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Abstract

This paper is concerned with compressive sensing of signals drawn from a Gaus-
sian mixture model (GMM) with sparse precision matrices. Previous work has
shown: (i) a signal drawn from a given GMM can be perfectly reconstructed from
r noise-free measurements if the (dominant) rank of each covariance matrix is
less than r; (ii) a sparse Gaussian graphical model can be efficiently estimated
from fully-observed training signals using graphical lasso. This paper addresses a
problem more challenging than both (i) and (ii), by assuming that the GMM is un-
known and each signal is only observed through incomplete linear measurements.
Under these challenging assumptions, we develop a hierarchical Bayesian method
to simultaneously estimate the GMM and recover the signals using solely the in-
complete measurements and a Bayesian shrinkage prior that promotes sparsity of
the Gaussian precision matrices. In addition, we provide theoretical performance
bounds to relate the reconstruction error to the number of signals for which mea-
surements are available, the sparsity level of precision matrices, and the “incom-
pleteness” of measurements. The proposed method is demonstrated extensively
on compressive sensing of imagery and video, and the results with simulated and
hardware-acquired real measurements show significant performance improvement
over state-of-the-art methods.

1 Introduction

Gaussian mixture models (GMMs) [1, 2, 3] have become a popular signal model for compressive
sensing [4, 5] of imagery and video, partly because the information domain in these problems can
be decomposed into subdomains known as pixel/voxel patches [3, 6]. A GMM employs a Gaussian
precision matrix to capture the statistical relations between local pixels/voxels within a patch, and
meanwhile captures the global statistics between patches using its clustering mechanism.

Compressive sensing (CS) of signals drawn from a GMM admits closed-form minimum mean
squared error (MMSE) reconstruction from linear measurements. Recent theoretical analysis in
[7] shows that, given a sensing matrix with entries i.i.d. drawn from a zero-mean, fixed-variance,
Gaussian distribution or Bernoulli distribution with parameter 0.5, if the GMM is known and the
(dominant) rank of each covariance matrix is less than r, each signal can be perfectly reconstructed
from r noise-free measurements. Though this is a much less stringent reconstruction condition than
that prescribed by standard restricted-isometry-property (RIP) bounds, it relies on the assumption
of knowing the exact GMM. If a sufficient number of fully observed signals are available before-
hand, one can use maximum likelihood (ML) estimators to train a GMM [8, 9, 7, 1, 10] for use in
reconstructing the signals in question. Unfortunately, finding an accurate GMM a priori is usually a
challenge in practice, because it is difficult to obtain training signals that match the statistics of the
interrogated signals.
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Recent work [2] on GMM-based methods proposes to solve this problem by estimating the Gaus-
sian components, based on measurements of the signals under interrogation, without resorting to
any fully-observed signals to train a model in advance. The method of [2] has two drawbacks: (i)
it estimates full dense Gaussian covariance matrices, with the number of free parameters to be esti-
mated growing quadratically fast with the signal dimensionality n; (ii) it does not have performance
guarantees, because all previous theoretical results, including those in [7], assume the GMM is given
and thus are no longer applicable to the method of [2]. This paper addresses these two issues.

First, we effectively reduce the number of GMM parameters by restricting the GMM to have sparse
precision matrices with group sparsity patterns, making the GMM a mixture of group-sparse Gaus-
sian graphical models. The group sparsity is motivated by the Markov random field (MRF) property
of natural images and video [11, 12, 13]. Instead of having n2 parameters for each Gaussian com-
ponent as in [2], we have only n + s parameters, where s is the number of nonzero off-diagonals
of the precision matrix. We develop a variational maximum-marginal-likelihood estimator (varia-
tional MMLE) to simultaneously estimate the GMM and reconstruct the signals, with a Bayesian
shrinkage prior used to promote sparsity of the Gaussian precision matrices. Our variational MM-
LE maximizes the marginal likelihood of the GMM given only the linear measurements, with the
unknown signals treated as random variables and integrated out of the likelihood. A key step of
the variational MMLE is using Bayesian graphical lasso to reestimate the sparse Gaussian precision
matrices based on a posteriori signal samples conditional on the linear measurements.

