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Abstract
The recently established RPCA [4] method provides a convenient way to restore
low-rank matrices from grossly corrupted observations. While elegant in theory
and powerful in reality, RPCA is not an ultimate solution to the low-rank ma-
trix recovery problem. Indeed, its performance may not be perfect even when
data are strictly low-rank. This is because RPCA ignores clustering structures of
the data which are ubiquitous in applications. As the numberof cluster grows,
the coherence of data keeps increasing, and accordingly, the recovery perfor-
mance of RPCA degrades. We show that the challenges raised bycoherent data
(i.e., data with high coherence) could be alleviated by Low-Rank Representation
(LRR) [13], provided that the dictionary in LRR is configuredappropriately. More
precisely, we mathematically prove that if the dictionary itself is low-rank then
LRR is immune to the coherence parameter which increases with the underlying
cluster number. This provides an elementary principle for dealing with coherent
data and naturally leads to a practical algorithm for obtaining proper dictionaries
in unsupervised environments. Experiments on randomly generated matrices and
real motion sequences verify our claims.See the full paper at arXiv:1404.4032.

1 Introduction

Nowadays our data are often high-dimensional, massive and full of gross errors (e.g., corruptions,
outliers and missing measurements). In the presence of gross errors, the classical Principal Com-
ponent Analysis (PCA) method, which is probably the most widely used tool for data analysis and
dimensionality reduction, becomes brittle — A single grosserror could render the estimate produced
by PCA arbitrarily far from the desired estimate. As a consequence, it is crucial to develop new sta-
tistical tools for robustifying PCA. A variety of methods have been proposed and explored in the
literature over several decades, e.g., [2, 3, 4, 8, 9, 10, 11,12, 24, 13, 16, 19, 25]. One of the most ex-
citing methods is probably the so-called RPCA (Robust Principal Component Analysis) method [4],
which was built upon the exploration of the following low-rank matrix recovery problem:

Problem 1 (Low-Rank Matrix Recovery) Suppose we have a data matrixX ∈ R
m×n and we

know it can be decomposed as

X = L0 + S0, (1.1)

whereL0 ∈ R
m×n is a low-rank matrix each column of which is a data point drawnfrom some

low-dimensional subspace, andS0 ∈ R
m×n is a sparse matrix supported onΩ ⊆ {1, · · · ,m} ×

{1, · · · , n}. Except these mild restrictions, both components are arbitrary. The rank ofL0 is un-
known, the support setΩ (i.e., the locations of the nonzero entries ofS0) and its cardinality (i.e.,
the amount of the nonzero entries ofS0) are unknown either. In particular, the magnitudes of the
nonzero entries inS0 may be arbitrarily large. GivenX , can we recover bothL0 andS0, in a
scalable and exact fashion?
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Figure 1: Exemplifying the extra structures of low-rank data. Each entry of the data matrix is a grade
that a user assigns to a movie. It is often the case that such data are low-rank, as there exist wide
correlations among the grades that different users assign to the same movie. Also, such data could
own some clustering structure, since the preferences of thesame type of users are more similar to
each other than to those with different gender, personality, culture and education background. In
summary, such data (1) are often low-rank and (2) exhibit some clustering structure.

The theory of RPCA tells us that, very generally, when the low-rank matrixL0 is meanwhileinco-
herent(i.e., with low coherence), both the low-rank and the sparsematrices can beexactlyrecovered
by using the following convex, potentially scalable program:

min
L,S

‖L‖∗ + λ‖S‖1, s.t. X = L+ S, (1.2)

where‖ · ‖∗ is the nuclear norm [7] of a matrix,‖ · ‖1 denotes theℓ1 norm of a matrix seen as
a long vector, andλ > 0 is a parameter. Besides of its elegance in theory, RPCA also has good
empirical performance in many practical areas, e.g., imageprocessing [26], computer vision [18],
radar imaging [1], magnetic resonance imaging [17], etc.

