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Abstract

We establish theoretical results concerning local optima of regularized M -
estimators, where both loss and penalty functions are allowed to be nonconvex.
Our results show that as long as the loss satisfies restricted strong convexity and
the penalty satisfies suitable regularity conditions, any local optimum of the com-
posite objective lies within statistical precision of the true parameter vector. Our
theory covers a broad class of nonconvex objective functions, including corrected
versions of the Lasso for errors-in-variables linear models and regression in gen-
eralized linear models using nonconvex regularizers such as SCAD and MCP. On
the optimization side, we show that a simple adaptation of composite gradient de-
scent may be used to compute a global optimum up to the statistical precision εstat

in log(1/εstat) iterations, the fastest possible rate for any first-order method. We
provide simulations to illustrate the sharpness of our theoretical predictions.

1 Introduction

Optimization of nonconvex functions is known to be computationally intractable in general [11, 12].
Unlike convex functions, nonconvex functions may possess local optima that are not global optima,
and standard iterative methods such as gradient descent and coordinate descent are only guaranteed
to converge to local optima. Although statistical results regarding nonconvex M -estimation often
only provide guarantees about the accuracy of global optima, it is observed empirically that the local
optima obtained by various estimation algorithms seem to be well-behaved.

In this paper, we study the question of whether it is possible to certify “good” behavior, in both a
statistical and computational sense, for various nonconvex M -estimators. On the statistical level,
we provide an abstract result, applicable to a broad class of (potentially nonconvex) M -estimators,
which bounds the distance between any local optimum and the unique minimum of the population
risk. Although local optima of nonconvex objectives may not coincide with global optima, our
theory shows that any local optimum is essentially as good as a global optimum from a statistical
perspective. The class of M -estimators covered by our theory includes the modified Lasso as a
special case, but our results are much stronger than those implied by previous work [6].

In addition to nonconvex loss functions, our theory also applies to nonconvex regularizers, shedding
new light on a long line of recent work involving the nonconvex SCAD and MCP regularizers [3, 2,
13, 14]. Various methods have been proposed for optimizing convex loss functions with nonconvex
penalties [3, 4, 15], but these methods are only guaranteed to generate local optima of the composite
objective, which have not been proven to be well-behaved. In contrast, our work provides a set
of regularity conditions under which all local optima are guaranteed to lie within a small ball of
the population-level minimum, ensuring that standard methods such as projected and composite
gradient descent [10] are sufficient for obtaining estimators that lie within statistical error of the
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truth. In fact, we establish that under suitable conditions, a modified form of composite gradient
descent only requires log(1/εstat) iterations to obtain a solution that is accurate up to the statistical
precision εstat.
Notation. For functions f(n) and g(n), we write f(n) - g(n) to mean that f(n) ≤ cg(n) for
some universal constant c ∈ (0,∞), and similarly, f(n) % g(n) when f(n) ≥ c′g(n) for some
universal constant c′ ∈ (0,∞). We write f(n) � g(n) when f(n) - g(n) and f(n) % g(n) hold
simultaneously. For a function h : Rp → R, we write ∇h to denote a gradient or subgradient, if it
exists. Finally, for q, r > 0, let Bq(r) denote the `q-ball of radius r centered around 0.

2 Problem formulation

In this section, we develop some general theory for regularized M -estimators. We first establish
notation, then discuss assumptions for nonconvex regularizers and losses studied in our paper.

2.1 Background

Given a collection of n samples Zn1 = {Z1, . . . , Zn}, drawn from a marginal distribution P over a
space Z , consider a loss function Ln : Rp × (Z)n → R. The value Ln(β;Zn1 ) serves as a measure
of the “fit” between a parameter vector β ∈ Rp and the observed data. This empirical loss function
should be viewed as a surrogate to the population risk function L : Rp → R, given by

L(β) := EZ
[
Ln(β;Zn1 )

]
.

Our goal is to estimate the parameter vector β∗ := arg min
β∈Rp

L(β) that minimizes the population

risk, assumed to be unique.

To this end, we consider a regularized M -estimator of the form

β̂ ∈ arg min
g(β)≤R

{Ln(β;Zn1 ) + ρλ(β)} , (1)

where ρλ : Rp → R is a regularizer, depending on a tuning parameter λ > 0, which serves to
enforce a certain type of structure on the solution. In all cases, we consider regularizers that are
separable across coordinates, and with a slight abuse of notation, we write ρλ(β) =

∑p
j=1 ρλ(βj).

