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Abstract

We propose an approximate inference algorithm for continuous time Gaussian Markov
process models with both discrete and continuous time likelihoods. We show that the
continuous time limit of the expectation propagation algorithm exists and results in a
hybrid fixed point iteration consisting of (1) expectation propagation updates for discrete
time terms and (2) variational updates for the continuous time term. We introduce post-
inference corrections methods that improve on the marginals of the approximation. This
approach extends the classical Kalman-Bucy smoothing procedure to non-Gaussian ob-
servations, enabling continuous-time inference in a variety of models, including spiking
neuronal models (state-space models with point process observations) and box likelihood
models. Experimental results on real and simulated data demonstrate high distributional
accuracy and significant computational savings compared to discrete-time approaches in
a neural application.

1 Introduction

Continuous time stochastic processes provide a flexible and popular framework for data modelling in
a broad spectrum of scientific and engineering disciplines. Their intrinsically non-parametric, infinite-
dimensional nature also makes them a challenging field for the development of efficient inference algo-
rithms. Recent years have seen several such algorithms being proposed for a variety of models [Opper
and Sanguinetti, 2008, Opper et al., 2010, Rao and Teh, 2012]. Most inference work has focused on the
scenario when observations are available at a finite set of time points, however, modern technologies are
making effectively continuous time observations increasingly common: for example, high speed imaging
technologies now enable the acquisition of biological data at around 100Hz for extended periods of time.
Other scenarios give intrinsically continuous time observations: for example, sensors monitoring the transit
of a particle through a barrier provide continuous time data on the particle’s position. To the best of our
knowledge, this problem has not been addressed in the statistical machine learning community.

In this paper, we propose an expectation-propagation (EP)-type algorithm [Opper and Winther, 2000,
Minka, 2001] for latent diffusion processes observed in either discrete or continuous time. We derive
fixed-point update equations by considering a continuous time limit of the parallel EP algorithm [e.g. Op-
per and Winther, 2005, Cseke and Heskes, 2011b]: these fixed point updates naturally become differential
equations in the continuous time limit. Remarkably, we show that, in the presence of continuous time
observations, the update equations for the EP algorithm reduce to updates for a variational Gaussian ap-
proximation [Archambeau et al., 2007]. We also generalise to the continuous-time limit the EP correction
scheme of [Cseke and Heskes, 2011b], which enable us to capture some of the non-Gaussian behaviour of
the time marginals.
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2 Models and methods

We consider dynamical systems described by multivariate stochastic differential equations (SDEs) of
Ornstein-Uhlenbeck (OU) type over the [0, 1] time interval

dxt = (Atxt + ct)dt+B
1/2
t dWt, (1)

where {Wt}t is the standard Wiener process [Gardiner, 2002] and At,Bt and ct are time dependent matrix
and vector valued functions respectively with Bt being positive definite for all t ∈ [0, 1]. Even though the
process does not posses a formulation through density functions (with respect to the Lebesgue measure),
in order to be able to symbolically represent and manipulate the variables of the process in the Bayesian
formalism, we will use the proxy p0({xt}) to denote their distribution.

The process can be observed (noisily) both at discrete time points, and for continuous time intervals; we
will partition the observations in yd

ti , ti ∈ Td and yc
t , t ∈ [0, 1] accordingly. We assume that the likelihood

function admits the general formulation

p({yd
ti}i, {y

c
t}| {xt}) ∝

�

ti∈Td

p(yd
ti |xti)× exp

�
−
� 1

0

dtV (t,yc
t ,xt)

�
. (2)

We refer to p(yd
ti |xti) and V (t,yc

t ,xt) as discrete time likelihood term and continuous time loss function,
respectively. We notice that, using Girsanov’s theorem and Ito’s lemma, non-linear diffusion equations
with constant (diagonal) diffusion matrix can be re-written in the form (1)-(2), provided the drift can be
obtained as the gradient of a potential function [e.g. Øksendal, 2010].

Our aim is to propose approximate inference methods to compute the marginals p(xt|{yd
ti}i, {y

c
t}) of the

posterior distribution

p({xt}t|{yd
ti}i, {y

c
t}) ∝ p({yd

ti}i, {y
c
t}| {xt})× p0({xt}).