Second, we provide theoretical performance bounds under the assumption that the GMM is not
exactly known. Assuming the GMM has sparse precision matrices, our theoretical results relate
the signal reconstruction error to the number of signals for which measurements are available, the
sparsity level of the precision matrices, and the “incompleteness” of measurements, where the last
is defined as the uncertainty (variance) of a signal given its linear measurements.

In the experiments, we present reconstruction results of the proposed method on both simulated
measurements and real measurements acquired by actual hardware [6]. The proposed method out-
performs the state-of-art CS reconstruction algorithms by significant margins.

Notations. LetN (x|µ,Ω−1) denote a Gaussian density of x with mean µ and precision matrix Ω,
‖M‖F denote the Frobenius matrix norm of matrixM , ‖M‖max denote the largest entry ofM in
terms of magnitude, tr(M) denote the trace ofM , Ω0 = Σ−10 denote the true precision matrix (i.e.,
the inverse of true covariance matrix Σ0), Ω∗ denote the estimate of Ω0 by the proposed model.
Herein, the eigenvalues of Σ0 are assumed to be bounded in a constant interval [τ1, τ2] ⊂ (0,∞), to
guarantee the existence of Ω0. For functions f(x) and g(x), we write f(x) � g(x) when f(x) =
O(g(x)) and g(x) = O(f(x)) hold simultaneously.

2 Learning a GMM of Unknown Signals from Linear Measurements
2.1 Signal Reconstruction with a Given GMM

The linear measurement of an unknown signal x ∈ Rn can be written as y = Φx + ε, where
Φ ∈ Rm×n is a sensing matrix, and ε ∈ Rm denote measurement noises (we are interested in
m < n). Assuming ε ∈ N (ε|0,R), one has p(y|x) = N (y|Φx,R). We further assume R to be a
scaled identity matrix, R = κ−1I , and thus the noise is white Gaussian.

If x is governed by a GMM, i.e., p(x) =
∑K
z=1 π

(z)N (x|µ(z),Ω(z)−1), one may obtain

p(y,x, z) = π(z)N (y|Φx,R)N (x|µ(z),Ω(z)−1
),

p(y) =

K∑
z=1

π(z)N (y|Φµ(z),R + ΦΩ(z)−1
Φ′), p(x, z|y) = ρ(z)N (x|η(z), (C(z))−1), (1)

where

C(z) =
(
Φ′R−1Φ + Ω(z)

)−1

, η(z) = µz + C(z)Φ′R−1(y −Φµz),

ρ(z) =
π(z)N (y|Φµ(z),R + ΦΩ(z)−1

Φ′)∑K
l=1 π

(l)N (y|Φµ(l),R + ΦΩ(l)−1
Φ′)

. (2)

When the GMM is exactly known, the signal is reconstructed analytically as the conditional mean,

x̂ , E(x|y) =
∑K
z=1ρ

(z)η(z). (3)

2



It has been shown in [7] that, if the (dominant) rank of each Gaussian covariance matrix is less than
r, the signal can be perfectly reconstructed from only r measurements in the low-noise regime.

2.2 Restriction of the GMM to a mixture of Gaussian Markov Random Fields
A Markov random field (MRF), also known as an undirected graphical model, provides a graphical
representation of the joint probability distribution over multiple random variables, by considering
the conditional dependences among the variables [11, 12, 13]. In image analysis, each node of
an MRF corresponds to a pixel of the image in question, and an edge between two nodes is often
modeled by a potential function to characterize the conditional dependence between the associated
pixels. Because of the local smoothness structure of images, the edges of an MRF are usually
chosen based on a pairwise neighborhood structure: each pixel only has edge connections with
its neighbors. The widely used scheme is that each pixel only has edge connections with its four
immediate neighboring pixels to the left, right, top and bottom [11]. Therefore, an MRF for image
representation is an undirected graph with only a limited number of edges between its nodes.