Our theory allows for possible nonconvexity in both the loss function Ln and the regularizer ρλ.
Due to this potential nonconvexity, our M -estimator also includes a side constraint g : Rp → R+,
which we require to be a convex function satisfying the lower bound g(β) ≥ ‖β‖1, for all β ∈ Rp.
Consequently, any feasible point for the optimization problem (1) satisfies the constraint ‖β‖1 ≤ R,
and as long as the empirical loss and regularizer are continuous, the Weierstrass extreme value
theorem guarantees that a global minimum β̂ exists.

2.2 Nonconvex regularizers

We now state and discuss conditions on the regularizer, defined in terms of ρλ : R→ R.
Assumption 1.

(i) The function ρλ satisfies ρλ(0) = 0 and is symmetric around zero (i.e., ρλ(t) = ρλ(−t)
for all t ∈ R).

(ii) On the nonnegative real line, the function ρλ is nondecreasing.

(iii) For t > 0, the function t 7→ ρλ(t)
t is nonincreasing in t.

(iv) The function ρλ is differentiable for all t 6= 0 and subdifferentiable at t = 0, with nonzero
subgradients at t = 0 bounded by λL.

(v) There exists µ > 0 such that ρλ,µ(t) := ρλ(t) + µt2 is convex.

Many regularizers that are commonly used in practice satisfy Assumption 1, including the `1-norm,
ρλ(β) = ‖β‖1, and the following commonly used nonconvex regularizers:
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SCAD penalty: This penalty, due to Fan and Li [3], takes the form

ρλ(t) :=


λ|t|, for |t| ≤ λ,
−(t2 − 2aλ|t|+ λ2)/(2(a− 1)), for λ < |t| ≤ aλ,
(a+ 1)λ2/2, for |t| > aλ,

(2)

where a > 2 is a fixed parameter. Assumption 1 holds with L = 1 and µ = 1
a−1 .

MCP regularizer: This penalty, due to Zhang [13], takes the form

ρλ(t) := sign(t)λ ·
∫ |t|

0

(
1− z

λb

)
+
dz, (3)

where b > 0 is a fixed parameter. Assumption 1 holds with L = 1 and µ = 1
b .

2.3 Nonconvex loss functions and restricted strong convexity

Throughout this paper, we require the loss function Ln to be differentiable, but we do not require it
to be convex. Instead, we impose a weaker condition known as restricted strong convexity (RSC).
Such conditions have been discussed in previous literature [9, 1], and involve a lower bound on the
remainder in the first-order Taylor expansion of Ln. In particular, our main statistical result is based
on the following RSC condition:

〈∇Ln(β∗ + ∆)−∇Ln(β∗), ∆〉 ≥


α1‖∆‖22 − τ1

log p

n
‖∆‖21, ∀‖∆‖2 ≤ 1, (4a)

α2‖∆‖2 − τ2

√
log p

n
‖∆‖1, ∀‖∆‖2 ≥ 1, (4b)

where the αj’s are strictly positive constants and the τj’s are nonnegative constants.

To understand this condition, note that if Ln were actually strongly convex, then both these RSC
inequalities would hold with α1 = α2 > 0 and τ1 = τ2 = 0. However, in the high-dimensional
setting (p � n), the empirical loss Ln can never be strongly convex, but the RSC condition may
still hold with strictly positive (αj , τj). On the other hand, if Ln is convex (but not strongly convex),
the left-hand expression in inequality (4) is always nonnegative, so inequalities (4a) and (4b) hold
trivially for ‖∆‖1‖∆‖2 ≥

√
α1n

τ1 log p and ‖∆‖1‖∆‖2 ≥
α2

τ2

√
n

log p , respectively. Hence, the RSC inequalities

only enforce a type of strong convexity condition over a cone set of the form
{
‖∆‖1
‖∆‖2 ≤ c

√
n

log p

}
.

3 Statistical guarantees and consequences

We now turn to our main statistical guarantees and some consequences for various statistical models.
Our theory applies to any vector β̃ ∈ Rp that satisfies the first-order necessary conditions to be a
local minimum of the program (1):

〈∇Ln(β̃) +∇ρλ(β̃), β − β̃〉 ≥ 0, for all feasible β ∈ Rp. (5)

When β̃ lies in the interior of the constraint set, condition (5) is the usual zero-subgradient condition.