While complete in theory and powerful in reality, RPCA cannot be an ultimate solution to the low-
rank matrix recovery Problem 1. Indeed, the method might notproduce perfect recovery even when
L0 is strictly low-rank. This is because RPCA captures only thelow-rankness property, which
however is not the only property of our data, but essentiallyignores theextra structures(beyond
low-rankness) widely existing in data: Given the low-rankness constraint that the data points (i.e.,
columns vectors ofL0) locate on a low-dimensional subspace, it is unnecessary for the data points
to locate on the subspaceuniformly at randomand it is quite normal that the data may have some
extra structures, which specify in more detailhow the data points locate on the subspace. Figure 1
demonstrates a typical example of extra structures; that is, the clustering structures which are ubiq-
uitous in modern applications. Whenever the data are exhibiting some clustering structures, RPCA
is no longer a method of perfection. Because, as will be shownin this paper, while the rank ofL0 is
fixed and the underlying cluster number goes large, the coherence ofL0 keeps heightening and thus,
arguably, the performance of RPCA drops.

To better handle coherent data (i.e., the cases whereL0 has large coherence parameters), a seem-
ingly straightforward idea is toavoid the coherence parameters ofL0. However, as explained in [4],
the coherence parameters are indeed necessary (if there is no additional condition assumed on the
data). This paper shall further indicate that the coherenceparameters are related in nature to some
extra structures intrinsically existing inL0 and therefore cannot be discarded simply. Interestingly,
we show that it is possible toavoid the coherence parameters by using some additional conditions,
which are easy to obey in supervised environment and can alsobe approximately achieved in un-
supervised environment. Our study is based on the followingconvex program termed Low-Rank
Representation (LRR) [13]:

min
Z,S

‖Z‖∗ + λ‖S‖1, s.t. X = AZ + S, (1.3)

whereA ∈ R
m×d is a size-d dictionary matrix constructed in advance1, andλ > 0 is a parameter. In

order for LRR to avoid the coherence parameters which increase with the cluster number underlying

1It is not crucial to determine the exact value ofd. SupposeZ∗ is the optimal solution with respect toZ.
Then LRR usesAZ∗ to restoreL0. LRR falls back to RPCA whenA = I (identity matrix). Furthermore, it can
be proved that the recovery produced by LRR is the same as RPCAwhenever the dictionaryA is orthogonal.
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L0, we prove that it is sufficient to construct in advance a dictionaryA which is low-rank by itself.
This gives a generic prescription to defend the possible infections raised by coherent data, providing
an elementary criteria for learning the dictionary matrixA. Subsequently, we propose a simple and
effective algorithm that utilizes the output of RPCA to construct the dictionary in LRR. Our exten-
sive experiments demonstrated on randomly generated matrices and motion data show promising
results. In summary, the contributions of this paper include the following:

⋄ For the first time, this paper studies the problem of recovering low-rank, and coherent (or
less incoherent as equal) matrices from their corrupted versions. We investigate the physical
regime where coherent data arise. For example, the widely existing clustering structures
may lead to coherent data. We prove some basic theories for resolving the problem, and
also establish a practical algorithm that outperforms RPCAin our experimental study.

⋄ Our studies help reveal thephysicalmeaning of coherence, which is now standard and
widely used in various literatures, e.g., [2, 3, 4, 25, 15]. We show that the coherence
parameters are not “assumptions” for a proof, but rather some excellent quantities that
relate in nature to theextra structures(beyond low-rankness) intrinsically existing inL0.

⋄ This paper provides insights regarding the LRR model proposed by [13]. While the special
case ofA = X has been extensively studied, the LRR model (1.3) with general dictionaries
is not fully understood yet. We show that LRR (1.3) equipped with proper dictionaries
could well handle coherent data.

⋄ The idea of replacingL with AZ is essentially related to the spirit of matrix factorization
which has been explored for long, e.g., [20, 23]. In that sense, the explorations of this paper
help to understand why factorization techniques are useful.