Generally, learning and inference of an MRF are nontrivial, due to the nonlinearity and noncon-
vexity of the potential functions [14]. A popular special case of MRF is the Gaussian Markov
random field (GMRF) which is an MRF with a multivariate Gaussian distribution over node vari-
ables. The best-known advantage of a GMRF is its simplicity of learning and inference, because
of the nice properties of a multivariate Gaussian distribution. According to Hammersley-Clifford’s
theorem [15], the conditional dependence of the node variables in a GMRF is encoded in the pre-
cision matrix. As mentioned before, an MRF is sparse for image analysis problems, on account of
the neighborhood structure in the pixel domain. Therefore, the multivariate Gaussian distribution
associated with a GMRF has a sparse precision matrix. This property of a GMRF in image analysis
is demonstrated in Section 1 of the Supplementary Material.

Inspired by the GMRF interpretation, we place a shrinkage prior on each precision matrix to promote
sparsity when estimating the GMM. The Laplacian shrinkage prior used in [16] is chosen, but other
shrinkage priors [17] could also be used. Specifically, we impose a Laplacian shrinkage prior on the
off-diagonal elements of each of K precision matrices,

p(Ω(k)) =

n∏
i=1

∏
j<i

√
τ (k)γ

(k)
ij

2
exp(−

√
τ (k)γ

(k)
ij |ω

(k)
ij |), ∀k = 1, . . . ,K, (4)

with the symmetry constraints ω(k)
ij = ω

(k)
ji . In (4), τ (k) > 0 is a “global” scaling parameter for all

the elements of {ω(k)
ij |i = 1, ..., n, j < i} and generally fixed to be one [18], and γ(k)ij is a “local”

weight for the element ω(k)
ij . With the Laplacian prior (4), many off-diagonal elements of Ω(k) are

encouraged to be close to zero. However, in the inference procedure, the above Laplacian shrinkage
prior (4) is inconvenient due to the lack of analytic updating expressions. This issue is overcome by
using an equivalent scale mixture of normals representation [16] of (4) as shown below:√

τ (k)γ
(k)
ij

2
exp(−

√
τ (k)γ

(k)
ij |ω

(k)
ij |) =

∫
N (ω

(k)
ij |0, τ

(k)−1
α
(k)
ij

−1
)InvGa(α(k)

ij |1,
γ
(k)
ij

2
)dα

(k)
ij (5)

where α(k)
ij is an augmented variable drawn from an inverse gamma distribution. Further, one may

place a gamma prior on γ(k)ij . Then, a draw of the precision matrix may be represented by

Ω(k) ∼
n∏
i=1

∏
j<i

N (ω
(k)
ij |0, τ

(k)−1
α
(k)
ij

−1
), α

(k)
ij ∼ InvGa(α(k)

ij |1,
γ
(k)
ij

2
), γ

(k)
ij ∼ Ga(γ(k)

ij |a0, b0) (6)

where a0, b0 are the hyperparameters.

Suppose {xi}Ni=1 are samples drawn fromN (x|0,Ω(k)−1) and S denotes the empirical covariance
matrix 1

N

∑N
i=1(xi − x)(xi − x)′ where x is the empirical mean of {xi}Ni=1. If the elements Ω(k)

are drawn as in (6), the logarithm of the joint likelihood can be expressed as

log p({xi}Ni=1,Ω
(k)) ∝ N

2

(
log det(Ω(k))− tr(SΩ(k))−

n∑
i=1

∑
j<i

2

N

√
τ (k)γ

(k)
ij |ω

(k)
ij |

)
. (7)

From the optimization perspective, the maximum a posterior (MAP) estimations of Ω(k) in (7) is
known as the adaptive graphical lasso problem [18].
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2.3 Group sparsity based on banding patterns
The Bayesian adaptive graphical lasso described above assumes the precision matrix is sparse, and
the same Laplacian prior is imposed on all off-diagonal elements of the precision matrix without any
discrimination. However, the aforementioned neighborhood structure of image pixels implies that
the entries of the precision matrix corresponding to the pairs between neighboring pixels tend to have
significant values. This is consistent with the observations as seen from the demonstration in Section
1 of the Supplementary Material: (i) the bands scattered along a few lines above or below the main
diagonal are constituted by the entries with significant values in the precision matrix; (ii) the entries
in the bands correspond to the pairwise neighborhood structure of the graph, since vectorization of
an image patch is constituted by stacking all columns of pixels in a patch on the top of each other;
(iii) the existence of multiple bands in some Gaussian components reveals that, besides the four
immediate neighboring pixels, other indirected neighboring pixels may also lead to nonnegligible
conditional dependence, though the entries in the associated bands have relatively smaller values.

