Universal models for binary spike patterns using centered Dirichlet processes

Part of Advances in Neural Information Processing Systems 26 (NIPS 2013)

Bibtex Metadata Paper Reviews Supplemental

Authors

Il Memming Park, Evan W. Archer, Kenneth Latimer, Jonathan W. Pillow

Abstract

Probabilistic models for binary spike patterns provide a powerful tool for understanding the statistical dependencies in large-scale neural recordings. Maximum entropy (or maxent'') models, which seek to explain dependencies in terms of low-order interactions between neurons, have enjoyed remarkable success in modeling such patterns, particularly for small groups of neurons. However, these models are computationally intractable for large populations, and low-order maxent models have been shown to be inadequate for some datasets. To overcome these limitations, we propose a family of "universal'' models for binary spike patterns, where universality refers to the ability to model arbitrary distributions over all $2^m$ binary patterns. We construct universal models using a Dirichlet process centered on a well-behaved parametric base measure, which naturally combines the flexibility of a histogram and the parsimony of a parametric model. We derive computationally efficient inference methods using Bernoulli and cascade-logistic base measures, which scale tractably to large populations. We also establish a condition for equivalence between the cascade-logistic and the 2nd-order maxent or "Ising'' model, making cascade-logistic a reasonable choice for base measure in a universal model. We illustrate the performance of these models using neural data."