlying
Ly, as shown in Figure 2. When the coherence is heightening), §8ggests that the performance
of RPCA will drop, as verified in Figure 2(d). Note here thag¢ thariation ofus is mainly due
to the variation of the row space, which is characterizedipyWe call the phenomena shown in
Figure 2(b)~(d) as the }io-phenomenon”. Readers can also refer to the full paper tovbgehe
second coherence parameter increases with the clusterenumderlyingL.

Interestingly, one may have noticed thatis invariant to the variation of the clustering number, as
can be seen from Figure 2(a). This is because the clusteehgvior of the data points can only
affect the row space, whilg; is defined on the column space. Yet, if the row vectord.gfalso
own some clustering structure; could be large as well. Such kind of data can exist widely kb te
documents and we leave this as future work.
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Figure 2: Exploring the influence of the cluster number, gsendomly generated matrices. The
size and rank of. are fixed to b&00 x 500 and 100, respectively. The underlying cluster number
varies from 1 to 50. For the recovery experimeisis fixed as a sparse matrix with 13% nonzero
entries. (a) The first coherence parametgl,) vs cluster number. ()2(Lo) vs cluster number.
(c) us(Lo) vs cluster number. (d) Recover error (produced by RPCA) ustet number. The
numbers shown in these figure are averaged from 100 randals) ffihe recover error is computed

as||Lo — Lo||#/||Lo|| 7, whereL, denotes an estimate &f.

3.2 Avoiding u2 by LRR

The us-phenomenon implies that the second coherence paramgtsirelated in nature to some
intrinsic structures of.y and thus cannot be eschewed without using additional dondit In the
following, we shall figure out under what conditions the sataoherence parametes (andus3)
can be avoided such that LRR could well handle coherent data.

Main Result: We show that, when the dictionar¥ itself is low-rank, LRR is able to avoigs.
Namely, the following theorem is proved without using See the full paper for a detailed proof.

Theorem 1 (Noiseless) Let A € R™*? with SVDA = U4V be a column-wisely unit-normed
(i.e., || Ae;ill2 = 1,Vi) dictionary matrix which satisfie®y, (Uy) = Uy (i.e., Uy is a subspace of
Uya). Forany0 < e < 0.5 and some numerical constaf > 1, if

€2n2
Call1 (A) log ny

then with probability at least — n; '°, the optimal solution to the LRR problefh.3) with A =
1/4/n1 is unique and exact, in a sense that

Z*=ATLy and S* =S,
where(Z*, 5*) is the optimal solution t¢1.3).

rank (Lg) < rank (4) <

and Q] < (0.5 — e)mn, (3.8)

Itis worth noting that the restrictiomnk (Lo) < O(n2/logn;) is looser than that of PRGAwhich
requiresrank (Lg) < O(nz/(logn1)?). The requirement of column-wisely unit-normed dictionary
(i.e., [[Ae;|l2 = 1,Vi) is purely for complying the parameter estimate)of= 1/,/n1, which is
consistent with RPCA. The conditid®y, (Uy) = Uy, i.e.,Up is a subspace df 4, is indispensable

if we ask for exact recovery, becauBg , (Uy) = U, is implied by the equalitydZ* = L. This
necessary condition, together with the low-rankness dmmdiprovides an elementary criterion for
learning the dictionary matri¥ in LRR. Figure 3 presents an example, which further confiraors o
main result; that is, LRR is able to avoith as long ad/y C Ux and A is low-rank. It is also
worth noting that it is unnecessary fdrto satisfylU 4 = Uy, and that LRR is actually tolerant to the
“errors” possibly existing in the dictionary.

The program (1.3) is designed for the case where the undedwgbservations are noiseless. In
reality this assumption is often not true and all entrieXofan be contaminated by a small amount
of noises, i.e.X = Ly + Sy + N, whereN is a matrix of dense Gaussian noises. In this case, the
formula of LRR (1.3) need be modified to

min 2]+ ASll, st X —AZ-S|r <, (3.9)

%In terms ofexactrecovery,0(nz/ log n1) is probably the “finest” bound one could accomplish in theory
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Figure 3: Exemplifying that LRR can voids. In this experimentL, is a200 x 200 rank-1 matrix

with one column being (i.e., a vector of all ones) and everything else being zehws]ii; (L) = 1

andpus(Lo) = 200. The dictionary is set ad = [1, W], whereWV is a200 x p random Gaussian

matrix (with varyingp). As long asrank (A) = p+1 < 10, LRR with A = 0.08 can exactly recover

Lo from a grossly corrupted observation matiix

wheree is a parameter that measures the noise level of data. In {heriments of this paper,
we consistently set = 1075|| X||. In the presence of dense noises, the latent matriceand
So, cannot be exactly restored. Yet we have the following theoto guarantee the near recovery
property of the solution produced by the program (3.9):