3.1 Main statistical results

Our main theorem is deterministic in nature, and specifies conditions on the regularizer, loss func-
tion, and parameters, which guarantee that any local optimum β̃ lies close to the target vector
β∗ = arg min

β∈Rp
L(β). Corresponding probabilistic results will be derived in subsequent sections. For

proofs and more detailed discussion of the results contained in this paper, see the technical report [7].
Theorem 1. Suppose the regularizer ρλ satisfies Assumption 1, Ln satisfies the RSC conditions (4)
with α1 > µ, and β∗ is feasible for the objective. Consider any choice of λ such that

2

L
·max

{
‖∇Ln(β∗)‖∞, α2

√
log p

n

}
≤ λ ≤ α2

6RL
, (6)
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and suppose n ≥ 16R2 max(τ2
1 ,τ

2
2 )

α2
2

log p. Then any vector β̃ satisfying the first-order necessary con-
ditions (5) satisfies the error bounds

‖β̃ − β∗‖2 ≤
7λL
√
k

4(α1 − µ)
, and ‖β̃ − β∗‖1 ≤

56λLk

4(α1 − µ)
, (7)

where k = ‖β∗‖0.

From the bound (7), note that the squared `2-error grows proportionally with k, the number of non-
zeros in the target parameter, and with λ2. As will be clarified in the following sections, choosing λ

proportional to
√

log p
n andR proportional to 1

λ will satisfy the requirements of Theorem 1 w.h.p. for

many statistical models, in which case we have a squared `2-error that scales as k log p
n , as expected.

Remark 1. It is worthwhile to discuss the quantity α1 − µ appearing in the denominator of the
bound in Theorem 1. Recall that α1 measures the level of curvature of the loss function Ln, while µ
measures the level of nonconvexity of the penalty ρλ. Intuitively, the two quantities should play op-
posing roles in our result: Larger values of µ correspond to more severe nonconvexity of the penalty,
resulting in worse behavior of the overall objective (1), whereas larger values of α1 correspond to
more (restricted) curvature of the loss, leading to better behavior.

We now develop corollaries for various nonconvex loss functions and regularizers of interest.

3.2 Corrected linear regression

We begin by considering the case of high-dimensional linear regression with systematically cor-
rupted observations. Recall that in the framework of ordinary linear regression, we have the model

yi = 〈β∗, xi〉︸ ︷︷ ︸∑p
j=1 β

∗
j xij

+ εi, for i = 1, . . . , n, (8)

where β∗ ∈ Rp is the unknown parameter vector and {(xi, yi)}ni=1 are observations. Following Loh
and Wainwright [6], assume we instead observe pairs {(zi, yi)}ni=1, where the zi’s are systematically
corrupted versions of the corresponding xi’s. Some examples include the following:

(a) Additive noise: Observe zi = xi + wi, where wi ⊥⊥ xi, E[wi] = 0, and cov[wi] = Σw.

(b) Missing data: For ϑ ∈ [0, 1), observe zi ∈ Rp such that for each component j, we inde-
pendently observe zij = xij with probability 1− ϑ, and zij = ∗ with probability ϑ.

We use the population and empirical loss functions

L(β) =
1

2
βTΣxβ − β∗TΣxβ, and Ln(β) =

1

2
βT Γ̂β − γ̂Tβ, (9)

where (Γ̂, γ̂) are estimators for (Σx,Σxβ
∗) depending on {(zi, yi)}ni=1. Then β∗ = arg minβ L(β).

From the formulation (1), the corrected linear regression estimator is given by

β̂ ∈ arg min
g(β)≤R

{
1

2
βT Γ̂β − γ̂Tβ + ρλ(β)

}
. (10)

We now state a corollary in the case of additive noise (model (a)), where we take

Γ̂ =
ZTZ

n
− Σw, and γ̂ =

ZT y

n
. (11)

When p� n, the matrix Γ̂ in equation (11) is always negative-definite, so the empirical loss function
Ln previously defined (9) is nonconvex. Other choices of Γ̂ are applicable to missing data (model
(b)), and also lead to nonconvex programs [6].

