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Abstract

Entropy rate quantifies the amount of disorder in a stochastic process. For spiking
neurons, the entropy rate places an upper bound on the rate at which the spike train
can convey stimulus information, and a large literature has focused on the prob-
lem of estimating entropy rate from spike train data. Here we present Bayes least
squares and empirical Bayesian entropy rate estimators for binary spike trains us-
ing hierarchical Dirichlet process (HDP) priors. Our estimator leverages the fact
that the entropy rate of an ergodic Markov Chain with known transition prob-
abilities can be calculated analytically, and many stochastic processes that are
non-Markovian can still be well approximated by Markov processes of sufficient
depth. Choosing an appropriate depth of Markov model presents challenges due
to possibly long time dependencies and short data sequences: a deeper model can
better account for long time dependencies, but is more difficult to infer from lim-
ited data. Our approach mitigates this difficulty by using a hierarchical prior to
share statistical power across Markov chains of different depths. We present both
a fully Bayesian and empirical Bayes entropy rate estimator based on this model,
and demonstrate their performance on simulated and real neural spike train data.

1 Introduction

The problem of characterizing the statistical properties of a spiking neuron is quite general, but two
interesting questions one might ask are: (1) what kind of time dependencies are present? and (2) how
much information is the neuron transmitting? With regard to the second question, information theory
provides quantifications of the amount of information transmitted by a signal without reference to
assumptions about how the information is represented or used. The entropy rate is of interest as a
measure of uncertainty per unit time, an upper bound on the rate of information transmission, and
an intermediate step in computing mutual information rate between stimulus and neural response.

Unfortunately, accurate entropy rate estimation is difficult, and estimates from limited data are of-
ten severely biased. We present a Bayesian method for estimating entropy rates from binary data
that uses hierarchical Dirichlet process priors (HDP) to reduce this bias. Our method proceeds by
modeling the source of the data as a Markov chain, and then using the fact that the entropy rate of
a Markov chain is a deterministic function of its transition probabilities. Fitting the model yields
parameters relevant to both questions (1) and (2) above: we obtain both an approximation of the
underlying stochastic process as a Markov chain, and an estimate of the entropy rate of the process.

For binary data, the HDP reduces to a hierarchy of beta priors, where the prior probability over g, the
probability of the next symbol given a long history, is a beta distribution centered on the probability
of that symbol given a truncated, one-symbol-shorter, history. The posterior over symbols given
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a certain history is thus “smoothed” by the probability over symbols given a shorter history. This
smoothing is a key feature of the model.

The structure of the paper is as follows. In Section 2, we present definitions and challenges involved
in entropy rate estimation, and discuss existing estimators. In Section 3, we discuss Markov models
and their relationship to entropy rate. In Sections 4 and 5, we present two Bayesian estimates of
entropy rate using the HDP prior, one involving a direct calculation of the posterior mean transition
probabilities of a Markov model, the other using Markov Chain Monte Carlo methods to sample
from the posterior distribution of the entropy rate. In Section 6 we compare the HDP entropy rate
estimators to existing entropy rate estimators including the context tree weighting entropy rate esti-
mator from [1], the string-parsing method from [2], and finite-length block entropy rate estimators
that makes use of the entropy estimator of Nemenman, Bialek and Shafee [3] and Miller and Madow
[4]. We evaluate the results for simulated and real neural data.

2 Entropy Rate Estimation

In information theory, the entropy of a random variable is a measure of the variable’s average un-
predictability. The entropy of a discrete random variable X with possible values {x1, ..., xn} is

H(X) = −
n∑
i=1

p(xi) log(xi) (1)

Entropy can be measured in either nats or bits, depending on whether we use base 2 or e for the
logarithm. Here, all logarithms discussed will be base 2, and all entropies will be given in bits.

While entropy is a property of a random variable, entropy rate is a property of a stochastic process,
such as a time series, and quantifies the amount of uncertainty per symbol. The neural and simulated
data considered here will be binary sequences representing the spike train of a neuron, where each
symbol represents either the presence of a spike in a bin (1) or the absence of a spike (0). We view
the data as a sample path from an underlying stochastic process. To evaluate the average uncertainty
of each new symbol (0 or 1) given the previous symbols - or the amount of new information per
symbol - we would like to compute the entropy rate of the process.