2 Summary of Main Notations

Capital letters such asM are used to represent matrices, and accordingly,[M ]ij denotes its(i, j)th
entry. LettersU , V ,Ω and their variants (complements, subscripts, etc.) are reserved for left singular
vectors, right singular vectors and support set, respectively. We shall abuse the notationU (resp.V )
to denote the linear space spanned by the columns ofU (resp.V ), i.e., the column space (resp. row
space). The projection onto the column spaceU , is denoted byPU and given byPU (M) = UUTM ,
and similarly for the row spacePV (M) = MV V T . We shall also abuse the notationΩ to denote
the linear space of matrices supported onΩ. ThenPΩ andPΩ⊥ respectively denote the projections
ontoΩ andΩc such thatPΩ +PΩ⊥ = I, whereI is the identity operator. The symbol(·)+ denotes
the Moore-Penrose pseudoinverse of a matrix:M+ = VMΣ−1

M UT
M for a matrixM with Singular

Value Decomposition (SVD)2 UMΣMV T
M .

Six different matrix norms are used in this paper. The first three norms are functions of the singular
values: 1) The operator norm (i.e., the largest singular value) denoted by‖M‖, 2) the Frobenius
norm (i.e., square root of the sum of squared singular values) denoted by‖M‖F , and 3) the nuclear
norm (i.e., the sum of singular values) denoted by‖M‖∗. The other three are theℓ1, ℓ∞ (i.e.,
sup-norm) andℓ2,∞ norms of a matrix:‖M‖

1
=

∑

i,j |[M ]ij |, ‖M‖∞ = maxi,j{|[M ]ij |} and

‖M‖
2,∞ = maxj{

√

∑

i[M ]2ij}, respectively.

The Greek letterµ and its variants (e.g., subscripts and superscripts) are reserved for the coherence
parameters of a matrix. We shall also reserve two lower case letters,m andn, to respectively denote
the data dimension and the number of data points, and we use the following two symbols throughout
this paper:

n1 = max(m,n) and n2 = min(m,n).

3 On the Recovery of Coherent Data

In this section, we shall firstly investigate the physical regime that raises coherent (or less incoher-
ent) data, and then discuss the problem of recovering coherent data from corrupted observations,
providing some basic principles and an algorithm for resolving the problem.

2In this paper, SVD always refers to skinny SVD. For a rank-r matrixM ∈ R
m×n, its SVD is of the form

UMΣMV T

M , with UM ∈ R
m×r,ΣM ∈ R

r×r andVM ∈ R
n×r.
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3.1 Coherence Parameters and Their Properties

As the rank function cannot fully capture all characteristics ofL0, it is necessary to define some
quantities to measure the effects of various extra structures (beyond low-rankness) such as the clus-
tering structure as demonstrated in Figure 1. Thecoherenceparameters defined in [3, 4] are excellent
exemplars of such quantities.

3.1.1 Coherence Parameters: µ1, µ2, µ3

For anm × n matrix L0 with rank r0 and SVDL0 = U0Σ0V
T
0 , some important properties can

be characterized by three coherence parameters, denoted asµ1, µ2 andµ3, respectively. The first
coherence parameter,1 ≤ µ1(L0) ≤ m, which characterizes the column space identified byU0, is
defined as

µ1(L0) =
m

r0
max

1≤i≤m
‖UT

0 ei‖22, (3.4)

whereei denotes theith standard basis. The second coherence parameter,1 ≤ µ2(L0) ≤ n, which
characterizes the row space identified byV0, is defined as

µ2(L0) =
n

r0
max
1≤j≤n

‖V T
0 ej‖22. (3.5)

The third coherence parameter,1 ≤ µ3(L0) ≤ mn, which characterizes the joint space identified
byU0V

T
0 , is defined as

µ3(L0) =
mn

r0
(‖U0V

T
0 ‖∞)2 =

mn

r0
max
i,j

(|〈UT
0 ei, V

T
0 ej〉|)2. (3.6)

The analysis in RPCA [4] merges the above three parameters into a single one: µ(L0) =
max{µ1(L0), µ2(L0), µ3(L0)}. As will be seen later, the behaviors of those three coherence pa-
rameters are different from each other, and hence it is more adequate to consider them individually.

