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Abstract

We provide several applications of Optimistic Mirror Descent, an online learning
algorithm based on the idea of predictable sequences. First, we recover the Mir-
ror Prox algorithm for offline optimization, prove an extension to Hölder-smooth
functions, and apply the results to saddle-point type problems. Next, we prove
that a version of Optimistic Mirror Descent (which has a close relation to the Ex-
ponential Weights algorithm) can be used by two strongly-uncoupled players in
a finite zero-sum matrix game to converge to the minimax equilibrium at the rate
of O((logT )�T ). This addresses a question of Daskalakis et al [6]. Further, we
consider a partial information version of the problem. We then apply the results
to convex programming and exhibit a simple algorithm for the approximate Max
Flow problem.

1 Introduction

Recently, no-regret algorithms have received increasing attention in a variety of communities, in-
cluding theoretical computer science, optimization, and game theory [3, 1]. The wide applicability
of these algorithms is arguably due to the black-box regret guarantees that hold for arbitrary se-
quences. However, such regret guarantees can be loose if the sequence being encountered is not
“worst-case”. The reduction in “arbitrariness” of the sequence can arise from the particular struc-
ture of the problem at hand, and should be exploited. For instance, in some applications of online
methods, the sequence comes from an additional computation done by the learner, thus being far
from arbitrary.

One way to formally capture the partially benign nature of data is through a notion of predictable
sequences [11]. We exhibit applications of this idea in several domains. First, we show that the
Mirror Prox method [9], designed for optimizing non-smooth structured saddle-point problems, can
be viewed as an instance of the predictable sequence approach. Predictability in this case is due
precisely to smoothness of the inner optimization part and the saddle-point structure of the problem.
We extend the results to Hölder-smooth functions, interpolating between the case of well-predictable
gradients and “unpredictable” gradients.

Second, we address the question raised in [6] about existence of “simple” algorithms that converge
at the rate of ˜O(T −1) when employed in an uncoupled manner by players in a zero-sum finite
matrix game, yet maintain the usual O(T −1�2) rate against arbitrary sequences. We give a positive
answer and exhibit a fully adaptive algorithm that does not require the prior knowledge of whether
the other player is collaborating. Here, the additional predictability comes from the fact that both
players attempt to converge to the minimax value. We also tackle a partial information version of
the problem where the player has only access to the real-valued payoff of the mixed actions played
by the two players on each round rather than the entire vector.

Our third application is to convex programming: optimization of a linear function subject to convex
constraints. This problem often arises in theoretical computer science, and we show that the idea of
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predictable sequences can be used here too. We provide a simple algorithm for ✏-approximate Max
Flow for a graph with d edges with time complexity ˜O(d3�2�✏), a performance previously obtained
through a relatively involved procedure [8].

2 Online Learning with Predictable Gradient Sequences

Let us describe the online convex optimization (OCO) problem and the basic algorithm studied in
[4, 11]. Let F be a convex set of moves of the learner. On round t = 1, . . . , T , the learner makes
a prediction ft ∈ F and observes a convex function Gt on F . The objective is to keep regret
1

T ∑T
t=1Gt(ft) −Gt(f∗) small for any f∗ ∈ F . Let R be a 1-strongly convex function w.r.t. some

norm � ⋅ � on F , and let g
0

= argming∈F R(g). Suppose that at the beginning of every round t, the
learner has access to Mt, a vector computable based on the past observations or side information. In
this paper we study the Optimistic Mirror Descent algorithm, defined by the interleaved sequence

ft = argmin

f∈F ⌘t �f,Mt� +DR(f, gt−1) , gt = argmin

g∈F ⌘t �g,∇Gt(ft)� +DR(g, gt−1) (1)

where DR is the Bregman Divergence with respect to R and {⌘t} is a sequence of step sizes that
can be chosen adaptively based on the sequence observed so far. The method adheres to the OCO
protocol since Mt is available at the beginning of round t, and ∇Gt(ft) becomes available after
the prediction ft is made. The sequence {ft} will be called primary, while {gt} – secondary. This
method was proposed in [4] for Mt = ∇Gt−1(ft−1), and the following lemma is a straightforward
extension of the result in [11] for general Mt:
Lemma 1. Let F be a convex set in a Banach space B. Let R ∶ B → R be a 1-strongly convex
function on F with respect to some norm � ⋅ �, and let � ⋅ �∗ denote the dual norm. For any fixed
step-size ⌘, the Optimistic Mirror Descent Algorithm yields, for any f∗ ∈ F ,