Inspired by the banding patterns mentioned above, we categorize the elements in the set
{ω(k)

ij }ni=1,j<i into two groups {ω(k)
ij |(i, j) ∈ L1} and {ω(k)

ij |(i, j) ∈ L2}, where L1 denotes the
set of indices corresponding to the elements in the bands and L2 represents the set of indices for the
elements not in the bands. For the elements in the group {ω(k)

ij |(i, j) ∈ L2}, the Laplacian prior is

used to encourage a sparse precision matrix. For the elements in the group {ω(k)
ij |(i, j) ∈ L1} , the

sparsity is not desired so a normal prior with Gamma hyperparameters is used instead. Accordingly,
the expressions in (6) can be replaced by

Ω(k) ∼
n∏
i=1

∏
i<j

N (ω
(k)
ij |0, τ

(k)−1
α
(k)
ij

−1
)

α
(k)
ij ∼

{
Ga(α(k)

ij |c0, d0), if (i, j) ∈ L1

InvGa(α(k)
ij |1,

γ
(k)
ij

2
), γ

(k)
ij ∼ Ga(γ(k)

ij |a0, b0), if (i, j) ∈ L2

.

(8)

With the prior distribution of Ω(k) in (6) replaced with that in (8), the joint log-likelihood in (7)
changes to

log p({xi}Ni=1,Ω
(k))

∝N
2

log det(Ω(k))− tr(SΩ(k))−
∑

(i,j)∈L1

2

N
τ (k)α

(k)
ij ‖ω

(k)
ij ‖

2 −
∑

(i,j)∈L2

2

N

√
τ (k)γ

(k)
ij |ω

(k)
ij |

 .
(9)

To the best of our knowledge, the maximum a posterior (MAP) estimations of Ω(k) in (9) has not
been studied in the family of graphical lasso or its variants, from the optimization perspective.

2.4 Hierarchical Bayesian model and inference
We consider the collective compressive sensing of the signals X = {xi ∈ Rn}Ni=1 that are drawn
from an unknown GMM. The noisy linear measurements of X are given by Y = {yi ∈ Rm : yi =
Φixi + εi}Ni=1. We assume the sensing matrices to be signal-dependent to account for generality
(i.e., Φi depends on the signal index i).

The unification of signal reconstruction with a given GMM (presented in Section 2.1) and GM-
RF learning with fully-observed training signals (presented in Section 2.2) leads to the following
Bayesian model,

yi|xi ∼ N (yi|Φixi, κ
−1I), xi ∼

K∑
z=1

π(z)N (xi|µ(z),Ω(z)−1
), κ ∼ Ga(κ|e0, f0) (10)

Ω(k) ∼
n∏
i=1

∏
i<j

N (ω
(k)
ij |0, τ

(k)−1
α
(k)
ij

−1
), α

(k)
ij ∼ InvGa(α(k)

ij |1,
γ
(k)
ij

2
), γ

(k)
ij ∼ Ga(γ(k)

ij |a0, b0), (11)

The expression in (11) could be replaced by (8) if the group sparsity is considered in the precision
matrix. In addition to the precision matrices, we further add the following standard priors on the
other parameters of the GMM to make the proposed model a full hierarchical Bayesian model,

µ(k) ∼ N (µ(k)|m0, (β0Ω
(k))−1), π ∼ Dirichlet(π(1), . . . , π(K)|a0), (12)
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where m0, a0 and β0 are hyperparameters.