2.1 Exact inference in Gaussian models

We start form the exact case of Gaussian observations and quadratic loss function. The linearity of equa-
tion (1) implies that the marginal distributions of the process at every time point are Gaussian (assuming
Gaussian initial conditions). The time evolution of the marginal mean mt and covariance Vt is governed
by the pair of differential equations [Gardiner, 2002]

d
dt

mt = Atmt + ct and
d
dt

Vt = AtVt + VtA
T
t +Bt. (3)

In the case of Gaussian observations and a quadratic loss function V (t,yc
t ,xt) = const. − xT

t h
c
t +

1
2x

T
t Q

c
txt, these equations, together with their backward analogues, enable an exact recursive inference

algorithm, known as the Kalman-Bucy smoother [e.g. Särkkä, 2006]. This algorithm arises because we can
recast the loss function as an auxiliary (observation) process

dyc
t = xtdt+R

1/2
t dWt, (4)

where R−1
t = Qc

t and R−1
t dyc

t/dt = hc
t . This follows by the Gaussianity of the observation process and

the fundamental property of Ito’s calculus dW 2
t = Idt.

The Kalman-Bucy algorithm computes the posterior marginal means and covariances by solving the differ-
ential equations in a forward-backward fashion. These can be combined with classical Kalman filtering to
account for discrete-time observations. The exact form of the equations as well as the variational derivation
of the Kalman-Bucy problem are given in Section B of the Supplementary Material.

2.2 Approximate inference

In this section we use an Euler discretisation of the prior and the continuous time likelihood to turn our
model into a multivariate latent Gaussian model. We review the EP algorithm for such models and then we
show that when taking the limit ∆t → 0 the updates of the EP algorithm exist. The resulting approximate
posterior process is again an OU process and we compute its parameters. Finally, we show how corrections
to the marginals proposed [Cseke and Heskes, 2011b] can be extended to the continuous time case.
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2.2.1 Euler discretisation

Let T = {t1 = 0, t2, . . . , tK−1, tK = 1} be a discretisation of the [0, 1] interval and let the matrix
x = [xt1 , . . . ,xtK ] represent the process {xt}t using the discretisation given by T . Without loss of
generality we can assume that Td ⊂ T . We assume the Euler-Maruyama approach and approximate
p({xt}) by1

p0(x) = N(x0;m0,V0)
�

k

N(xtk+1 ;xtk + (Atkxtk + ctk )∆tk,∆tkBtk )

and in a similar fashion we approximate the continuous time likelihood by

p(yc|x) ∝ exp

�
−
�

k

∆tkV (tk,y
c
tk ,xtk )

�
,

where yc is the matrix yc = [yc
t1 , . . . ,y

c
tK ]. Consequently we approximate our model by the latent Gaus-

sian model

p({yd
ti}i,y

c,x) = p0(x)×
�

i

p(yd
ti |xti)

�

k

exp
�
−∆tkV (tk,y

c
tk ,xtk )

�

where we remark that the prior p0 has a block-diagonal precision structure. To simplify notation, in the
following we use the aliases φd

i (xti) = p(yd
ti |xti) and φc

k(xtk ; ∆tk) = exp
�
−∆tkV (tk,yc

tk ,xtk)
�

.

2.2.2 Inference using expectation propagation

Expectation propagation [Opper and Winther, 2000, Minka, 2001] is a well known algorithm that provides
good approximations of the posterior marginals in latent Gaussian models. We use here the parallel EP
approach [e.g. Cseke and Heskes, 2011b]; similar continuous time limiting arguments can be made for the
original (sequential) EP approach. The algorithm approximates the posterior p(x|{yd

ti}i,y
c) by a Gaussian

q0(x) ∝ p0(x)
�

i

φ̃d
i (xti)

�

k

φ̃c
k(xtk ; ∆tk),

where φ̃d
i and φ̃c

k are Gaussian functions. When applied to our model the algorithm proceeds by performing
the fixed point iteration

[φ̃d
i (xti)]

new ∝ Collapse(φd
i (xti)φ̃

d
i (xti)

−1q0(xti);N )
q0(xti)