T�
t=1Gt(ft) −Gt(f∗) ≤ T�

t=1 �ft − f∗,∇t�
≤ ⌘−1R2 + T�

t=1 �∇t −Mt�∗ �gt − ft� − 1

2⌘

T�
t=1 ��gt − ft�2 + �gt−1 − ft�2� (2)

where R ≥ 0 is such that DR(f∗, g0) ≤ R2 and ∇t = ∇Gt(ft).
When applying the lemma, we will often use the simple fact that

�∇t −Mt�∗ �gt − ft� = inf
⇢>0�⇢2 �∇t −Mt�2∗ + 1

2⇢
�gt − ft�2� . (3)

In particular, by setting ⇢ = ⌘, we obtain the (unnormalized) regret bound of ⌘−1R2 +(⌘�2)∑T
t=1 �∇t −Mt�2∗, which is R

�
2∑T

t=1 �∇t −Mt�2∗ by choosing ⌘ optimally. Since this choice
is not known ahead of time, one may either employ the doubling trick, or choose the step size adap-
tively:

Corollary 2. Consider step size ⌘t = Rmax

min���∑t−1
i=1 �∇i −Mi�2∗ +�∑t−2

i=1 �∇i −Mi�2∗�−1 ,1�
with R2

max

= supf,g∈F DR(f, g). Then regret of the Optimistic Mirror Descent algorithm is upper

bounded by 3.5R
max

��∑T
t=1 �∇t −Mt�2∗ + 1� �T .

These results indicate that tighter regret bounds are possible if one can guess the next gradient ∇t

by computing Mt. One such case arises in offline optimization of a smooth function, whereby the
previous gradient turns out to be a good proxy for the next one. More precisely, suppose we aim to
optimize a function G(f)whose gradients are Lipschitz continuous: �∇G(f)−∇G(g)�∗ ≤H�f−g�
for some H > 0. In this optimization setting, no guessing of Mt is needed: we may simply query
the oracle for the gradient and set Mt = ∇G(gt−1). The Optimistic Mirror Descent then becomes

ft = argmin

f∈F ⌘t �f,∇G(gt−1)� +DR(f, gt−1) , gt = argmin

g∈F ⌘t �g,∇G(ft)� +DR(g, gt−1)
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which can be recognized as the Mirror Prox method, due to Nemirovski [9]. By smoothness,�∇G(ft)−Mt�∗ = �∇G(ft)−∇G(gt−1)�∗ ≤H�ft−gt−1�. Lemma 1 with Eq. (3) and ⇢ = ⌘ = 1�H
immediately yields a bound

T�
t=1G(ft) −G(f∗) ≤HR2,

which implies that the average ¯fT = 1

T ∑T
t=1 ft satisfies G( ¯fT ) −G(f∗) ≤ HR2�T , a known bound

for Mirror Prox. We now extend this result to arbitrary ↵-Hölder smooth functions, that is convex
functions G such that �∇G(f) −∇G(g)�∗ ≤H�f − g�↵ for all f, g ∈ F .
Lemma 3. Let F be a convex set in a Banach space B and let R ∶ B → R be a 1-strongly convex
function on F with respect to some norm � ⋅ �. Let G be a convex ↵-Hölder smooth function with
constant H > 0 and ↵ ∈ [0,1]. Then the average ¯fT = 1

T ∑T
t=1 ft of the trajectory given by Optimistic

Mirror Descent Algorithm enjoys

G( ¯fT ) − inf

f∈FG(f) ≤ 8HR1+↵
T

1+↵
2

where R ≥ 0 is such that supf∈F DR(f, g0) ≤ R.

This result provides a smooth interpolation between the T −1�2 rate at ↵ = 0 (that is, no predictability
of the gradient is possible) and the T −1 rate when the smoothness structure allows for a dramatic
speed up with a very simple modification of the original Mirror Descent.

