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Abstract

Recent advances in associative memory design through structured pattern sets and
graph-based inference algorithms allow reliable learning and recall of exponential
numbers of patterns. Though these designs correct external errors in recall, they
assume neurons compute noiselessly, in contrast to highly variable neurons in
hippocampus and olfactory cortex. Here we consider associative memories with
noisy internal computations and analytically characterize performance. As long
as internal noise is less than a specified threshold, error probability in the recall
phase can be made exceedingly small. More surprisingly, we show internal noise
actually improves performance of the recall phase. Computational experiments
lend additional support to our theoretical analysis. This work suggests a functional
benefit to noisy neurons in biological neuronal networks.

1 Introduction

Hippocampus, olfactory cortex, and other brain regions are thought to operate as associative memo-
ries [1,2], having the ability to learn patterns from presented inputs, store a large number of patterns,
and retrieve them reliably in the face of noisy or corrupted queries [3–5]. Associative memory mod-
els are designed to have these properties.

Although such information storage and recall seemingly falls into the information-theoretic frame-
work, where an exponential number of messages can be communicated reliably with a linear number
of symbols, classical associative memory models could only store a linear number of patterns [4]. A
primary reason is classical models require memorizing a randomly chosen set of patterns. By enforc-
ing structure and redundancy in the possible set of memorizable patterns—like natural stimuli [6],
internal neural representations [7], and error-control codewords—advances in associative memory
design allow storage of an exponential number of patterns [8,9], just like in communication systems.

Information-theoretic and associative memory models of storage have been used to predict experi-
mentally measurable properties of synapses in the mammalian brain [10,11]. But contrary to the fact
that noise is present in computational operations of the brain [12, 13], associative memory models
with exponential capacities have assumed no internal noise in the computational nodes. The purpose
here is to model internal noise and study whether such associative memories still operate reliably.
Surprisingly, we find internal noise actually enhances recall performance, suggesting a functional
role for variability in the brain.

In particular we consider a multi-level, graph code-based, associative memory model [9] and find
that even if all components are noisy, the final error probability in recall can be made exceedingly
small. We characterize a threshold phenomenon and show how to optimize algorithm parameters
when knowing statistical properties of internal noise. Rather counterintuitively the performance
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of the memory model improves in the presence of internal neural noise, as observed previously as
stochastic resonance [13, 14]. There are mathematical connections to perturbed simplex algorithms
for linear programing [15], where internal noise pushes the algorithm out of local minima.

The benefit of internal noise has been noted previously in associative memory models with stochastic
update rules, cf. [16]. However, our framework differs from previous approaches in three key as-
pects. First, our memory model is different, which makes extension of previous analysis nontrivial.
Second, and perhaps most importantly, pattern retrieval capacity in previous approaches decreases
with internal noise, cf. [16, Fig. 6.1], in that increasing internal noise helps correct more external
errors, but also reduces the number of memorizable patterns. In our framework, internal noise does
not affect pattern retrieval capacity (up to a threshold) but improves recall performance. Finally, our
noise model has bounded rather than Gaussian noise, and so a suitable network may achieve perfect
recall despite internal noise.

Reliably storing information in memory systems constructed completely from unreliable compo-
nents is a classical problem in fault-tolerant computing [17–19], where models have used random
access architectures with sequential correcting networks. Although direct comparison is difficult
since notions of circuit complexity are different, our work also demonstrates that associative mem-
ory architectures constructed from unreliable components can store information reliably.

Building on the idea of structured pattern sets [20], our associative memory model [9] relies on the
fact that all patterns to be learned lie in a low-dimensional subspace. Learning features of a low-
dimensional space is very similar to autoencoders [21] and has structural similarities to Deep Belief
Networks (DBNs), particularly Convolutional Neural Networks [22].

2 Associative Memory Model

Notation and basic structure: In our model, a neuron can assume an integer-valued state from
the set S = {0, . . . , S − 1}, interpreted as the short term firing rate of neurons. A neuron updates
its state based on the states of its neighbor {si}ni=1 as follows. It first computes a weighted sum
h =

∑n
i=1 wisi + ζ, where wi is the weight of the link from si and ζ is the internal noise, and then

applies nonlinear function f : R→ S to h.