× φ̃d
i (xti) for all ti ∈ Td, (5)

[φ̃c
k(xtk ; ∆tk)]

new ∝ Collapse(φc
k(xtk ; ∆tk)φ̃

c
k(xtk ; ∆tk)

−1q0(xtk );N )

q0(xtk )
× φ̃c

k(xtk ; ∆tk) for all tk ∈ T, (6)

where Collapse(p(z);N ) = argminq∈ND[p(z)||q(z)] denotes the projection of the density p(z) into
the Gaussian family denoted by N . In other words, Collapse(p(z);N ) is the Gaussian density that
matches the first and second moments of p(z). Readers familiar with the classical formulation of
EP [Minka, 2001] will recognise in equation (5) the so-called term updates, where φ̃d

i (xti)
−1q0(xti)

is the cavity distribution and φd
i (xti)φ̃

d
i (xti)

−1q0(xti) the tilted distribution. Equations (5-6) imply
that at any fixed point of the iterations we have q(xti) = Collapse(φd

i (xti)φ̃
d
i (xti)

−1q0(xti);N ) and
q(xtk) = Collapse(φc

k(xtk ; ∆tk)φ̃c
k(xtk ; ∆tk)−1q0(xtk);N ). The algorithm can also be derived and jus-

tified as a constrained optimisation problem of a Gibbs free energy formulation [Heskes et al., 2005]; this
alternative approach can also be shown to extend to the continuous time limit (see Section A.2 of the
Supplementary Material) and provides a useful tool for approximate evidence calculations.

Equation (5) does not depend on the time discretisation, and hence provides a valid update equation also
working directly with the continuous time process. On the other hand, the quantities in equation (6) de-
pend explicitly on ∆tk, and it is necessary to ensure that they remain well defined (and computable) in
the continuous time limit. In order to derive the limiting behaviour of (6) we introduce the the follow-
ing notation: (i) we use f(z) = (z,−zzT /2) to denote the sufficient statistic of a multivariate Gaus-
sian (ii), we use λd

ti = (hd
ti ,Q

d
ti) as the canonical parameters corresponding to the Gaussian function

φ̃d
i (xti) ∝ exp{λd

ti · f(xti)}2, (iii) we use λc
tk = (hc

tk ,Q
c
tk) as the canonical parameters corresponding

to the Gaussian function φ̃c
k(xtk) ∝ exp{∆tkλc

tk · f(xtk)}, and finally, (iv) we use Collapse(p(z);f) as

1We remark that one could also integrate the OU process between time steps, yielding an exact finite dimensional
marginal of the prior. In the limit however both procedures are equivalent.

2We use “·” as scalar product for general (concatenated) vector objects, for example, x·y = x
T
y when x,y ∈ Rn.
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the canonical parameters corresponding to the density Collapse(p(z);N ). By using this notation we can
rewrite (6) as

[λc
tk ]

new = λ
c
tk +

1
∆tk

�
Collapse(qc(xtk );f)− Collapse(q0(xtk );f)

�
(7)

with

qc(xtk ) ∝ exp(−∆tk[V (tk,xtk ) + λ
c
tk · f(xtk )])q0(xtk ). (8)

The approximating density can then be written as

q0(x) ∝ p0(x)× exp
��

i

λ
d
ti · f(xti) +

�

k

∆tkλ
c
tk · f(xtk )

�
. (9)

By direct Taylor expansion of Collapse(qc(xtk);f) one can show that the update equation (7) remains
finite when we take the limit ∆tk → 0. A slightly more general perspective however affords greater insight
into the algorithm, as shown below.

2.2.3 Continuous time limit of the update equations

Let µtk = Collapse(q0(xtk);f) and denote by Z(∆tk,µtk) and Z(µtk) the normalisation constant of
qc(xtk) and q0(xtk) respectively. The notation emphasises that qc(xtk) differs from q0(xtk) by a term
dependent on the granularity of the discretisation ∆tk. We exploit the well known fact that the derivatives
with respect to the canonical parameters of the log normalisation constant of a distribution within the
exponential family give the moment parameters of the distribution. From the definition of qc(xtk) in
equation (8) we then have that its first two moments can be computed as ∂µtk