We develop the inference procedure for the proposed Bayesian hierarchical model. Let the symbols
Z,µ,Ω,π,α,γ denote the sets {zi}, {µ(k)}, {Ω(k)}, {π(k)}, {α(k)}, {γ(k)} respectively. The
marginalized likelihood function is written as

L(Θ) = ln

∫
p(Y,Π,Θ)dΠ

where Π , {X,Z,α,γ} and Θ , {µ,Ω,π, κ} denote the set of the latent variables and parame-
ters of the model, respectively. An expectation-maximization (EM) algorithm [19] could be used to
find the optimal Θ by alternating the following two steps

• E-step: Find p(Π|Y,Θ∗) with Θ∗ computed at the M-step, and obtain the expected com-
plete log-likelihood EΠ(ln p(Y,Π,Θ∗)).

• M-step: Find an improved estimate of Θ∗ by maximizing the expected complete log-
likelihood given at the E-step.

However, it is intractable to compute the exact posterior p (Π|Y,Θ) at the E step. We develop a
variational inference approach to overcome the intractability. Based on the mean field theory [20],
we approximate the posterior distribution p (Π|Y,Θ) by a proposal distribution q(Π) that factorizes
over the variables as follows

q(Π) = q(X,Z,α,γ) = q(X,Z)q(α)q(γ). (13)

Then, we find an optimal distribution q(Π) that minimizes the Kullback-Leibler (KL) divergence
KL(q(Π)||p(Π|Y,Θ)) =

∫
q(Π) ln q(Π)

p(Π|Y,Θ)dΠ, or equivalently, maximizes the evidence lower
bound (ELBO) of the log-marginal data likelihood [21], denoted by F(q(Π),Θ),

ln p(Y,Θ) = ln

∫
q(Π)

p (Y,Π,Θ)

q(Π)
dΠ ≥

∫
q(Π) ln

p (Y,Π,Θ)

q(Π)
dΠ , F(q(Π),Θ) (14)

where the inequality is held based on the Jensen’s inequality.

With the above approximation, the entire algorithm becomes a variational EM algorithm and it
iterates between the following VE-step and VM-step until convergence:

• VE-step: Find the optimal posterior distribution q∗ (Π) that maximizes F(q(Π),Θ∗) with
Θ∗ computed at the VM-step.
• VM-step: Find the optimal Θ∗ that maximizes F(q∗(Π),Θ) with q∗(Π) computed at the

VE-step.

The full update equations of the variational EM algorithm are given in Section 2 of the Supplemen-
tary Material.

3 Theoretical Analysis
The proposed hierarchical Bayesian model unifies the task of signal recovery and the task of esti-
mating the mixture of GMRF, with a common goal of maximizing the ELBO of the log-marginal
likelihood of the measurements. This section provides a theoretical analysis to further reveal the
mutual influence between these two tasks (Theorem 1 and Theorem 2), and establish a theoretical
performance bound (Theorem 3) to relate the reconstruction error to the number of signals being
measured, the sparsity level of precision matrices, and the “incompleteness” of measurements. The
proofs of these theorems are presented in Sections 3-5 of the Supplementary Material. For conve-
nience, we consider the single Gaussian case, so the superscript (k) is omitted in the sequel. We
begin with the definitions and assumptions used in the theorems.

Definition 3.1 Let x̃i and x̂i be the signals estimated from measurement yi, using the true precision
matrix Ω0 and the estimated precision matrix Ω∗ respectively, according to (3),

x̂i =µ+
(
Ω0 + Φ′iR

−1Φi

)−1
Φ′iR

−1 (yi −Φiµ) = µ+ CiΦ
′
iR
−1 (yi −Φiµ)

x̃i =µ+
(
Ω0 + ∆ + Φ′iR

−1Φi

)−1
Φ′iR

−1 (yi −Φiµ) = µ+
(
C−1
i + ∆

)−1
Φ′iR

−1 (yi −Φiµ) .

Assuming yi ∈ Rr is noise-free and the (dominant) rank of Ω0 is less than r, one obtains x̂i as the
true signal xi [7], i.e., x̂i = xi. Then the reconstruction error of x̃i is ‖δi‖2, where δi = x̃i − x̂i.
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Definition 3.2 The estimation error of Ω∗ is defined as ‖∆‖F where ∆ = Ω∗ −Ω0.