An associative memory is represented by a weighted bipartite graph, G, with pattern neurons and
constraint neurons. Each pattern x = (x1, . . . , xn) is a vector of length n, where xi ∈ S, i =
1, . . . , n. Following [9], the focus is on recalling patterns with strong local correlation among
entries. Hence, we divide entries of each pattern x into L overlapping sub-patterns of lengths
n1, . . . , nL. Due to overlaps, a pattern neuron can be a member of multiple subpatterns, as in
Fig. 1a. The ith subpattern is denoted x(i) = (x

(i)
1 , . . . , x

(i)
ni ), and local correlations are assumed to

be in the form of subspaces, i.e. the subpatterns x(i) form a subspace of dimension ki < ni.

We capture the local correlations by learning a set of linear constraints over each subspace corre-
sponding to the dual vectors orthogonal to that subspace. More specifically, let {w(i)

1 , . . . , w
(i)
mi} be

a set of dual vectors orthogonal to all subpatterns x(i) of cluster i. Then:

y
(i)
j = (w

(i)
j )T · x(i) = 0, for all j ∈ {1, . . . ,mi} and for all i ∈ {1, . . . , L}. (1)

Eq. (1) can be rewritten as W (i) ·x(i) = 0 where W (i) = [w
(i)
1 |w

(i)
2 | . . . |w

(i)
mi ]

T is the matrix of dual
vectors. Now we use a bipartite graph with connectivity matrix determined by W (i) to represent the
subspace constraints learned from subpattern x(i); this graph is called cluster i. We developed an
efficient way of learning W (i) in [9], also used here. Briefly, in each iteration of learning:

1. Pick a pattern x at random from the dataset;

2. Adjust weight vectorsw(i)
j for j = {1, . . . ,mi} and i = {1, . . . , L} such that the projection

of x onto w(i)
j is reduced. Apply a sparsity penalty to favor sparse solutions.

This process repeats until all weights are orthogonal to the patterns in the dataset or the maximum
iteration limit is reached. The learning rule allows us to assume the weight matricesW (i) are known
and satisfy W (i) · x(i) = 0 for all patterns x in the dataset X , in this paper.
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(a) Bipartite graph G. (b) Contraction graph G̃.

Figure 1: The proposed neural associative memory with overlapping clusters.

For the forthcoming asymptotic analysis, we need to define a contracted graph G̃whose connectivity
matrix is denoted W̃ and has size L×n. This is a bipartite graph in which constraints in each cluster
are represented by a single neuron. Thus, if pattern neuron xj is connected to cluster i, W̃ij = 1;
otherwise W̃ij = 0. We also define the degree distribution from an edge perspective over G̃, using
λ̃(z) =

∑
j λ̃jz

j and ρ̃(z) =
∑
j ρ̃jz

j−1 where λ̃j (resp., ρ̃j) equals the fraction of edges that
connect to pattern (resp., cluster) nodes of degree j.

Noise model: There are two types of noise in our model: external errors and internal noise. As
mentioned earlier, a neural network should be able to retrieve memorized pattern x̂ from its corrupted
version x due to external errors. We assume the external error is an additive vector of size n, denoted
by z satisfying x = x̂ + z, whose entries assume values independently from {−1, 0,+1}1 with
corresponding probabilities p−1 = p+1 = ε/2 and p0 = 1− ε. The realization of the external error
on subpattern x(i) is denoted z(i). Note that the subspace assumption implies W · y = W · z and
W (i) · y(i) = W (i) · z(i) for all i. Neurons also suffer from internal noise. We consider a bounded
noise model, i.e. a random number uniformly distributed in the intervals [−υ, υ] and [−ν, ν] for the
pattern and constraint neurons, respectively (υ, ν < 1).

The goal of recall is to filter the external error z to obtain the desired pattern x as the correct states
of the pattern neurons. When neurons compute noiselessly, this task may be achieved by exploiting
the fact the set of patterns x ∈ X to satisfy the set of constraints W (i) · x(i) = 0. However, it is not
clear how to accomplish this objective when the neural computations are noisy. Rather surprisingly,
we show that eliminating external errors is not only possible in the presence of internal noise, but
that neural networks with moderate internal noise demonstrate better external noise resilience.

Recall algorithms: To efficiently deal with external errors, we use a combination of Alg. 1 and
Alg. 2. The role of Alg. 1 is to correct at least a single external error in each cluster. Without
overlaps between clusters, the error resilience of the network is limited. Alg. 2 exploits the overlaps:
it helps clusters with external errors recover their correct states by using the reliable information
from clusters that do not have external errors. The error resilience of the resulting combination
thereby drastically improves. Now we describe the details of Alg. 1 and Alg. 2 more precisely.