logZ(∆tk,µtk). The
Collapse operation in (7) can then be rewritten as

Collapse(qc(xtk );f) = Ψ(∂µtk
logZ(∆tk,µtk )), (10)

where Ψ is the function transforming the moment parameters of a Gaussian into its (canonical) parameters.
We now assume ∆tk to be small and expand Z(∆tk,µtk) to first order in ∆tk. By using the property that
limα→0+ �g(z)α�1/αp(z) = exp(�log g(x)�p) for any distribution p(z) and g(z) > 0, one can write

lim
∆tk→0

1
∆tk

[logZ(∆tk,µtk )− logZ(µtk )] = log lim
∆tk→0

�
exp{−∆tk[V (tk,xtk ) + λ

c
tk · f(xtk )]}

�1/∆tk
q0(xtk

)

= −
�
[V (tk,xtk ) + λ

c
tk · f(xtk )]

�
q0(xtk

)

= −�V (tk,xtk )�q0(xtk
) −Ψ−1(µtk )λ

c
tk , (11)

where we exploited the fact that �f(xtk)�q0(xtk
) are the moments of the q0(xtk) distribution. We can now

exploit the fact that ∆tk is small and linearise the nonlinear map Ψ about the moments of q0(xtk) to obtain
a first order approximation to equation (10) as

Collapse(qc(xtk );f) � µtk −∆tkλ
c
tk −∆tkJΨ(µtk )∂µtk

�V (tk,xtk )�q0(xtk
) (12)

where JΨ(µtk) denotes the Jacobian matrix of the map Ψ evaluated at µtk . The second term on the r.h.s.
of equation (12) follows from the obvious identity ∂µtk

Ψ(Ψ−1(µtk)) = I.

By substituting (12) into (7), we take the limit ∆tk → 0 and obtain the update equations

[λc
t ]

new = −JΨ(µt)∂µt �V (t,xt)�q0(xt)
for all t ∈ [0, 1]. (13)

Notice that the updating of λc
t is somewhat hidden in equation (13); the “old” parameters are in fact con-

tained in the parameters µtk . Since λc
t corresponds to the canonical parameters of a multivariate Gaussian,

we can use the representation λc
t = (hc

t ,Q
c
t) and after some algebra on the moment-canonical transforma-

tion of Gaussians we write the fixed point iteration as

[hc
t ]

new = −∂mt �V (t,xt)�q0(xt)
+ 2∂Vt �V (t,xt)�q0(xt)

mt and [Qc
t ]

new = ∂Vt �V (t,xt)�q0(xt)
, (14)

where mt and Vt are the marginal means and covariances of q0 at the ∆tk → 0. Algorithmically, comput-
ing the marginal moments and covariances of the discretised Gaussian q0(x) in (9) can be done by solving a
sparse linear system and doing partial matrix inversion using the Cholesky factorisation and the Takahashi
equations as in Cseke and Heskes [2011b]. This corresponds to a junction tree algorithm on a (block) chain
graph [Davis, 2006] which, in the continuous time limit, can be reduced to a set of differential equations
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due to the chain structure of the graph. Alternatively, one can notice that, in the continuous time limit,
the structure of q0(x) in equation (9) defines a posterior process for an OU process p0({xt}) observed
at discrete times with Gaussian noise (corresponding to the terms φ̃d

i (xti) with canonical parameters λd
ti )

and with a quadratic continuous time loss, which is computed using equation (14). The moments there-
fore be computed using the Kalman-Bucy algorithm; details of the algorithm are given in Section B.1 of
the Supplementary Material. The derivation above illustrates another interesting characteristic of working
with continuous-time likelihoods. Readers familiar with the fractional free energies and the power EP al-
gorithm may notice that the time lag ∆tk plays a similar role as the fractional or power parameter α. It
is well known property that in the α → 0 limit the algorithm and the free energy collapses to variational
[e.g. Wiegerinck and Heskes, 2003, Cseke and Heskes, 2011a] and thus, intuitively, the collapse and the
existence of the limit is related to this property.