At each VM-step of the variational EM algorithm developed in Section 2.4, Ω∗ is updated based on
the empirical covariance matrix Σem computed from {x̃i}, i.e.,

Σem =
1

N

N∑
i=1

x̃ix̃
′
i +

1

N

N∑
i=1

Ci =
1

N

N∑
i=1

x̂ix̂
′
i︸ ︷︷ ︸

Σ0
em

+
1

N

N∑
i=1

(2x̂iδ
′
i + δiδ

′
i + Ci)︸ ︷︷ ︸

Σde

, (15)

where {x̂i} and {x̃i} are considered to both have zero mean, as one can always center the signals
with respect to their means [2].

Definition 3.3 The deviation of empirical matrix Σ0
em is defined as Σde = Σem−Σ0

em according to
(15), and we use σ̄de , ‖Σde‖max to measure this deviation. Considering the developed variational

EM algorithm can converge to a local minimum, we assume σ̄de ≤ c
√

logn
N for a constant c > 01.

3.1 Theoretical results
Theorem 1 Assuming ‖Ci‖F ‖∆‖F < 1, the reconstruction error of the i-th signal is upper bound-
ed as ‖δi‖2 ≤

‖Ci‖F ‖∆‖F
1−‖Ci‖F ‖∆‖F

‖x̂i‖2.

Theorem 1 establishes the error bound of signal recovery in terms of ∆. In this theorem, Ω∗ can be
obtained by any GMRF estimation methods, including [1, 2] and the proposed method.

Let η = min(i,j)∈Sc

√
τγij
N , η = max(i,j)∈S

√
τγij
N , S = {(i, j) : ωij 6= 0, i 6= j}, Sc = {(i, j) :

ωij = 0, i 6= j} and the cardinality of S be s. The following theorem establishes an upper bound of
‖∆‖F on account of Σde.

Theorem 2 Given the empirical covariance matrix Σem, if η, η �
√

logn
N + σ̄de, then we have

‖∆‖F = Op{
√

(n+ s) log n/N +
√
n+ sσ̄de}.

Note that the standard graphical lasso and its variants [18, 23] assume the true signal samples {xi}
are fully observed when estimating Ω∗, so they correspond to the simple case that σ̄de = 0. Loh
and Wainwright [22, Corollary 5] also provides an upper bound of ‖∆‖F taking Σde into account.
However, they assume Σ0

em is attainable and the proof of their corollary relies on their proposed
GMRF estimation algorithm, so the theoretical result in [22] cannot be used here.

Let ε0 = 1
N

∑N
i=1 ‖x̂i − µ‖2, υ = 1

N

∑N
i=1 tr(Ci), δmax = supi ‖δi‖2, x̂max = supi ‖x̂i‖2 and

ξ = maxi ‖Ci‖F . A combination of Theorem 1 and 2 leads to the following theorem which re-
lates the error bound of signal reconstruction to the number of partially-observed signals (observed
through incomplete linear measurements), the sparsity level of precision matrices, and the uncertain-
ty of signal reconstruction (i.e., υ and ξ) which represent the “incompleteness” of the measurements.

Theorem 3 Given the empirical covariance matrix Σem, if η, η �
√

logn
N + σ̄de, ξ‖∆‖F < ζ

where ζ is a constant and (1− ζ)/
√
n+ s > Mε0(δmax + 2x̂max)ξ with M being an appropriate

constant to make ‖∆‖F ≤ M
√

(n+ s) log n/N + M
√
n+ sσ̄de hold with high probability, then

we obtain that 1
N

∑N
i=1 ‖x̃i − x̂i‖2 ≤

√
(logn)/N+υ

(1−ζ)/
√
n+s−Mε0(δmax+2x̂max)ξ

Mε0ξ.

From Theorem 3, we find that when the number of partially-observed signalsN tends to infinity and
the uncertainty of signal reconstruction tr(Ci) tends to zero ∀ i, the average reconstruction error
1
N

∑N
i=1 ‖x̃i − x̂i‖2 is close to zero with high probability.