Alg. 1 performs a series of forward and backward iterations in each cluster G(l) to remove (at
least) one external error from its input domain. At each iteration, the pattern neurons locally decide
whether to update their current state: if the amount of feedback received by a pattern neuron exceeds
a threshold, the neuron updates its state, and otherwise remains as is. With abuse of notation, let
us denote messages transmitted by pattern node i and constraint node j at round t by xi(t) and
yj(t), respectively. In round 0, pattern nodes are initialized by a pattern x̂, sampled from dataset X ,
perturbed by external errors z, i.e., x(0) = x̂+ z. Thus, for cluster ` we have x(`)(0) = x̂(`) + z(`),
where z(`) is the realization of errors on subpattern x(`).

In round t, the pattern and constraint neurons update their states using feedback from neighbors.
However since neural computations are faulty, decisions made by neurons may not be reliable. To
minimize effects of internal noise, we use the following update rule for pattern node i in cluster `:

x
(`)
i (t+ 1) =

{
x
(`)
i (t)− sign(g

(`)
i (t)), if |g(`)i (t)| ≥ ϕ

x
(`)
i (t), otherwise,

(2)

1Note that the proposed algorithms also work with larger noise values, i.e. from a set {−a, . . . , a} for some
a ∈ N, see [23]; the ±1 noise model is presented here for simplicity.
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Algorithm 1 Intra-Module Error Correction

Input: Training set X , thresholds ϕ,ψ, iteration tmax

Output: x(`)1 , x
(`)
2 , . . . , x

(`)
n`

1: for t = 1→ tmax do
2: Forward iteration: Calculate the input h(`)i =∑n`

j=1W
(`)
ij x

(`)
j + vi, for each neuron y(`)i and

set y(`)i = f(h
(`)
i , ψ).

3: Backward iteration: Each neuron x(`)j computes

g
(`)
j =

∑m`
i=1 sign(W (`)

ij )y
(`)
i∑m`

i=1 sign(|W (`)
ij |)

+ ui.

4: Update state of each pattern neuron j according
to x(`)j = x

(`)
j − sign(g

(`)
j ) only if |g(`)j | > ϕ.

5: end for

Algorithm 2 Sequential Peeling Algorithm

Input: G̃,G(1), G(2), . . . , G(L).
Output: x1, x2, . . . , xn

1: while there is an unsatisfied v(`) do
2: for ` = 1→ L do
3: If v(`) is unsatisfied, apply Alg. 1

to cluster G(l).
4: If v(`) remained unsatisfied, revert

state of pattern neurons connected
to v(`) to their initial state. Other-
wise, keep their current states.

5: end for
6: end while
7: Declare x1, x2, . . . , xn if all v(`)’s are

satisfied. Otherwise, declare failure.

where ϕ is the update threshold and g(`)i (t) =
(
(sign(W (`))> · y(`)(t)

)
i
/d

(`)
i + ui.2 Here, d(`)i is

the degree of pattern node i in cluster `, y(`)(t) = [y
(`)
1 (t), . . . , y

(`)
m`(t)] is the vector of messages

transmitted by the constraint neurons in cluster `, and ui is the random noise affecting pattern node
i. Basically, the term g

(`)
i (t) reflects the (average) belief of constraint nodes connected to pattern

neuron i about its correct value. If g(`)i (t) is larger than a specified threshold ϕ it means most of
the connected constraints suggest the current state x(`)i (t) is not correct, hence, a change should be
made. Note this average belief is diluted by the internal noise of neuron i. As mentioned earlier, ui
is uniformly distributed in the interval [−υ, υ], for some υ < 1. On the constraint side, the update
rule is:

y
(`)
i (t) = f(h

(`)
i (t), ψ) =


+1, if h(`)i (t) ≥ ψ
0, if − ψ ≤ h(`)i (t) ≤ ψ
−1, otherwise,

(3)

where ψ is the update threshold and h
(`)
i (t) =

(
W (`) · x(`)(t)

)
i

+ vi. Here, x(`)(t) =

[x
(`)
1 (t), . . . , x

(`)
n` (t)] is the vector of messages transmitted by the pattern neurons and vi is the ran-

dom noise affecting node i. As before, we consider a bounded noise model for vi, i.e., it is uniformly
distributed in the interval [−ν, ν] for some ν < 1.3