3 Structured Optimization

In this section we consider the structured optimization problem

argmin

f∈F G(f)
where G(f) is of the form G(f) = supx∈X �(f, x) with �(⋅, x) convex for every x ∈ X and �(f, ⋅)
concave for every f ∈ F . Both F and X are assumed to be convex sets. While G itself need not be
smooth, it has been recognized that the structure can be exploited to improve rates of optimization
if the function � is smooth [10]. From the point of view of online learning, we will see that the opti-
mization problem of the saddle point type can be solved by playing two online convex optimization
algorithms against each other (henceforth called Players I and II).

Specifically, assume that Player I produces a sequence f
1

, . . . , fT by using a regret-minimization
algorithm, such that

1

T

T�
t=1�(ft, xt) − inf

f∈F
1

T

T�
t=1�(f, xt) ≤ Rate1(x1

, . . . , xT ) (4)

and Player II produces x
1

, . . . , xT with

1

T

T�
t=1 (−�(ft, xt)) − inf

x∈X
1

T

T�
t=1 (−�(ft, x)) ≤ Rate2(f1, . . . , fT ) . (5)

By a standard argument (see e.g. [7]),

inf

f

1

T

T�
t=1�(f, xt) ≤ inf

f
� (f, x̄T ) ≤ sup

x
inf

f
� (f, x)

≤ inf
f
sup

x
�(f, x) ≤ sup

x
� � ¯fT , x� ≤ sup

x

1

T

T�
t=1�(ft, x)

where ¯fT = 1

T ∑T
t=1 ft and x̄T = 1

T ∑T
t=1 xt. By adding (4) and (5), we have

sup

x∈X
1

T

T�
t=1�(ft, x) − inf

f∈F
1

T

T�
t=1�(f, xt) ≤ Rate1(x1

, . . . , xT ) +Rate2(f1, . . . , fT ) (6)

which sandwiches the previous sequence of inequalities up to the sum of regret rates and implies
near-optimality of ¯fT and x̄T .

3



Lemma 4. Suppose both players employ the Optimistic Mirror Descent algorithm with, respectively,
predictable sequences M1

t and M2

t , 1-strongly convex functions R
1

on F (w.r.t. � ⋅ �F ) and R
2

onX (w.r.t. � ⋅ �X ), and fixed learning rates ⌘ and ⌘′. Let {ft} and {xt} denote the primary sequences
of the players while let {gt},{yt} denote the secondary. Then for any ↵,� > 0,

sup

x∈X � � ¯fT , x� − inf

f∈F supx∈X �(f, x) (7)

≤ R2

1

⌘
+ ↵

2

T�
t=1 �∇f�(ft, xt) −M1

t �2F∗ + 1

2↵

T�
t=1 �gt − ft�2F − 1

2⌘

T�
t=1 ��gt − ft�2F + �gt−1 − ft�2F�

+ R2

2

⌘′ + �

2

T�
t=1 �∇x�(ft, xt) −M2

t �2X ∗ + 1

2�

T�
t=1 �yt − xt�2X − 1

2⌘′
T�
t=1 ��yt − xt�2X + �yt−1 − xt�2X �

where R
1

and R
2

are such that DR1(f∗, g0) ≤ R2

1

and DR2(x∗, y0) ≤ R2

2

, and ¯fT = 1

T ∑T
t=1 ft.

The proof of Lemma 4 is immediate from Lemma 1. We obtain the following corollary:
Corollary 5. Suppose � ∶ F ×X � R is Hölder smooth in the following sense:

�∇f�(f, x) −∇f�(g, x)�F∗ ≤H1

�f − g�↵F , �∇f�(f, x) −∇f�(f, y)�F∗ ≤H2

�x − y�↵′X
and �∇x�(f, x) −∇x�(g, x)�X ∗ ≤H4

�f − g��F , �∇x�(f, x) −∇x�(f, y)�X ∗ ≤H3

�x − y��′X .