4 Experiments
The performance of the proposed methods is evaluated on the problems of compressive
sensing (CS) of imagery and high-speed video2. For convenience, the proposed method
is termed as Sparse-GMM when using the non-group sparsity described in Section 2.2,

1A similar assumption is made in expression (3.13) of [22].
2The complete results can be found at the website: https://sites.google.com/site/nipssgmm/.
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and is termed Sparse-GMM(G) when using the group sparsity described in Section 2.3.
For Sparse-GMM(G), we construct the two groups L1 and L2 as follows : L1 =
{(i, j) : pixel i is one of four immediate neighbors, in the spatial domain, of pixel j, i 6= j} and
L2 = {(i, j) : i, j = 1, 2, · · · , n, i 6= j} \ L1. The proposed methods are compared with state-of-
the-art methods, including: a GMM pre-trained from training patches (GMM-TP) [7, 8], a piecewise
linear estimator (PLE) [2], generalized alternating projection (GAP) [24], Two-step Iterative Shrink-
age/Thresholding (TwIST) [25], KSVD-OMP [26].

For the proposed methods, the hyperparameters of the scaled mixture of Gaussians are set as√
a0/b0/N ≈ 300, c0 = d0 = 10−6, the hyperparameter of Dirichlet prior α0 is set as a vec-

tor with all elements being one, the hyperparameters of the mean of each Gaussian component are
set as β0 = 1, and m0 is set to the mean of the initialization of {x̂i}Ni=1. We fixed κ = 10−6 for
the proposed methods, GMM-TP and PLE. The number of dictionary elements in KSVD is set to
the best in {64, 128, 256, 512}. The TwIST adopts the total-variation (TV) norm, and the results of
TwIST reported here represented the best among the different settings of regularization parameter in
the range of [10−4, 1]. In GAP, the spatial transform is chosen between DCT and waveletes and the
one with the best result is reported, and the temporal transform for video is fixed to be DCT.

4.1 Simulated measurements
Compressive sensing of still images. Following the single pixel camera [27], an image xi is pro-
jected onto the rows of a random sensing matrix Φi ∈ Rm×n to obtain the compressive mea-
surements yi for i = 1, . . . , N . Each sensing matrix Φi is constituted by the elements drawn
from a uniform distribution in [0, 1]. The USPS handwritten digits dataset 3 and the
face dataset [28] are used in this experiment. In each dataset, we randomly select 300 images
and each image is resized to the scale of 12 × 12. Eight settings of CS ratios are adopted with
m
n ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40}. Since signal xi in the single pixel camera rep-
resents an entire image which generally has unique statistics, it is infeasible to find suitable training
data in practice. Therefore, GMM-TP and KSVD-OMP are not compared to in this experiment4. For
PLE, Sparse-GMM and Sparse-GMM(G), the minimum-norm estimates from the measurements,
x̂i = arg minx{‖x‖22 : Φix = yi} = Φ′i(ΦiΦ

′
i)
−1yi, i = 1, . . . , N , are used to initialize the

GMM. The number of GMM components K in PLE, Sparse-GMM, and Sparse-GMM(G) is tuned
among 2 ∼ 10 based on Bayesian information criterion (BIC).
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Figure 1: A comparison of reconstruction performances, in terms of PSNR, among different methods
for CS of imagery on USPS handwritten digits (left) and face datasets (middle), and CS
of video on NBA game dataset (right), with the average PSNR over frames shown in the brackets.