The error correction ability of Alg. 1 is fairly limited, as determined analytically and through sim-
ulations [23]. In essence, Alg. 1 can correct one external error with high probability, but degrades
terribly against two or more external errors. Working independently, clusters cannot correct more
than a few external errors, but their combined performance is much better. As clusters overlap, they
help each other in resolving external errors: a cluster whose pattern neurons are in their correct states
can always provide truthful information to neighboring clusters. This property is exploited in Alg. 2
by applying Alg. 1 in a round-robin fashion to each cluster. Clusters either eliminate their internal
noise in which case they keep their new states and can now help other clusters, or revert back to their
original states. Note that by such a scheduling scheme, neurons can only change their states towards
correct values. This scheduling technique is similar in spirit to the peeling algorithm [24].

3 Recall Performance Analysis

Now let us analyze recall error performance. The following lemma shows that if ϕ and ψ are chosen
properly, then in the absence of external errors the constraints remain satisfied and internal noise
cannot result in violations. This is a crucial property for Alg. 2, as it allows one to determine whether

2Note that x(`)i (t+1) is further mapped to the interval [0, S−1] by saturating the values below 0 and above
S − 1 to 0 and S − 1 respectively. The corresponding equations are omitted for brevity.

3Note that although the values of y(`)i (t) can be shifted to 0, 1, 2, instead of−1, 0, 1 to match our assumption
that neural states are non-negative, we leave them as such to simplify later analysis.
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a cluster has successfully eliminated external errors (Step 4 of algorithm) by merely checking the
satisfaction of all constraint nodes.

Lemma 1. In the absence of external errors, the probability that a constraint neuron (resp. pat-
tern neuron) in cluster ` makes a wrong decision due to its internal noise is given by π(`)

0 =

max
(

0, ν−ψν

)
(resp. P (`)

0 = max
(
0, υ−ϕυ

)
).

Proof is given in [23]. In the sequel, we assume ϕ > υ and ψ > ν so that π(`)
0 = 0 and P (`)

0 = 0.
However, an external error combined with internal noise may still push neurons to an incorrect state.

Given the above lemma and our neural architecture, we can prove the following surprising result: in
the asymptotic regime of increasing number of iterations of Alg. 2, a neural network with internal
noise outperforms one without. Let us define the fraction of errors corrected by the noiseless and
noisy neural network (parametrized by υ and ν) after T iterations of Alg. 2 by Λ(T ) and Λυ,ν(T ),
respectively. Note that both Λ(T ) ≤ 1 and Λυ,ν(T ) ≤ 1 are non-decreasing sequences of T . Hence,
their limiting values are well defined: limT→∞ Λ(T ) = Λ∗ and limT→∞ Λυ,ν(T ) = Λ∗υ,ν .

Theorem 2. Let us choose ϕ and ψ so that π(`)
0 = 0 and P (`)

0 = 0 for all ` ∈ {1, . . . , L}. For the
same realization of external errors, we have Λ∗υ,ν ≥ Λ∗.

Proof is given in [23]. The high level idea why a noisy network outperforms a noiseless one comes
from understanding stopping sets. These are realizations of external errors where the iterative Alg. 2
cannot correct all of them. We show that the stopping set shrinks as we add internal noise. In other
words, we show that in the limit of T →∞ the noisy network can correct any error pattern that can
be corrected by the noiseless version and it can also get out of stopping sets that cause the noiseless
network to fail. Thus, the supposedly harmful internal noise will help Alg. 2 to avoid stopping sets.

Thm. 2 suggests the only possible downside with using a noisy network is its possible running time
in eliminating external errors: the noisy neural network may need more iterations to achieve the
same error correction performance. Interestingly, our empirical experiments show that in certain
scenarios, even the running time improves when using a noisy network.

Thm. 2 indicates that noisy neural networks (under our model) outperform noiseless ones, but does
not specify the level of errors that such networks can correct. Now we derive a theoretical upper
bound on error correction performance. To this end, let Pci be the average probability that a cluster
can correct i external errors in its domain. The following theorem gives a simple condition under
which Alg. 2 can correct a linear fraction of external errors (in terms of n) with high probability.
The condition involves λ̃ and ρ̃, the degree distributions of the contracted graph G̃.