Theorem 2 (Noisy) Supposé/X — Ly — So||r < . LetA € R™*4 with SVDA = UsX 4V I be a
column-wisely unit-normed dictionary matrix which saés#®, (Uy) = U (i-e., Uy is a subspace
of U,). For any0 < ¢ < 0.35 and some numerical constant > 1, if

62712

catt1(A) logng

then with probability at least —n; '%, any solutionZ*, S*) to (3.9)with A = 1/,/n7 gives a near
recovery to(Lg, Sp), in a sense that AZ* — Lo||r < 8y/mne and||S* — Sy||r < (8/mn + 2)e.

rank (Lo) < rank (4) <

and || < (0.35 — e)mn, (3.10)

3.3 An Unsupervised Algorithm for Matrix Recovery

To handle coherent (equivalently, less incoherent) ddtapiiem 1 suggests that the dictionary ma-
trix A should be low-rank and satistjy € U 4. In certain supervised environment, this might not be
difficult as one could potentially use clear, well procedsaithing data to construct the dictionary. In
an unsupervised environment, however, it will be challegdo identify a low-rank dictionary that
obeyslU, C U,. Note thaty € U4 can be viewed as supervision informationAifis low-rank).

In this paper, we will introduce a heuristic algorithm thahavork distinctly better than RPCA in
an unsupervised environment. As can be seen from (3.7), RB@¢étually not brittle with respect

to coherent data (although its performance is depressealjedBon this observation, we propose
a simple algorithm, as summarized in Algorithm 1, to achiaveolid improvement over RPCA.
Our idea is straightforward: We first obtain an estimatd.ghby using RPCA and then utilize the
estimate to construct the dictionary matdxn LRR. The post-processing steps (Step 2 and Step 3)
that slightly modify the solution of RPCA is to encourage gnditioned dictionary, which is the
circumstance favoring LRR.

Whenever the recovery produced by RPCA is already exactl#i® in Theorem 1 gives that the
recovery produced by our Algorithm 1 is exact as well. Thabisay, in terms of exactly recovering
Ly from a givenX, the success probability of our Algorithm 1 is greater thamrqual to that of
RPCA. From the computational perspective, Algorithm 1 dustseally double the work of RPCA,
although there are two convex programs in our algorithm. alet,faccording to our simulations,
usually the computational time of Algorithm 1 is merely abaw? times as much as RPCA. The
reason is that, as has been explored by [13], the complekgplaing the LRR problem (1.3) is
O(n*r4) (assumingn = n), which is much lower than that of RPCA (which requi@én?))
provided that the obtained dictionary matrxs fairly low-rank (i.e.,r 4 is small).

One may have noticed that the procedure of Algorithm 1 co@drade iterative, i.e., one can

considerAZ* as a new estimate df, and use it to further update the dictionary matfixand so
on. Nevertheless, we empirically find that such an itergtracedure often converges within two
iterations. Hence, for the sake of simplicity, we do not ¢desiterative strategies in this paper.
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Algorithm 1 Matrix Recovery
input: Observed data matriX € R™*",
adjustable parameter: .
1. Solve forL, by optimizing the RPCA problem (1.2) with= 1/,/n1.
2. Estimate the rank of by

o = #{Z Lo > 10_301}7
whereo, 09, - - - , 0, are the singular values (ffo.
3. Form L by using the rank, approximation of_y. That s,
Lo = argmin || L — Lo||%, s.t.rank (L) < #o,

which is solved by SVD. 3 )
4. Construct a dictionaryl from Ly by normalizing the column vectors éf;:

(A = Lok
I[Lol:.ill2
where]-]. ; denotes théth column of a matrix.

5. Solve forZ* by optimizing the LRR problem (1.3) witd = A and\ = 1/y/n1.
output: AZ*.

’...7n’

4 Experiments

4.1 Resultson Randomly Generated Matrices

We first verify the effectiveness of our Algorithm 1 on randgmenerated matrices. We generate
a collection 0f200 x 1000 data matrices according to the model®f = Pq. (Lo) + Pa(So):

Q is a support set chosen at randof; is created by sampling 200 data points from each of 5
randomly generated subspacég;consists of random values from Bernoutli. The dimension of
each subspace varies from 1 to 20 with step size 1, and thuarikef L, varies from 5 to 100 with
step size 5. The fractiopf?|/(mn) varies from 2.5% to 50% with step size 2.5%. For each pair of
rank and support siz@, |2|), we run 10 trials, resulting in a total of 40020(x 20 x 10) trials.