Compressive sensing of high-speed video. Following the Coded Aperture Compressive Temporal
Imaging (CACTI) system [6], each frame of video to be reconstructed is encoded with a shifted
binary mask which is designed by randomly drawing values from {0, 1} at every pixel location,
with a 0.5 probability of drawing 1. Each signal xi represents the vectorization of T consecutive
spatial frames, obtained by first vectorizing each frame into a column and then stacking the resulting
T columns on top of each other. The measurement yi is constituted by yi = Φixi where Φi =
[Φi,1, . . . ,Φi,T ] and Φi,t is a diagonal matrix with its diagonal being the mask that is applied to
the t-th frame. A video containing NBA game scenes is used in the experiment. It has 32 frames,
each of size 256 × 256, and T is set to be 8. For GMM-TP, KSVD-OMP, PLE, Sparse-GMM and
Sparse-GMM(G), we partition each 256 × 256 measurement frame into a set of 64 × 64 blocks,
and each block is considered as if it were a small frame and is processed independently of other
blocks.5 The patch is of size 4× 4× T . Since each block is only 64× 64, a small number of GMM
components are sufficient to capture its statistics, and we find the results are robust to K as long as
2 ≤ K ≤ 5 for PLE, Sparse-GMM and Sparse-GMM(G). Following [8, 26], we use the patches

3It is downloaded from http://cs.nyu.edu/∼roweis/data.html.
4The results of other settings can be found at https://sites.google.com/site/nipssgmm/.
5This subimage processing strategy has also been used in [2].
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of a randomly-selected video containing traffic scenes6, which are irrelevant to the NBA game, as
training data to learn a GMM for GMM-TP with 20 components, and we use it to initialize PLE,
Sparse-GMM, and Sparse-GMM(G). The same training data are used to learn the dictionaries for
KSVD-OMP.
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Figure 2: Plots of an example precision matrix (in mag-
nitude) learned by different GMM methods on the Face
dataset with m/n = 0.4. It is preferred to view the figure
electronically. The magnitudes in each precision matrix
are scaled to the range of [0, 1].

Results. From the results shown in
Figure 1, we observe that the proposed
methods, especially Sparse-GMM(G),
outperforms other methods with sig-
nificant margins in all considered set-
tings. The better performance of Sparse-
GMM(G) over Sparse-GMM validates
the advantage of considering group s-
parsity in the model. Figure 2 shows the
an example precision matrix of one ofK
Gaussian components that are learned
by the methods of PLE, Sparse-GMM, and Sparse-GMM(G) on the face dataset. From this figure,
we can see that Sparse-GMM and Sparse-GMM(G) show much clearer groups sparsity than PLE,
demonstrating the benifits of using group sparsity constructed from the banding patterns.

4.2 Real measurements
#1 #2 #3 #4 #5
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#11 #12 #13 #14

Raw measurement 
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GMM-TP Sparse-GMM Sparse-GMM(G)

#1 #2 #3 #4 #5
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GAP TwIST

Figure 3: Reconstructed images 256 × 256 × T by differen-
t methods from the “raw measurement” acquired from CACTI
with T = 14. The region in the red boxes are enlarged and
shown at the right bottom part for better comparison.

We demonstrate the efficacy of
the proposed methods on the CS
of video, with the measurements
acquired by the actual hardware
of CACTI camera [6]. A letter is
placed on the blades of a chop-
per wheel that rotates at an angu-
lar velocity of 15 blades per sec-
ond. The training data are ob-
tained from the videos of a chop-
per wheel rotating at several ori-
entations, positions and veloci-
ties. These training videos are
captured by a regular camcorder
at frame-rates that are differen-
t from the high-speed frame rate
achieved by CACTI reconstruc-
tion. Other settings of the meth-
ods are the same as in the experi-
ments on simulated data. The reconstruction results are shown in Figure 3, which shows that Sparse-
GMM(G) generally yields sharper reconstructed frames with less ghost effects than other methods.

5 Conclusions
The success of compressive sensing of signals from a GMM highly depends on the quality of the
estimator of the unknown GMM. In this paper, we have developed a hierarchical Bayesian method
to simultaneously estimate the GMM and recover the signals, all based on using only incomplete
linear measurements and a Bayesian shrinkage prior for promoting sparsity of the Gaussian preci-
sion matrices. In addition, we have obtained theoretical results under the challenging assumption
that the underlying GMM is unknown and has to be estimated from measurements that contain only
incomplete information about the signals. Our results extend substantially from previous theoretical
results in [7] which assume the GMM is exactly known. The experimental results with both sim-
ulated and hardware-acquired measurements show the proposed method significantly outperforms
state-of-the-art methods.
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