Theorem 3. Under the assumptions that graph G̃ grows large and it is chosen randomly with degree
distributions given by λ̃ and ρ̃, Alg. 2 is successful if

ελ̃

1−
∑
i≥1

Pci
zi−1

i!
· d

i−1ρ̃(1− z)
dzi−1

 < z, for z ∈ [0, ε]. (4)

Proof is given in [23] and is based on the density evolution technique [25]. Thm. 3 states that for any
fraction of errors Λυ,ν ≤ Λ∗υ,ν that satisfies the above recursive formula, Alg. 2 will be successful
with probability close to one. Note that the first fixed point of the above recursive equation dictates
the maximum fraction of errors Λ∗υ,ν that our model can correct. For the special case of Pc1 = 1 and
Pci = 0,∀i > 1, we obtain ελ̃1− ρ̃(1− z)) < z, the same condition given in [9]. Thm. 3 takes into
account the contribution of all Pci terms and as we will see, their values change as we incorporate
the effect of internal noise υ and ν. Our results show that the maximum value of Pci does not
occur when the internal noise is equal to zero, i.e. υ = ν = 0, but instead when the neurons are
contaminated with internal noise! As an example, Fig. 2 illustrates how Pci behaves as a function
of υ in the network considered (note that maximum values are not at υ = 0). This finding suggests
that even individual clusters are able to correct more errors in the presence of internal noise.
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3.1 Simulations

Now we consider simulation results for a finite system. To learn the subspace constraints (1) for each
cluster G(`) we use the learning algorithm in [9]. Henceforth, we assume that the weight matrix W
is known and given. In our setup, we consider a network of size n = 400 with L = 50 clusters. We
have 40 pattern nodes and 20 constraint nodes in each cluster, on average. External error is modeled
by randomly generated vectors z with entries ±1 with probability ε and 0 otherwise. Vector z is
added to the correct patterns, which satisfy (1). For recall, Alg. 2 is used and results are reported
in terms of Symbol Error Rate (SER) as the level of external error (ε) or internal noise (υ, ν) is
changed; this involves counting positions where the output of Alg. 2 differs from the correct pattern.

3.1.1 Symbol Error Rate as a function of Internal Noise

Fig. 3 illustrates the final SER of our algorithm for different values of υ and ν. Recall that υ and
ν quantify the level of noise in pattern and constraint neurons, respectively. Dashed lines in Fig. 3
are simulation results whereas solid lines are theoretical upper bounds provided in this paper. As
evident, there is a threshold phenomenon such that SER is negligible for ε ≤ ε∗ and grows beyond
this threshold. As expected, simulation results are better than the theoretical bounds. In particular,
the gap is relatively large as υ moves towards one.

A more interesting trend in Fig. 3 is the fact that internal noise helps in achieving better performance,
as predicted by theoretical analysis (Thm. 2). Notice how ε∗ moves towards one as ν increases.

This phenomenon is examined more closely in Figs. 4a and 4b where ε is fixed to 0.125 while υ
and ν vary. As we see, a moderate amount of internal noise at both pattern and constraint neurons
improves performance. There is an optimum point (υ∗, ν∗) for which the SER reaches its minimum.
Fig. 4b indicates for instance that ν∗ ≈ 0.25, beyond which SER deteriorates.

3.2 Recall Time as a function of Internal Noise

Fig. 5 illustrates the number of iterations performed by Alg. 2 for correcting the external errors when
ε is fixed to 0.075. We stop whenever the algorithm corrects all external errors or declare a recall
error if all errors were not corrected in 40 iterations. Thus, the corresponding areas in the figure
where the number of iterations reaches 40 indicates decoding failure. Figs. 6a and 6b are projected
versions of Fig. 5 and show the average number of iterations as a function of υ and ν, respectively.

The amount of internal noise drastically affects the speed of Alg. 2. First, from Fig. 5 and 6b observe
that running time is more sensitive to noise at constraint neurons than pattern neurons and that the
algorithms become slower as noise at constraint neurons is increased. In contrast, note that internal
noise at the pattern neurons may improve the running time, as seen in Fig. 6a.
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Figure 5: The effect of internal noise on the number of iterations of Alg. 2 when ε = 0.075.

Note that the results presented here are for the case where the noiseless decoder succeeds as well and
its average number of iterations is pretty close to the optimal value (see Fig. 5). In [23], we provide
additional results corresponding to ε = 0.125, where the noiseless decoder encounters stopping sets
while the noisy decoder is still capable of correcting external errors; there we see that the optimal
running time occurs when the neurons have a fair amount of internal noise.