3.1.2 µ2-phenomenon

According to the analysis in [4], the success condition (regardingL0) of RPCA is

rank (L0) ≤
crn2

µ(L0)(logn1)2
, (3.7)

whereµ(L0) = max{µ1(L0), µ2(L0), µ3(L0)} and cr > 0 is some numerical constant. Thus,
RPCA will be less successful when the coherence parameters are considerably larger. In this subsec-
tion, we shall show that the widely existing clustering structure can enlarge the coherence parameters
and, accordingly, downgrades the performance of RPCA.

Given the restriction thatrank (L0) = r0, the data points (i.e., column vectors ofL0) are unneces-
sarily sampled from ar0-dimensional subspaceuniformly at random. A more realistic interpretation
is to consider the data points as samples from the union ofk number of subspaces (i.e., clusters),
and the sum of those multiple subspaces together has a dimension r0. That is to say, there are
multiple “small” subspaces inside oner0-dimensional “large” subspace, as exemplified in Figure 1.
Whenever the low-rank matrixL0 is meanwhile exhibiting such clustering behaviors, the second
coherence parameterµ2(L0) (and soµ3(L0)) will increase with the number of clusters underlying
L0, as shown in Figure 2. When the coherence is heightening, (3.7) suggests that the performance
of RPCA will drop, as verified in Figure 2(d). Note here that the variation ofµ3 is mainly due
to the variation of the row space, which is characterized byµ2. We call the phenomena shown in
Figure 2(b)∼(d) as the “µ2-phenomenon”. Readers can also refer to the full paper to seewhy the
second coherence parameter increases with the cluster number underlyingL0.

Interestingly, one may have noticed thatµ1 is invariant to the variation of the clustering number, as
can be seen from Figure 2(a). This is because the clustering behavior of the data points can only
affect the row space, whileµ1 is defined on the column space. Yet, if the row vectors ofL0 also
own some clustering structure,µ1 could be large as well. Such kind of data can exist widely in text
documents and we leave this as future work.
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Figure 2: Exploring the influence of the cluster number, using randomly generated matrices. The
size and rank ofL0 are fixed to be500× 500 and 100, respectively. The underlying cluster number
varies from 1 to 50. For the recovery experiments,S0 is fixed as a sparse matrix with 13% nonzero
entries. (a) The first coherence parameterµ1(L0) vs cluster number. (b)µ2(L0) vs cluster number.
(c) µ3(L0) vs cluster number. (d) Recover error (produced by RPCA) vs cluster number. The
numbers shown in these figure are averaged from 100 random trials. The recover error is computed
as‖L̂0 − L0‖F /‖L0‖F , whereL̂0 denotes an estimate ofL0.

3.2 Avoiding µ2 by LRR

Theµ2-phenomenon implies that the second coherence parameterµ2 is related in nature to some
intrinsic structures ofL0 and thus cannot be eschewed without using additional conditions. In the
following, we shall figure out under what conditions the second coherence parameterµ2 (andµ3)
can be avoided such that LRR could well handle coherent data.

Main Result: We show that, when the dictionaryA itself is low-rank, LRR is able to avoidµ2.
Namely, the following theorem is proved without usingµ2. See the full paper for a detailed proof.

Theorem 1 (Noiseless) LetA ∈ R
m×d with SVDA = UAΣAV

T
A be a column-wisely unit-normed

(i.e., ‖Aei‖2 = 1, ∀i) dictionary matrix which satisfiesPUA
(U0) = U0 (i.e.,U0 is a subspace of

UA). For any0 < ǫ < 0.5 and some numerical constantca > 1, if

rank (L0) ≤ rank (A) ≤ ǫ2n2

caµ1(A) log n1

and |Ω| ≤ (0.5− ǫ)mn, (3.8)

then with probability at least1 − n−10
1 , the optimal solution to the LRR problem(1.3) with λ =

1/
√
n1 is unique and exact, in a sense that

Z∗ = A+L0 and S∗ = S0,

where(Z∗, S∗) is the optimal solution to(1.3).