RPCA Algorithm 1

50
g S g O
§ 15 §%
s S S 20
3 S 8 10

, .
0.1 0.2 03 04 05 0.1 0.2 0.3 04 05 0.1 0.2 0.3 0.4 05
rank(L )/n, rank(L,)/n, rank(L )/n,

Figure 4: Algorithm 1 vs RPCA for the task of recovering ramdpgenerated matrices, both using
A = 1/y/n1. A curve shown in the third subfigure is the boundary for a meétto be successful
— The recovery is successful for any paip/n2, [2[/(mn)) that locates below the curve. Here, a
success meand — Lo||» < 0.05||Lo|| », whereL, denotes an estimate &f,.

Figure 4 compares our Algorithm 1 to RPCA, both using: 1/,/n;. It can be seen that, using the
learned dictionary matrix, Algorithm 1 works distinctlytber than RPCA. In fact, the success area
(i.e., the area of the white region) of our algorithm is 47%evithan that of RPCA! We should also
mention that it is possible for RPCA to be exactly successfutoherent (or less incoherent) data,
provided that the rank of is low enough and/o6; is sparse enough. Our algorithm in general
improves RPCA whet,, is moderately low-rank and/df, is moderately sparse.



4.2 Resultson Corrupted Motion Sequences

We now present our experiment with 11 additional sequenttasieed to the Hopkins155 [21]
database. In those sequences, about 10% of the entries dathenatrix of trajectories are un-
observed (i.e., missed) due to vision occlusion. We reptaod missed entry with a number from
Bernoulli £1, resulting in a collection of corrupted trajectory matdder evaluating the effective-
ness of matrix recovery algorithms. We perform subspaceling on both the corrupted trajectory
matrices and the recovered versions, and use the clustermgates produced by existing subspace
clustering methods as the evaluation metrics. We condidee tstate-of-the-art subspace clustering
methods: Shape Interaction Matrix (SIM) [5], Low-Rank Reggntation withA = X [14] (which

is referred to as “LRRx") and Sparse Subspace Clusterin@) 3.

Table 1: Clustering error rates (%) on 11 corrupted moti@usaces.

Mean | Median | Maximum | Minimum | Std. | Time (sec.)

SIM 29.19| 27.77 45.82 1245 | 11.74 0.07

RPCA + SIM 14.82| 8.38 45.78 0.97 16.23 9.96
Algorithm 1 + SIM | 8.74 3.09 42.61 0.23 12.95 11.64
LRRx 21.38| 22.00 56.96 0.58 17.10 1.80
RPCA + LRRx 10.70| 3.05 46.25 0.20 15.63 10.75
Algorithm 1 + LRRx | 7.09 3.06 32.33 0.22 10.59 12.11
SSC 22.81| 20.78 58.24 1.55 18.46 3.18

RPCA + SSC 9.50 2.13 50.32 0.61 16.17 12.51
Algorithm 1+ SSC | 5.74 1.85 27.84 0.20 8.52 13.11

Table 1 shows the error rates of various algorithms. Withloetpreprocessing of matrix recovery,
all the subspace clustering methods fail to accuratelygoaize the trajectories of motion objects,
producing error rates higher than 20%. This illustratesitiia important for motion segmentation
to correct the gross corruptions possibly existing in thi daatrix of trajectories. By using RPCA
(A = 1/,/n1) to correct the corruptions, the clustering performandesdi@onsidered methods are
improved dramatically. For example, the error rate of SSfedkiced from 22.81% to 9.50%. By
choosing an appropriate dictionary for LRR & 1/,/n7), the error rates can be reduced again,
from 9.50% to 5.74%, which is a 40% relative improvement. These results vehéyeffectiveness
of our dictionary learning strategy in realistic environmse

5 Conclusion and Future Work

We have studied the problem of disentangling the low-ranksgrarse components in a given data
matrix. Whenever the low-rank component exhibits clustgstructures, the state-of-the-art RPCA
method could be less successful. This is because RPCA pimafmherent data, which however may
be inconsistent with data in the real world. When the numlbehusters becomes large, the second
and third coherence parameters enlarge and hence therparfoe of RPCA could be depressed. We
have showed that the challenges arising from coherentgiguitly, less incoherent) data could be
effectively alleviated by learning a suitable dictionander the LRR framework. Namely, when the
dictionary matrix is low-rank and contains information abthe ground truth matrix, LRR can be
immune to the coherence parameters that increase with thexlyimg cluster number. Furthermore,
we have established a practical algorithm that outperf®P&A in our extensive experiments.

The problem of recovering coherent data essentially corsatie robustness issues of the General-
ized PCA (GPCA) [22] problem. Although the classic GPCA penbbhas been explored for several
decades, robust GPCA is new and has not been well studied afgreach proposed in this pa-
per is in a sense preliminary, and it is possible to develbprogffective methods for learning the
dictionary matrix in LRR and for handling coherent data. \&@ve these as future work.
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