4



Corollary 1. Suppose we have i.i.d. observations {(zi, yi)}ni=1 from a corrupted linear model with
sub-Gaussian additive noise. Suppose (λ,R) are chosen such that β∗ is feasible and

c

√
log p

n
≤ λ ≤ c′

R
.

Then given a sample size n ≥ C max{R2, k} log p, any local optimum β̃ of the nonconvex pro-
gram (10) satisfies the estimation error bounds

‖β̃ − β∗‖2 ≤
c0λ
√
k

λmin(Σx)− 2µ
, and ‖β̃ − β∗‖1 ≤

c′0λk

λmin(Σx)− 2µ
,

with probability at least 1− c1 exp(−c2 log p), where ‖β∗‖0 = k.

Remark 2. When ρλ(β) = λ‖β‖1 and g(β) = ‖β‖1, taking λ �
√

log p
n and R = b0

√
k for some

constant b0 ≥ ‖β∗‖2 yields the required scaling n % k log p. Hence, the bounds in Corollary 1
agree with bounds in Theorem 1 of Loh and Wainwright [6]. Note, however, that the latter results
are stated only for a global minimum β̂ of the program (10), whereas Corollary 1 is a much stronger
result holding for any local minimum β̃. Theorem 2 of our earlier paper [6] provides an indirect
route for establishing similar bounds on ‖β̃ − β∗‖1 and ‖β̃ − β∗‖2, since the projected gradient
descent algorithm may become stuck in local minima. In contrast, our argument here does not rely
on an algorithmic proof and applies to a more general class of (possibly nonconvex) penalties.

Corollary 1 also has important consequences in the case where pairs {(xi, yi)}ni=1 from the linear
model (8) are observed without corruption and ρλ is nonconvex. Then the empirical loss Ln is
equivalent to the least-squares loss, modulo a constant factor. Much existing work [3, 14] only
establishes statistical consistency of global minima and then provides specialized algorithms for
obtaining specific local optima that are provably close to global optima. In contrast, our results
demonstrate that any optimization algorithm converging to a local optimum suffices.

3.3 Generalized linear models

Moving beyond linear regression, we now consider the case where observations are drawn from a
generalized linear model (GLM). Recall that a GLM is characterized by the conditional distribution

P(yi | xi, β, σ) = exp

{
yi〈β, xi〉 − ψ(xTi β)

c(σ)

}
,

where σ > 0 is a scale parameter and ψ is the cumulant function. By standard properties of expo-
nential families [8, 5], we have

ψ′(xTi β) = E[yi | xi, β, σ].

In our analysis, we assume there exists αu > 0 such that ψ′′(t) ≤ αu for all t ∈ R. This bound-
edness assumption holds in various settings, including linear regression, logistic regression, and
multinomial regression. The bound is required to establish both statistical consistency results in the
present section and fast global convergence guarantees for our optimization algorithms in Section 4.

We will assume that β∗ is sparse and optimize the penalized maximum likelihood program

β̂ ∈ arg min
g(β)≤R

{
1

n

n∑
i=1

(
ψ(xTi β)− yixTi β

)
+ ρλ(β)

}
. (12)

We then have the following corollary:
Corollary 2. Suppose we have i.i.d. observations {(xi, yi)}ni=1 from a GLM, where the xi’s are
sub-Gaussian. Suppose (λ,R) are chosen such that β∗ is feasible and

c

√
log p

n
≤ λ ≤ c′

R
.

Given a sample size n ≥ CR2 log p, any local optimum β̃ of the nonconvex program (12) satisfies

‖β̃ − β∗‖2 ≤
c0λ
√
k

λmin(Σx)− 2µ
, and ‖β̃ − β∗‖1 ≤

c′0λk

λmin(Σx)− 2µ
,

with probability at least 1− c1 exp(−c2 log p), where ‖β∗‖0 = k.
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4 Optimization algorithm

We now describe how a version of composite gradient descent may be applied to efficiently optimize
the nonconvex program (1). We focus on a version of the optimization problem with the side function

gλ,µ(β) :=
1

λ

{
ρλ(β) + µ‖β‖22

}
, (13)

which is convex by Assumption 1. We may then write the program (1) as

β̂ ∈ arg min
gλ,µ(β)≤R

{(
Ln(β)− µ‖β‖22

)︸ ︷︷ ︸
L̄n

+λgλ,µ(β)
}
. (14)