It is worth noting that the restrictionrank (L0) ≤ O(n2/ logn1) is looser than that of PRCA3, which
requiresrank (L0) ≤ O(n2/(logn1)

2). The requirement of column-wisely unit-normed dictionary
(i.e., ‖Aei‖2 = 1, ∀i) is purely for complying the parameter estimate ofλ = 1/

√
n1, which is

consistent with RPCA. The conditionPUA
(U0) = U0, i.e.,U0 is a subspace ofUA, is indispensable

if we ask for exact recovery, becausePUA
(U0) = U0 is implied by the equalityAZ∗ = L0. This

necessary condition, together with the low-rankness condition, provides an elementary criterion for
learning the dictionary matrixA in LRR. Figure 3 presents an example, which further confirms our
main result; that is, LRR is able to avoidµ2 as long asU0 ⊂ UA andA is low-rank. It is also
worth noting that it is unnecessary forA to satisfyUA = U0, and that LRR is actually tolerant to the
“errors” possibly existing in the dictionary.

The program (1.3) is designed for the case where the uncorrupted observations are noiseless. In
reality this assumption is often not true and all entries ofX can be contaminated by a small amount
of noises, i.e.,X = L0 + S0 +N , whereN is a matrix of dense Gaussian noises. In this case, the
formula of LRR (1.3) need be modified to

min
Z,S

‖Z‖∗ + λ‖S‖1, s.t. ‖X −AZ − S‖F ≤ ε, (3.9)

3In terms ofexactrecovery,O(n2/ log n1) is probably the “finest” bound one could accomplish in theory.
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Figure 3: Exemplifying that LRR can voidµ2. In this experiment,L0 is a200× 200 rank-1 matrix
with one column being1 (i.e., a vector of all ones) and everything else being zero. Thus,µ1(L0) = 1
andµ2(L0) = 200. The dictionary is set asA = [1,W ], whereW is a200 × p random Gaussian
matrix (with varyingp). As long asrank (A) = p+1 ≤ 10, LRR withλ = 0.08 can exactly recover
L0 from a grossly corrupted observation matrixX .

whereε is a parameter that measures the noise level of data. In the experiments of this paper,
we consistently setε = 10−6‖X‖F . In the presence of dense noises, the latent matrices,L0 and
S0, cannot be exactly restored. Yet we have the following theorem to guarantee the near recovery
property of the solution produced by the program (3.9):

Theorem 2 (Noisy) Suppose‖X−L0 −S0‖F ≤ ε. LetA ∈ R
m×d with SVDA = UAΣAV

T
A be a

column-wisely unit-normed dictionary matrix which satisfiesPUA
(U0) = U0 (i.e.,U0 is a subspace

ofUA). For any0 < ǫ < 0.35 and some numerical constantca > 1, if

rank (L0) ≤ rank (A) ≤ ǫ2n2

caµ1(A) log n1

and |Ω| ≤ (0.35− ǫ)mn, (3.10)

then with probability at least1−n−10
1 , any solution(Z∗, S∗) to (3.9)with λ = 1/

√
n1 gives a near

recovery to(L0, S0), in a sense that‖AZ∗ − L0‖F ≤ 8
√
mnε and‖S∗ − S0‖F ≤ (8

√
mn+ 2)ε.

3.3 An Unsupervised Algorithm for Matrix Recovery

To handle coherent (equivalently, less incoherent) data, Theorem 1 suggests that the dictionary ma-
trix A should be low-rank and satisfyU0 ⊂ UA. In certain supervised environment, this might not be
difficult as one could potentially use clear, well processedtraining data to construct the dictionary. In
an unsupervised environment, however, it will be challenging to identify a low-rank dictionary that
obeysU0 ⊂ UA. Note thatU0 ⊂ UA can be viewed as supervision information (ifA is low-rank).