Let � = min{↵,↵′,�,�′}, H = max{H
1

,H
2

,H
3

,H
4

}. Suppose both players employ Optimistic
Mirror Descent with M1

t = ∇f�(gt−1, yt−1) and M2

t = ∇x�(gt−1, yt−1), where {gt} and {yt}
are the secondary sequences updated by the two algorithms, and with step sizes ⌘ = ⌘′ = (R2

1

+
R2

2

) 1−�
2 (2H)−1 �T

2

� �−1
2 . Then

sup

x∈X � � ¯fT , x� − inf

f∈F supx∈X �(f, x) ≤ 4H(R2

1

+R2

2

) 1+�
2

T
1+�
2

(8)

As revealed in the proof of this corollary, the negative terms in (7), that come from an upper bound
on regret of Player I, in fact contribute to cancellations with positive terms in regret of Player II, and
vice versa. Such a coupling of the upper bounds on regret of the two players can be seen as leading
to faster rates under the appropriate assumptions, and this idea will be exploited to a great extent in
the proofs of the next section.

4 Zero-sum Game and Uncoupled Dynamics

The notions of a zero-sum matrix game and a minimax equilibrium are arguably the most basic and
important notions of game theory. The tight connection between linear programming and minimax
equilibrium suggests that there might be simple dynamics that can lead the two players of the game
to eventually converge to the equilibrium value. Existence of such simple or natural dynamics is
of interest in behavioral economics, where one asks whether agents can discover static solution
concepts of the game iteratively and without extensive communication.

More formally, let A ∈ [−1,1]n×m be a matrix with bounded entries. The two players aim to
find a pair of near-optimal mixed strategies ( ¯f, x̄) ∈ �n × �m such that ¯fTAx̄ is close to the
minimax value minf∈�n maxx∈�m fTAx, where �n is the probability simplex over n actions. Of
course, this is a particular form of the saddle point problem considered in the previous section, with
�(f, x) = fTAx. It is well-known (and follows immediately from (6)) that the players can compute
near-optimal strategies by simply playing no-regret algorithms [7]. More precisely, on round t, the
players I and II “predict” the mixed strategies ft and xt and observe Axt and fT

t A, respectively.
While black-box regret minimization algorithms, such as Exponential Weights, immediately yieldO(T −1�2) convergence rates, Daskalakis et al [6] asked whether faster methods exist. To make the
problem well-posed, it is required that the two players are strongly uncoupled: neither A nor the
number of available actions of the opponent is known to either player, no “funny bit arithmetic”
is allowed, and memory storage of each player allows only for constant number of payoff vectors.
The authors of [6] exhibited a near-optimal algorithm that, if used by both players, yields a pair of
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mixed strategies that constitutes an O � log(m+n)(logT+(log(m+n))3�2)
T

�-approximate minimax equi-
librium. Furthermore, the method has a regret bound of the same order as Exponential Weights
when faced with an arbitrary sequence. The algorithm in [6] is an application of the excessive gap
technique of Nesterov, and requires careful choreography and interleaving of rounds between the
two non-communicating players. The authors, therefore, asked whether a simple algorithm (e.g. a
modification of Exponential Weights) can in fact achieve the same result. We answer this in the affir-
mative. While a direct application of Mirror Prox does not yield the result (and also does not provide
strong decoupling), below we show that a modification of Optimistic Mirror Descent achieves the
goal. Furthermore, by choosing the step size adaptively, the same method guarantees the typicalO(T −1�2) regret if not faced with a compliant player, thus ensuring robustness.

In Section 4.1, we analyze the “first-order information” version of the problem, as described above:
upon playing the respective mixed strategies ft and xt on round t, Player I observes Axt and Player
II observes fT

t A. Then, in Section 4.2, we consider an interesting extension to partial information,
whereby the players submit their moves ft, xt but only observe the real value fT

t Axt. Recall that in
both cases the matrix A is not known to the players.

4.1 First-Order Information

Consider the following simple algorithm. Initialize f
0

= g′
0

∈ �n and x
0

= y′
0

∈ �m to be uniform
distributions, set � = 1�T 2 and proceed as follows:

On round t, Player I performs

Play ft and observe Axt

Update gt(i)∝ g′t−1(i) exp{−⌘t[Axt]i}, g′t = (1 − �) gt + (��n)1n

ft+1(i)∝ g′t(i) exp{−⌘t+1[Axt]i}
while simultaneously Player II performs

Play xt and observe f�t A
Update yt(i)∝ y′t−1(i) exp{−⌘′t[fT

t A]i}, y′t = (1 − �)yt + (��m)1m

xt+1(i)∝ y′t(i) exp{−⌘′t+1[fT

t A]i}
Here, 1n ∈ Rn is a vector of all ones and both [b]i and b(i) refer to the i-th coordinate of a vector
b. Other than the “mixing in” of the uniform distribution, the algorithm for both players is simply
the Optimistic Mirror Descent with the (negative) entropy function. In fact, the step of mixing
in the uniform distribution is only needed when some coordinate of gt (resp., yt) is smaller than
1�(nT 2). Furthermore, this step is also not needed if none of the players deviate from the prescribed
method. In such a case, the resulting algorithm is simply the constant step-size Exponential Weights
ft(i)∝ exp{−⌘∑t−2

s=1[Axs−1]i + 2⌘[Axt−1]i}, but with a factor 2 in front of the latest loss vector!
Proposition 6. Let A ∈ [−1,1]n×m, F = �n, X = �m. If both players use above algorithm with,
respectively, M1

t = Axt−1 and M2

t = fT
t−1A, and the adaptive step sizes

⌘t =min�log(nT )��∑t−1
i=1 �Axi −Axi−1�2∗ +�∑t−2

i=1 �Axi −Axi−1�2∗�−1 , 1

11

�
and

⌘′t =min�log(mT )��∑t−1
i=1 �fT

i A − fT
i−1A�2∗ +�∑t−2

i=1 �fT
i A − fT

i−1A�2∗�−1 , 1

11

�
respectively, then the pair ( ¯fT , x̄T ) is an O � logm+logn+logT

T
�-approximate minimax equilibrium.

Furthermore, if only one player (say, Player I) follows the above algorithm, her regret against any
sequence x

1

, . . . , xT of plays is

O��� log(nT )T

���
���� T�

t=1 �Axt −Axt−1�2∗ + 1���
��� . (9)
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In particular, this implies the worst-case regret ofO � log(nT )√
T
� in the general setting of online linear

optimization.

We remark that (9) can give intermediate rates for regret in the case that the second player deviates
from the prescribed strategy but produces “stable” moves. For instance, if the second player employs
a mirror descent algorithm (or Follow the Regularized Leader / Exponential Weights method) with
step size ⌘, one can typically show stability �xt − xt−1� = O(⌘). In this case, (9) yields the rateO �⌘ logT√

T
� for the first player. A typical setting of ⌘ ∝ T −1�2 for the second player still ensures theO(logT �T ) regret for the first player.

Let us finish with a technical remark. The reason for the extra step of “mixing in” the uniform
distribution stems from the goal of having an adaptive and robust method that still attainsO(T −1�2)
regret if the other player deviates from using the algorithm. If one is only interested in the dynamics
when both players cooperate, this step is not necessary, and in this case the extraneous logT factor
disappears from the above bound, leading to the O � logn+logm

T
� convergence. On the technical side,

the need for the extra step is the following. The adaptive step size result of Corollary 2 involves
the term R2

max

≥ supgDR1(f∗, g) which is potentially infinite for the negative entropy functionR
1

. It is possible that the doubling trick or the analysis of Auer et al [2] (who encountered the
same problem for the Exponential Weights algorithm) can remove the extra logT factor while still
preserving the regret minimization property. We also remark that R

max

is small whenR
1

is instead
the p-norm; hence, the use of this regularizer avoids the extraneous logarithmic in T factor while
still preserving the logarithmic dependence on n and m. However, projection onto the simplex under
the p-norm is not as elegant as the Exponential Weights update.

4.2 Partial Information

We now turn to the partial (or, zero-th order) information model. Recall that the matrix A is not
known to the players, yet we are interested in finding ✏-optimal minimax strategies. On each round,
the two players choose mixed strategies ft ∈ �n and xt ∈ �m, respectively, and observe fT

t Axt.
Now the question is, how many such observations do we need to get to an ✏-optimal minimax
strategy? Can this be done while still ensuring the usual no-regret rate?

The specific setting we consider below requires that on each round t, the two players play four
times, and that these four plays are �-close to each other (that is, �f i

t −f j
t �1 ≤ � for i, j ∈ {1, . . . ,4}).

Interestingly, up to logarithmic factors, the fast rate of the previous section is possible even in this
scenario, but we do require the knowledge of the number of actions of the opposing player (or, an
upper bound on this number). We leave it as an open problem the question of whether one can attain
the 1�T -type rate with only one play per round.