Overall, we arrive to a hybrid algorithm in which: (i) the canonical parameters (hd
ti ,Q

d
ti) corresponding to

the discrete time terms are updated by the usual EP updates in (5), (ii) the canonical parameters (hc
t ,Q

c
t)

corresponding to the continuous loss function V (t,xt) are updated by the variational updates in (14) (iii),
the marginal moment parameters of q0(xt) are computed by the forward-backward differential equations
referred to in Section 2.1. We can use either parallel or a forward-backward type scheduling. A more
detailed description of the inference algorithm is given in Section C of the Supplementary Material. The
algorithm performs well in the comfort zone of EP, that is, log-concave discrete likelihood terms and convex
loss. Non-convergence can occur in case of multimodal likelihoods and loss functions and alternative
options to optimise the free energy have to be explored [e.g. Heskes et al., 2005, Archambeau et al., 2007].

2.2.4 Parameters of the approximating OU process

The fixed point iteration scheme computes only the marginal means and covariances of q0({xt}) and it
does not provide a parametric OU process as an approximation. However, this can be computed by finding
the parameters of an OU process that matches q0 in the moment matching Kullback-Leibler divergence.
That is, if q∗({xt}) minimises D[q0({xt})||q∗({xt})], then the parameters of q∗ are given by

A
∗
t = At −Bt[V

bw
t ]−1, c

∗
t = ct +Bt[V

bw
t ]−1

m
bw
t and B

∗
t = Bt, (15)

where mbw
t and V bw

t are computed by the backward Kalman-Bucy filtering equations. The computations
are somewhat lengthy; a full derivation can be found in Section B.3 of the Supplementary Material.

2.2.5 Corrections to the marginals

In this section we extend the factorised correction method for multivariate latent Gaussian models intro-
duced in Cseke and Heskes [2011b] to continuous time observations. Other correction schemes [e.g. Opper
et al., 2009] can in principle also be applied. We start again from the discretised representation and then
take the ∆tk → 0. To begin with, we focus on the corrections from the continuous time observation pro-
cess. By removing the Gaussian terms (with canonical parameters λc

tk ) from the approximate posterior and
replacing them with the exact likelihood, we can rewrite the exact discretised posterior as

p(x) ∝ q0(x)× exp
�
−

�

k

∆tk[V (tk,xtk ) + λ
c
tk · f(xt)]

�
.

The exact posterior marginal at time tj is thus given by

p(xtj ) ∝ q0(xtj )× exp
�
−∆tj [V (tj ,xtj + λ

c
tj · f(xtj ))]

�
× cT (xtj )

with

cT (xtj ) =

�
dx\tj q0(x\tj |xtj )× exp

�
−

�

k �=j

∆tk[V (tk,xtk ) + λ
c
tk · f .(xtk )]

�
,

where the subscript \j indicates the whole vector with the j-th entry removed. By approximating the joint
conditional q0(x\tj |xtj ) with a product of its marginals and taking the ∆tk → 0 limit, we obtain

c(xt) � exp
�
−

� 1

0

ds �V (s,xs) + λ
c
s · f(xs)�q0(xs|xt)

�
.

When combining the continuous part and the factorised discrete time corrections—by adding the discrete
time terms to the formalism above—we arrive to the corrected approximate marginal

p̃(xt) ∝ q0(xt) exp
�
−

� 1

0

ds �V (s,xs) + λ
c
s · f(xs)�q0(xs|xt)

�
×

�

i

�
p(yd

ti |xti)

exp{λd
ti
· f(xti)}

�

q0(xti |xt)

.

For any fixed t one can compute the correlations in linear time by using the parametric form of the approx-
imation in 15. The evaluations for a fixed xt are also linear in time.
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Figure 1: Inference results for the toy model in Section 3.1. The continuous time potential is defined as V (t, xt) =
(2xt)

8I[1/2,2/3](t) and we assume two hard box discrete likelihood terms I[−0.25,0.25](xt1) and I[−0.25,0.25](xt2)
placed at t1 = 1/3 and t2 = 2/3. The prior is defined by the parameters at = −1, ct = 4π cos(4πt) and bt = 4. The
left panel shows the prior’s and the posterior approximation’s marginal means and standard deviations. The right panel
shows the marginal approximations at t = 0.3351, a region where we expect the corrections to be strongly influenced
by both types of likelihoods. Samples were generated by using the lag ∆t = 10−3, the approximate inference was run
using RK4 at ∆t = 10−4.