The objective function then decomposes nicely into a sum of a differentiable but nonconvex function
and a possibly nonsmooth but convex penalty. Applied to the representation (14), the composite
gradient descent procedure of Nesterov [10] produces a sequence of iterates {βt}∞t=0 via the updates

βt+1 ∈ arg min
gλ,µ(β)≤R

{
1

2

∥∥∥∥β − (βt − ∇Ln(βt)

η

)∥∥∥∥2

2

+
λ

η
gλ,µ(β)

}
, (15)

where 1
η is the stepsize. Define the Taylor error around β2 in the direction β1 − β2 by

T (β1, β2) := Ln(β1)− Ln(β2)− 〈∇Ln(β2), β1 − β2〉. (16)
For all vectors β2 ∈ B2(3) ∩ B1(R), we require the following form of restricted strong convexity:

T (β1, β2) ≥


α1‖β1 − β2‖22 − τ1

log p

n
‖β1 − β2‖21, ∀‖β1 − β2‖2 ≤ 3, (17a)

α2‖β1 − β2‖2 − τ2

√
log p

n
‖β1 − β2‖1, ∀‖β1 − β2‖2 ≥ 3. (17b)

The conditions (17) are similar but not identical to the earlier RSC conditions (4). The main
difference is that we now require the Taylor difference to be bounded below uniformly over
β2 ∈ B2(3) ∩ B1(R), as opposed to for a fixed β2 = β∗. We also assume an upper bound:

T (β1, β2) ≤ α3‖β1 − β2‖22 + τ3
log p

n
‖β1 − β2‖21, for all β1, β2 ∈ Rp, (18)

a condition referred to as restricted smoothness in past work [1]. Throughout this section, we as-
sume αi > µ for all i, where µ is the coefficient ensuring the convexity of the function gλ,µ from
equation (13). Furthermore, we define α = min{α1, α2} and τ = max{τ1, τ2, τ3}.
The following theorem applies to any population loss function L for which the population minimizer
β∗ is k-sparse and ‖β∗‖2 ≤ 1, and under the scaling n > Ck log p, for a constant C depending on
the αi’s and τi’s. We show that the composite gradient updates (15) exhibit a type of globally
geometric convergence in terms of the quantity

κ :=
1− α−µ

4η + ϕ(n, p, k)

1− ϕ(n, p, k)
, where ϕ(n, p, k) :=

128τk log p
n

α− µ
. (19)

Under the stated scaling on the sample size, we are guaranteed that κ ∈ (0, 1). Let

T ∗(δ) :=
2 log

(
φ(β0)−φ(β̂)

δ2

)
log(1/κ)

+

(
1 +

log 2

log(1/κ)

)
log log

(
λRL

δ2

)
, (20)

where φ(β) := Ln(β) + ρλ(β), and define εstat := ‖β̂ − β∗‖2.
Theorem 2. Suppose Ln satisfies the RSC/RSM conditions (17) and (18), and suppose ρλ satisfies
Assumption 1. Suppose β̂ is any global minimum of the program (14), with

R

√
log p

n
≤ c, and λ ≥ 4

L
·max

{
‖∇Ln(β∗)‖∞, τ

√
log p

n

}
.

Then for any stepsize η ≥ 2 ·max{α3 − µ, µ} and tolerance δ2 ≥ cε2stat
1−κ , we have

‖βt − β̂‖22 ≤
2

α− µ

(
δ2 +

δ4

τ
+ 128τ

k log p

n
ε2stat

)
, ∀t ≥ T ∗(δ). (21)
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Remark 3. Note that for the optimal choice of tolerance parameter δ � εstat, the bound in inequal-
ity (21) takes the form cε2stat

α−µ , meaning successive iterates are guaranteed to converge to a region

within statistical accuracy of the true global optimum β̂. Combining Theorems 1 and 2, we have

max
{
‖βt − β̂‖2, ‖βt − β∗‖2

}
= O

(√
k log p

n

)
, ∀t ≥ T (c′εstat).

5 Simulations

In this section, we report the results of simulations for two versions of the loss function Ln, corre-
sponding to linear and logistic regression, and three penalty functions: Lasso, SCAD, and MCP. In

all cases, we chose regularization parameters R = 1.1
λ · ρλ(β∗) and λ =

√
log p
n .