In [23] we also provide results of a study for a slightly modified scenario where there is only internal
noise and no external errors. Furthermore, ϕ < υ. Thus, the internal noise can now cause neurons to
make wrong decisions, even in the absence of external errors. There, we witness the more familiar
phenomenon where increasing the amount of internal noise results in a worse performance. This
finding emphasizes the importance of choosing update threshold ϕ and ψ according to Lem. 1.

4 Pattern Retrieval Capacity

For completeness, we review pattern retrieval capacity results from [9] to show that the proposed
model is capable of memorizing an exponentially large number of patterns. First, note that since the
patterns form a subspace, the number of patterns C does not have any effect on the learning or recall
algorithms (except for its obvious influence on the learning time). Thus, in order to show that the
pattern retrieval capacity is exponential in n, all we need to demonstrate is that there exists a training
set X with C patterns of length n for which C ∝ arn, for some a > 1 and 0 < r.

Theorem 4 ( [9]). Let X be a C × n matrix, formed by C vectors of length n with entries from the
set S. Furthermore, let k = rn for some 0 < r < 1. Then, there exists a set of vectors for which
C = arn, with a > 1, and rank(X ) = k < n.

7



0 0.1 0.2 0.3 0.4

10

40

υ

A
vg

.N
o.

It
er

at
io

ns ν = 0
ν = 0.2
ν = 0.3
ν = 0.5

(a) Effect of internal noise at pattern neurons side.

0 0.1 0.2 0.3 0.4

10

40

ν

A
vg

.N
o.

It
er

at
io

ns υ = 0
υ = 0.2
υ = 0.3
υ = 0.5

(b) Effect of internal noise at constraint neurons side.

Figure 6: The effect of internal noise on the number of iterations performed by Alg. 2, for different
values of υ and ν with ε = 0.075. The average iteration number of 40 indicate the failure of Alg. 2.

The proof is constructive: we create a dataset X such that it can be memorized by the proposed
neural network and satisfies the required properties, i.e. the subpatterns form a subspace and pattern
entries are integer values from the set S = {0, . . . , S − 1}. The complete proof can be found in [9].

5 Discussion

We have demonstrated that associative memories with exponential capacity still work reliably even
when built from unreliable hardware, addressing a major problem in fault-tolerant computing and
further arguing for the viability of associative memory models for the (noisy) mammalian brain.
After all, brain regions modeled as associative memories, such as the hippocampus and the olfactory
cortex, certainly do display internal noise [12, 13, 26]. The linear-nonlinear computations of Alg. 1
are certainly biologically plausible, but implementing the state reversion computation of Alg. 2 in a
biologically plausible way remains an open question.

We found a threshold phenomenon for reliable operation, which manifests the tradeoff between
the amount of internal noise and the amount of external noise that the system can handle. In fact,
we showed that internal noise actually improves the performance of the network in dealing with
external errors, up to some optimal value. This is a manifestation of the stochastic facilitation [13] or
noise enhancement [14] phenomenon that has been observed in other neuronal and signal processing
systems, providing a functional benefit to variability in the operation of neural systems.

The associative memory design developed herein uses thresholding operations in the message-
passing algorithm for recall; as part of our investigation, we optimized these neural firing thresholds
based on the statistics of the internal noise. As noted by Sarpeshkar in describing the properties of
analog and digital computing circuits, “In a cascade of analog stages, noise starts to accumulate.
Thus, complex systems with many stages are difficult to build. [In digital systems] Round-off error
does not accumulate significantly for many computations. Thus, complex systems with many stages
are easy to build” [27]. One key to our result is capturing this benefit of digital processing (thresh-
olding to prevent the build up of errors due to internal noise) as well as a modular architecture which
allows us to correct a linear number of external errors (in terms of the pattern length).

This paper focused on recall, however learning is the other critical stage of associative memory op-
eration. Indeed, information storage in nervous systems is said to be subject to storage (or learning)
noise, in situ noise, and retrieval (or recall) noise [11, Fig. 1]. It should be noted, however, there
is no essential loss by combining learning noise and in situ noise into what we have called external
error herein, cf. [19, Fn. 1 and Prop. 1]. Thus our basic qualitative result extends to the setting where
the learning and stored phases are also performed with noisy hardware.

Going forward, it is of interest to investigate other neural information processing models that ex-
plicitly incorporate internal noise and see whether they provide insight into observed empirical phe-
nomena. As an example, we might be able to understand the threshold phenomenon observed in
the SER of human telegraph operators under heat stress [28, Fig. 2], by invoking a thermal internal
noise explanation.
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