In this paper, we will introduce a heuristic algorithm that can work distinctly better than RPCA in
an unsupervised environment. As can be seen from (3.7), RPCAis actually not brittle with respect
to coherent data (although its performance is depressed). Based on this observation, we propose
a simple algorithm, as summarized in Algorithm 1, to achievea solid improvement over RPCA.
Our idea is straightforward: We first obtain an estimate ofL0 by using RPCA and then utilize the
estimate to construct the dictionary matrixA in LRR. The post-processing steps (Step 2 and Step 3)
that slightly modify the solution of RPCA is to encourage well-conditioned dictionary, which is the
circumstance favoring LRR.

Whenever the recovery produced by RPCA is already exact, theclaim in Theorem 1 gives that the
recovery produced by our Algorithm 1 is exact as well. That isto say, in terms of exactly recovering
L0 from a givenX , the success probability of our Algorithm 1 is greater than or equal to that of
RPCA. From the computational perspective, Algorithm 1 doesnot really double the work of RPCA,
although there are two convex programs in our algorithm. In fact, according to our simulations,
usually the computational time of Algorithm 1 is merely about 1.2 times as much as RPCA. The
reason is that, as has been explored by [13], the complexity of solving the LRR problem (1.3) is
O(n2rA) (assumingm = n), which is much lower than that of RPCA (which requiresO(n3))
provided that the obtained dictionary matrixA is fairly low-rank (i.e.,rA is small).

One may have noticed that the procedure of Algorithm 1 could be made iterative, i.e., one can
considerÂZ∗ as a new estimate ofL0 and use it to further update the dictionary matrixA, and so
on. Nevertheless, we empirically find that such an iterativeprocedure often converges within two
iterations. Hence, for the sake of simplicity, we do not consider iterative strategies in this paper.

6



Algorithm 1 Matrix Recovery

input: Observed data matrixX ∈ R
m×n.

adjustable parameter: λ.
1. Solve forL̂0 by optimizing the RPCA problem (1.2) withλ = 1/

√
n1.

2. Estimate the rank of̂L0 by
r̂0 = #{i : σi > 10−3σ1},

whereσ1, σ2, · · · , σn2
are the singular values of̂L0.

3. FormL̃0 by using the rank-̂r0 approximation of̂L0. That is,

L̃0 = argmin
L

‖L− L̂0‖2F , s.t. rank (L) ≤ r̂0,

which is solved by SVD.
4. Construct a dictionarŷA from L̃0 by normalizing the column vectors of̃L0:

[Â]:,i =
[L̃0]:,i

‖[L̃0]:,i‖2
, i = 1, · · · , n,

where[·]:,i denotes theith column of a matrix.
5. Solve forZ∗ by optimizing the LRR problem (1.3) withA = Â andλ = 1/

√
n1.

output: ÂZ∗.

4 Experiments

4.1 Results on Randomly Generated Matrices

We first verify the effectiveness of our Algorithm 1 on randomly generated matrices. We generate
a collection of200 × 1000 data matrices according to the model ofX = PΩ⊥(L0) + PΩ(S0):
Ω is a support set chosen at random;L0 is created by sampling 200 data points from each of 5
randomly generated subspaces;S0 consists of random values from Bernoulli±1. The dimension of
each subspace varies from 1 to 20 with step size 1, and thus therank ofL0 varies from 5 to 100 with
step size 5. The fraction|Ω|/(mn) varies from 2.5% to 50% with step size 2.5%. For each pair of
rank and support size(r0, |Ω|), we run 10 trials, resulting in a total of 4000 (20× 20× 10) trials.
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Figure 4: Algorithm 1 vs RPCA for the task of recovering randomly generated matrices, both using
λ = 1/

√
n1. A curve shown in the third subfigure is the boundary for a method to be successful

— The recovery is successful for any pair(r0/n2, |Ω|/(mn)) that locates below the curve. Here, a
success means‖L̂0 − L0‖F < 0.05‖L0‖F , whereL̂0 denotes an estimate ofL0.