3 Experiments

3.1 Inference in a (soft) box

The first example we consider is a mixed discrete-continuous time inference under box and soft box likeli-
hood observations respectively. We consider a diffusing particle on the line under an OU prior process of
the form

dxt = (−axt + ct)dt+
√
bdWt

with a = −1, ct = 4π cos(4πt) and b = 4. The likelihood model is given by the loss function V (t, xt) =
(2xt)8 for all t ∈ [1/2, 2/3] and 0 otherwise, effectively confining the process to a narrow strip near zero
(soft box). This likelihood is therefore an approximation to physically realistic situations where particles
can perform diffusion in a confined environment. The box has hard gates: two discrete time likelihoods
given by the indicator functions I[−0.25,0.25](xt1) and I[−0.25,0.25](xt2) placed at the ends of the interval,
that is, Td = {1/3, 2/3}. The left panel in Figure 1 shows the prior and approximate posterior processes
(mean ± one standard deviation) in pink and cyan respectively: the confinement of the process to the box is
in clear evidence, as well as the narrowing of the confidence intervals corresponding to the two discrete time
observations. The right panel in Figure 1 shows the marginal approximations at a time point shortly after
the “gate” to the box, these are: (i) sampling (grey) (ii) the Gaussian EP approximation (blue line), and (iii)
its corrected version (red line). The time point was chosen as we expect the strongest non-Gaussian effects
to be felt near the discrete likelihoods; the corrected distribution does indeed show strong skewness. To
benchmark the method, we compare it to MCMC sampling obtained by using slice sampling [Murray et al.,
2010] on the discretised model with ∆t = 10−3. We emphasise that this is an approximation to the model,
hence the benchmark is not a true gold standard; however, we are not aware of sampling schemes that
would be able to perform inference under the exact continuous time likelihood. The histogram in Figure 1
was generated from a sample size of 105 following a burn in of 104. The Gaussian EP approach gives a
very good reconstruction of the first two moments of the distribution. The corrected EP approximation is
very close to the MCMC results.

3.2 Log Gaussian Cox processes

Another family of models where one encounters continuous time likelihoods is point processes; these
processes find wide application in a number of disciplines, from neuroscience Smith and Brown [2003] to
conflict modelling Zammit-Mangion et al. [2012]. We assume that we have a multivariate log Gaussian
Cox process model [Kingman, 1992]: this is defined by a d-variate Ornstein-Uhlenbeck process {xt}t
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Figure 2: A toy example for the point process model in Section 3.2. The prior is defined by A =
[−2, 1, 0, 1; 1,−2, 1, 0; 0, 1,−2, 1; 1, 0, 1,−2], cit = 4iπ cos(2iπt), B = 4I . We use µi = 0. The prior means
and standard deviations, the sampled process path, and the sampled events are shown on the left panel while the
posterior approximations are shown on the right panel.

on the [0, 1] interval. Conditioned on {xt}t we have d Poisson point processes with intensities given by
λi
t = eµi+xi

t for all i = 1, . . . , d and t ∈ [0, 1]. The likelihood of this point process model is formed by
both discrete time (point probabilities) and continuous time (void probability) terms and can be written as

log
�

i

p(Yi|{xi
t}t)

.
=

�

i

�
− eµi

� 1

0

dtex
i
t + |Yi|µi +

�

tk∈Yi

xi
t

�
,

where Yi denotes the set of observed event times corresponding to {xi
t}t. Clearly, the discrete time obser-

vations in this model are (degenerate) Gaussians, therefore, one may opt for starting with an OU process
with a translated drift, however, for consistency reasons, we treat them as discrete time observations.

In this example we chose d = 4 and A = [−2, 1, 0, 1; 1,−2, 1, 0; 0, 1,−2, 1; 1, 0, 1,−2], thus coupling the
various processes. We chose cit = 4iπ cos(2iπt), B = 4I and µi = 0. We generate a sample path {x̃t}t,
draw observations Yi based on {x̃i

t}t and perform inference.