Player I
u1, . . . , un−1 : orthonormal basis of �n

Initialize g1, f1 = 1
n
1n; Draw i0 ∼ Unif([n − 1])

At time t = 1 to T

Play ft

Draw it ∼ Unif([n − 1])
Observe :

r

+
t = (ft + �uit−1)�Axt

r

−
t = (ft − �uit−1)�Axt

r̄

+
t = (ft + �uit)�Axt

r̄

−
t = (ft − �uit)�Axt

Build estimates :
ât = n

2�
(r+t − r−t )uit−1

āt = n
2�
(r̄+t − r̄−t )uit

Update :
gt(i)∝ g

′
t−1(i) exp{−⌘tât(i)}

g

′
t = (1 − �) gt + (��n)1
ft+1(i)∝ g

′
t(i) exp{−⌘t+1āt(i)}

End

Player II
v1, . . . , vm−1 : orthonormal basis of �m

Initialize y1, x1 = 1
m
1m; Draw j0 ∼ Unif([m−1])

At time t = 1 to T

Play xt

Draw jt ∼ Unif([m − 1])
Observe :

s

+
t = −f�t A(xt + �vjt−1)
s

−
t = −f�t A(xt − �vjt−1)
s̄

+
t = −f�t A(xt + �vjt)
s̄

−
t = −f�t A(xt − �vjt)

Build estimates :
ˆ

bt = m
2�
(s+t − s−t ) vjt−1

¯

bt = m
2�
(s̄+t − s̄−t ) vjt

Update :
yt(i)∝ y

′
t−1(i) exp{−⌘′tˆbt(i)}

y

′
t = (1 − �)yt + (��m)1

xt+1(i)∝ y

′
t(i) exp{−⌘′t+1¯bt(i)}

End
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Lemma 7. Let A ∈ [−1,1]n×m, F = �n, X = �m, let � be small enough (e.g. exponentially small
in m,n,T ), and let � = 1�T 2. If both players use above algorithms with the adaptive step sizes

⌘t =min��log(nT )�∑t−1
i=1�âi−āi−1�2∗−

�∑t−2
i=1�âi−āi−1�2∗�ât−1−āt−2�2∗ , 1

28m
�

log(mT )�
and

⌘′t =min

�������
�
log(mT )�∑t−1

i=1�ˆbi−¯bi−1�2∗−
�
∑t−2

i=1�ˆbi−¯bi−1�2∗
�ˆbt−1−¯bt−2�2∗

, 1

28n
�

log(nT )
�������

respectively, then the pair ( ¯fT , x̄T ) is an

O����m log(nT )�log(mT ) + n log(mT )�log(nT )�
T

���
-approximate minimax equilibrium. Furthermore, if only one player (say, Player I) follows the above
algorithm, her regret against any sequence x

1

, . . . , xT of plays is bounded by

O���m
�
log(mT ) log(nT ) + n�log(nT )∑T

t=1 �xt − xt−1�2
T

���
We leave it as an open problem to find an algorithm that attains the 1�T -type rate when both players
only observe the value eT

iAej = Ai,j upon drawing pure actions i, j from their respective mixed
strategies ft, xt. We hypothesize a rate better than T −1�2 is not possible in this scenario.

5 Approximate Smooth Convex Programming

In this section we show how one can use the structured optimization results from Section 3 for ap-
proximately solving convex programming problems. Specifically consider the optimization problem

argmax

f∈G c�f (10)

s.t. ∀i ∈ [d], Gi(f) ≤ 1
where G is a convex set and each Gi is an H-smooth convex function. Let the optimal value of the
above optimization problem be given by F ∗ > 0, and without loss of generality assume F ∗ is known
(one typically performs binary search if it is not known). Define the sets F = {f ∶ f ∈ G, c�f = F ∗}
and X =�d. The convex programming problem in (10) can now be reformulated as

argmin

f∈F max

i∈[d] Gi(f) = argmin

f∈F sup

x∈X
d�
i=1

x(i)Gi(f) . (11)

This problem is in the saddle-point form, as studied earlier in the paper. We may think of the first
player as aiming to minimize the above expression over F , while the second player maximizes over
a mixture of constraints with the aim of violating at least one of them.
Lemma 8. Fix �, ✏ > 0. Assume there exists f