Linear regression: In the case of linear regression, we simulated covariates corrupted by additive
noise according to the mechanism described in Section 3.2, giving the estimator

β̂ ∈ arg min
gλ,µ(β)≤R

{
1

2
βT
(
XTX

n
− Σw

)
β − yTZ

n
β + ρλ(β)

}
. (22)

We generated i.i.d. samples xi ∼ N(0, I) and εi ∼ N(0, (0.1)2), and set Σw = (0.2)2I .

Logistic regression: In the case of logistic regression, we generated i.i.d. samples xi ∼ N(0, I).
Since ψ(t) = log(1 + exp(t)), the program (12) becomes

β̂ ∈ arg min
gλ,µ(β)≤R

{
1

n

n∑
i=1

{log(1 + exp(〈β, xi〉)− yi〈β, xi〉}+ ρλ(β)

}
. (23)

We optimized the programs (22) and (23) using the composite gradient updates (15). Figure 1
shows the results of corrected linear regression with Lasso, SCAD, and MCP regularizers for three
different problem sizes p. In each case, β∗ is a k-sparse vector with k = b√pc, where the nonzero
entries were generated from a normal distribution and the vector was then rescaled so ‖β∗‖2 = 1.
As predicted by Theorem 1, the curves corresponding to the same penalty function stack up nicely
when the estimation error ‖β̂ − β∗‖2 is plotted against the rescaled sample size n

k log p , and the `2-
error decreases to zero as the number of samples increases, showing that the estimators (22) and (23)
are statistically consistent. We chose the parameter a = 3.7 for SCAD and b = 3.5 for MCP.
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Figure 1. Plots showing statistical consistency of (a) linear and (b) logistic regression with Lasso,
SCAD, and MCP. Each point represents an average over 20 trials. The estimation error ‖β̂ − β∗‖2
is plotted against the rescaled sample size n

k log p
. Lasso, SCAD, and MCP results are represented by

solid, dotted, and dashed lines, respectively.

The simulations in Figure 2 depict the optimization-theoretic conclusions of Theorem 2. Each panel
shows two different families of curves, corresponding to statistical error (red) and optimization error
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(blue). The vertical axis measures the `2-error on a log scale, while the horizontal axis tracks the
iteration number. The curves were obtained by running composite gradient descent from 10 random
starting points. We used p = 128, k = b√pc, and n = b20k log pc. As predicted by our theory,
the optimization error decreases at a linear rate until it falls to the level of statistical error. Panels
(b) and (c) provide simulations for two values of the SCAD parameter a; the larger choice a = 3.7
corresponds to a higher level of curvature and produces a tighter cluster of local optima.
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Figure 2. Plots illustrating linear rates of convergence for corrected linear regression with MCP and
SCAD. Red lines depict statistical error log

(
‖β̂ − β∗‖2

)
and blue lines depict optimization error

log
(
‖βt− β̂‖2

)
. As predicted by Theorem 2, the optimization error decreases linearly up to statistical

accuracy. Each plot shows the solution trajectory for 10 initializations of composite gradient descent.
Panel (a) shows results for MCP; panels (b) and (c) show results for SCAD with different values of a.

Figure 3 provides analogous results to Figure 2 for logistic regression, using p = 64, k = b√pc, and
n = b20k log pc. The plot shows solution trajectories for 20 different initializations of composite
gradient descent. Again, the log optimization error decreases at a linear rate up to the level of
statistical error, as predicted by Theorem 2. Whereas the convex Lasso penalty yields a unique
local/global optimum β̂, SCAD and MCP produce multiple local optima.
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Figure 3. Plots showing linear rates of convergence on a log scale for logistic regression. Red lines
depict statistical error and blue lines depict optimization error. (a) Lasso penalty. (b) SCAD penalty.
(c) MCP. Each plot shows the solution trajectory for 20 initializations of composite gradient descent.

6 Discussion

We have analyzed theoretical properties of local optima of regularized M -estimators, where both
the loss and penalty function are allowed to be nonconvex. Our results are the first to establish that
all local optima of such nonconvex problems are close to the truth, implying that any optimization
method guaranteed to converge to a local optimum will provide statistically consistent solutions. We
show that a variant of composite gradient descent may be used to obtain near-global optima in linear
time, and verify our theoretical results with simulations.
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