The results are shown in Figure 2, with four colours distinguishing the four processes. The left panel shows
prior processes (mean ± standard deviation), sample paths and (bottom row) the sampled points (i.e. the
data). The right panel shows the corresponding posterior processes approximations. The results reflect the
general pattern characteristic of fitting point process data: in regions with a substantial number of events
the sampled path can be inferred with great accuracy (accurate mean, low standard deviation) whereas in
regions with no or only a few events the fit reverts to a skewed/shifted prior path, as the void probability
dominates.

3.3 Point process modelling of neural spikes trains

In a third example we consider continuous time point process inference for spike time recordings from a
population of neurons. This type of data is frequently modelled using (discrete time) state-space models
with point process observations (SSPP) [Smith and Brown, 2003, Zammit Mangion et al., 2011, Macke
et al., 2011]; parameter estimation from such models can reveal biologically relevant facts about the neu-
ron’s electrophysiology which are not apparent from the spike trains themselves. We consider a dataset
from Di Lorenzo and Victor [2003], available at www.neurodatabase.org, consisting of recordings of
spiking patterns of taste response cells in Sprague-Dawley rats during presentation of different taste stim-
uli. The recordings are 10s each at a resolution of 10−3s, and four different taste stimuli: (i) NaCL, (ii)
Quinine HCl, (iii) Quinine HCl, and (iv) Sucrose are presented to the subjects for the duration of the first
5s of the 10s recording window. We modelled the spike train recordings by univariate log Gaussian Cox
process models (see Section 3.2) with homogeneous OU priors, that is, At, ct and Bt were considered
constant. We use the variational EM algorithm (discrete time likelihoods are Gaussian) to learn the prior
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Figure 3: Inference results on data from cell 9 form the dataset in Section 3.3. The top-left, bottom-left and centre
panels show the intensity fit, event count and the Q-Q plot corresponding to one of the recordings, whereas the right
panel shows the learned c and µ parameters for all spike trains in cell 9.

parameters A, c and µ and initial conditions for each individual recording. We scaled the 10s window into
the unit interval [0, 1] and used a 10−4 resolution.

Fig 3 shows example results of this procedure. The right panel shows an emergent pattern of stimulus
based clustering of µ and c as in Zammit Mangion et al. [2011]. We observe that discrete-time approaches
such as [Smith and Brown, 2003, Zammit Mangion et al., 2011] are usually forced to take very fine time
discretisation by the requirement that at most one spike happens during one time step. This leads to signifi-
cant computational resources being invested in regions with few spikes. Our continuous time approach, on
the other hand, handles uneven observations naturally.

4 Conclusion

Inference methodologies for continuous time stochastic processes are a subject of intense research, both
for fundamental and applied research. This paper contributes a novel approach which allows inference
from both discrete time and continuous time observations. Our results show that the method is effective
in accurately reconstructing marginal posterior distributions, and can be deployed effectively on real world
problems. Furthermore, it has recently been shown [Kappen et al., 2012] that optimal control problems can
be recast in inference terms: in many cases, the relevant inference problem is of the same type as the one
considered here, hence this methodology could in principle also be used in control problems. The method
is based on the parallel EP formulation of Cseke and Heskes [2011b]: interestingly, we show that the
EP updates from continuous time observations collapse to variational updates [Archambeau et al., 2007].
Algorithmically, our approach results in efficient forward-backward updates, compared to the gradient
ascent algorithm of Archambeau et al. [2007]. Furthermore, the EP perspective allows us to compute
corrections to the Gaussian marginals; in our experiments, these turned out to be highly accurate.

Our modelling framework assumes a latent linear diffusion process; however, as mentioned before, some
non-linear diffusion processes are equivalent to posterior processes for OU processes observed in contin-
uous time [Øksendal, 2010]. Our approach, hence, can also be viewed as a method for accurate marginal
computations in (a class of) nonlinear diffusion processes observed with noise. In general, all non-linear
diffusion processes can be recast in a form similar to the one considered here; the important difference
though is that the continuous time likelihood is in general an Ito integral, not a regular integral. In the
future, it would be interesting to explore the extension of this approach to general non-linear diffusion
processes, as well as discrete and hybrid stochastic processes [Rao and Teh, 2012, Ocone et al., 2013].
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