Figure 4 compares our Algorithm 1 to RPCA, both usingλ = 1/
√
n1. It can be seen that, using the

learned dictionary matrix, Algorithm 1 works distinctly better than RPCA. In fact, the success area
(i.e., the area of the white region) of our algorithm is 47% wider than that of RPCA! We should also
mention that it is possible for RPCA to be exactly successfulon coherent (or less incoherent) data,
provided that the rank ofL0 is low enough and/orS0 is sparse enough. Our algorithm in general
improves RPCA whenL0 is moderately low-rank and/orS0 is moderately sparse.
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4.2 Results on Corrupted Motion Sequences
We now present our experiment with 11 additional sequences attached to the Hopkins155 [21]
database. In those sequences, about 10% of the entries in thedata matrix of trajectories are un-
observed (i.e., missed) due to vision occlusion. We replaceeach missed entry with a number from
Bernoulli±1, resulting in a collection of corrupted trajectory matrices for evaluating the effective-
ness of matrix recovery algorithms. We perform subspace clustering on both the corrupted trajectory
matrices and the recovered versions, and use the clusteringerror rates produced by existing subspace
clustering methods as the evaluation metrics. We consider three state-of-the-art subspace clustering
methods: Shape Interaction Matrix (SIM) [5], Low-Rank Representation withA = X [14] (which
is referred to as “LRRx”) and Sparse Subspace Clustering (SSC) [6].

Table 1: Clustering error rates (%) on 11 corrupted motion sequences.

Mean Median Maximum Minimum Std. Time (sec.)
SIM 29.19 27.77 45.82 12.45 11.74 0.07

RPCA + SIM 14.82 8.38 45.78 0.97 16.23 9.96
Algorithm 1 + SIM 8.74 3.09 42.61 0.23 12.95 11.64

LRRx 21.38 22.00 56.96 0.58 17.10 1.80
RPCA + LRRx 10.70 3.05 46.25 0.20 15.63 10.75

Algorithm 1 + LRRx 7.09 3.06 32.33 0.22 10.59 12.11
SSC 22.81 20.78 58.24 1.55 18.46 3.18

RPCA + SSC 9.50 2.13 50.32 0.61 16.17 12.51
Algorithm 1 + SSC 5.74 1.85 27.84 0.20 8.52 13.11

Table 1 shows the error rates of various algorithms. Withoutthe preprocessing of matrix recovery,
all the subspace clustering methods fail to accurately categorize the trajectories of motion objects,
producing error rates higher than 20%. This illustrates that it is important for motion segmentation
to correct the gross corruptions possibly existing in the data matrix of trajectories. By using RPCA
(λ = 1/

√
n1) to correct the corruptions, the clustering performances of all considered methods are

improved dramatically. For example, the error rate of SSC isreduced from 22.81% to 9.50%. By
choosing an appropriate dictionary for LRR (λ = 1/

√
n1), the error rates can be reduced again,

from 9.50% to 5.74%, which is a 40% relative improvement. These results verify the effectiveness
of our dictionary learning strategy in realistic environments.

5 Conclusion and Future Work

We have studied the problem of disentangling the low-rank and sparse components in a given data
matrix. Whenever the low-rank component exhibits clustering structures, the state-of-the-art RPCA
method could be less successful. This is because RPCA prefers incoherent data, which however may
be inconsistent with data in the real world. When the number of clusters becomes large, the second
and third coherence parameters enlarge and hence the performance of RPCA could be depressed. We
have showed that the challenges arising from coherent (equivalently, less incoherent) data could be
effectively alleviated by learning a suitable dictionary under the LRR framework. Namely, when the
dictionary matrix is low-rank and contains information about the ground truth matrix, LRR can be
immune to the coherence parameters that increase with the underlying cluster number. Furthermore,
we have established a practical algorithm that outperformsRPCA in our extensive experiments.

The problem of recovering coherent data essentially concerns the robustness issues of the General-
ized PCA (GPCA) [22] problem. Although the classic GPCA problem has been explored for several
decades, robust GPCA is new and has not been well studied. Theapproach proposed in this pa-
per is in a sense preliminary, and it is possible to develop other effective methods for learning the
dictionary matrix in LRR and for handling coherent data. We leave these as future work.
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