0

∈ G such that c�f
0

≥ 0 and for every i ∈ [d],
Gi(f0) ≤ 1 − �. Suppose each Gi is 1-Lipschitz over F . Consider the solution

ˆfT = (1 − ↵) ¯fT + ↵f0
where ↵ = ✏

✏+� and ¯fT = 1

T ∑T
t=1 ft ∈ F is the average of the trajectory of the procedure in Lemma 4

for the optimization problem (11). Let R
1

(⋅) = 1

2

�⋅�2
2

and R
2

be the entropy function. Further let
B be a known constant such that B ≥ �f∗ − g

0

�
2

where g
0

∈ F is some initialization and f∗ ∈ F
is the (unknown) solution to the optimization problem. Set ⌘ = argmin

⌘≤H−1 �B2

⌘
+ ⌘ log d

1−⌘H �, ⌘′ = 1

⌘
−H ,

M1

t = ∑d
i=1 yt−1(i)∇Gi(gt−1) and M2

t = (G1

(gt−1), . . . ,Gd(gt−1)). Let number of iterations T be
such that

T > 1

✏
inf

⌘≤H−1 �B2

⌘
+ ⌘ log d

1 − ⌘H �
7



We then have that ˆfT ∈ G satisfies all d constraints and is ✏
�

-approximate, that is

c� ˆfT ≥ �1 − ✏

�
�F ∗ .

Lemma 8 tells us that using the predictable sequences approach for the two players, one can obtain
an ✏

�
-approximate solution to the smooth convex programming problem in number of iterations at

most order 1�✏. If T
1

(reps. T
2

) is the time complexity for single update of the predictable sequence
algorithm of Player I (resp. Player 2), then time complexity of the overall procedure is O �T1+T2

✏
�

5.1 Application to Max-Flow

We now apply the above result to the problem of finding Max Flow between a source and a sink
in a network, such that the capacity constraint on each edge is satisfied. For simplicity, consider a
network where each edge has capacity 1 (the method can be easily extended to the case of varying
capacity). Suppose the number of edges d in the network is the same order as number of vertices in
the network. The Max Flow problem can be seen as an instance of a convex (linear) programming
problem, and we apply the proposed algorithm for structured optimization to obtain an approximate
solution.

For the Max Flow problem, the sets G and F are given by sets of linear equalities. Further, if we use
Euclidean norm squared as regularizer for the flow player, then projection step can be performed inO(d) time using conjugate gradient method. This is because we are simply minimizing Euclidean
norm squared subject to equality constraints which is well conditioned. Hence T

1

= O(d). Similarly,
the Exponential Weights update has time complexity O(d) as there are order d constraints, and so
overall time complexity to produce ✏ approximate solution is given byO(nd), where n is the number
of iterations of the proposed procedure.

Once again, we shall assume that we know the value of the maximum flow F ∗ (for, otherwise, we
can use binary search to obtain it).
Corollary 9. Applying the procedure for smooth convex programming from Lemma 8 to the Max
Flow problem with f

0

= 0 ∈ G the 0 flow, the time complexity to compute an ✏-approximate Max
Flow is bounded by O �d3�2√log d

✏
� .

This time complexity matches the known result from [8], but with a much simpler procedure (gradi-
ent descent for the flow player and Exponential Weights for the constraints). It would be interesting
to see whether the techniques presented here can be used to improve the dependence on d to d4�3 or
better while maintaining the 1�✏ dependence. While the result of [5] has the improved d4�3 depen-
dence, the complexity in terms of ✏ is much worse.

6 Discussion

We close this paper with a discussion. As we showed, the notion of using extra information about the
sequence is a powerful tool with applications in optimization, convex programming, game theory, to
name a few. All the applications considered in this paper, however, used some notion of smoothness
for constructing the predictable process Mt. An interesting direction of further research is to isolate
more general conditions under which the next gradient is predictable, perhaps even when the func-
tions are not smooth in any sense. For instance one could use techniques from bundle methods to
further restrict the set of possible gradients the function being optimized can have at various points
in the feasible set. This could then be used to solve for the right predictable sequence to use so as
to optimize the bounds. Using this notion of selecting predictable sequences one can hope to derive
adaptive optimization procedures that in practice can provide rapid convergence.
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