For a stochastic process {Xi}∞i=1 the entropy of the random vector (X1, ..., Xk) grows with k; we
are interested in how it grows. If we define the block entropyHk to be the entropy of the distribution
of length-k sequences of symbols, Hk = H(Xi+1, ...Xi+k), then the entropy rate of a stochastic
process {Xi}∞i=1is defined by

h = lim
k→∞

1

k
Hk (2)

when the limit exists (which, for stationary stochastic processes, it must). There are two other
definitions for entropy rate, which are equivalent to the first for stationary processes:

h = lim
k→∞

Hk+1 −Hk (3)

h = lim
k→∞

H(Xi+1|Xi, Xi−1, ...Xi−k) (4)

We now briefly review existing entropy rate estimators, to which we will compare our results.

2.1 Block Entropy Rate Estimators

Since much work has been done to accurately estimate entropy from data, Equations (2) and (3)
suggest a simple entropy rate estimator, which consists of choosing first a block size k and then
a suitable entropy estimator with which to estimate Hk. A simple such estimator is the “plugin”
entropy estimator, which approximates the probability of each length-k block (x1, ..., xk) by the
proportion of total length-k blocks observed that are equal to (x1, ..., xk). For binary data there are
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2k possible length-k blocks. When N denotes the data length and ci the number of observations of
each block in the data, we have:

Ĥplugin =

2k∑
i=1

− ci
N

log
ci
N

(5)

from which we can immediately estimate the entropy rate with hplugin,k = Ĥplugin/k, for some
appropriately chosen k (the subject of “appropriate choice” will be taken up in more detail later).

We would expect that using better block entropy estimators would yield better entropy rate esti-
mators, and so we also consider two other block based entropy rate estimators. The first uses the
Bayesian entropy estimator HNSB from Nemenman, Shafee and Bialek [3], which gives a Bayesian
least squares estimate for entropy given a mixture-of-Dirichlet prior. The second uses the Miller and
Madow estimator [4], which gives a first-order correction to the (often significantly biased) plugin
entropy estimator of Equation 5:

ĤMM =
2k∑
i=1

− ci
N

log
ci
N

+
A− 1

2N
log(e) (6)

whereA is the size of the alphabet of symbols (A = 2 for the binary data sequences presently consid-
ered). For a given k, we obtain entropy rate estimators hNSB,k = ĤNSB/k and hMM,k = ĤMM/k
by applying the entropy estimators from [3] and [4] respectively to the empirical distribution of the
length-k blocks.

While we can improve the accuracy of these block entropy rate estimates by choosing a better
entropy estimator, choosing the block size k remains a challenge. If we choose k to be small,
we miss long time dependencies in the data and tend to overestimate the entropy; intuitively, the
time series will seem more unpredictable than it actually is, because we are ignoring long-time
dependencies. On the other hand, as we consider larger k, limited data leads to underestimates of
the entropy rate. See the plots of hplugin, hNSB , and hMM in Figure 2d for an instance of this effect
of block size on entropy rate estimates. We might hope that in between the overestimates of entropy
rate for short blocks and the the underestimates for longer blocks, there is some “plateau” region
where the entropy rate stays relatively constant with respect to block size, which we could use as a
heuristic to select the proper block length [1]. Unfortunately, the block entropy rate at this plateau
may still be biased, and for data sequences that are short with respect to their time dependencies,
there may be no discernible plateau at all ([1], Figure 1).

2.2 Other Entropy Rate Estimators

Not all existing techniques for entropy rate estimation involve an explicit choice of block length.
The estimator from [2], for example, parses the full string of symbols in the data by starting from
the first symbol, and sequentially removing and counting as a “phrase” the shortest substring that
has not yet appeared. When M is the number of distinct phrases counted in this way, we obtain the
estimator: hLZ = M

N logN , free from any explicit block length parameters.

A fixed block length model like the ones described in the previous section uses the entropy of the dis-
tribution of all the blocks of a some length - e.g. all the blocks in the terminal nodes of a context tree
like the one in Figure 1a. In the context tree weighting (CTW) framework of [1], the authors instead
use a minimum descriptive length criterion to weight different tree topologies, which have within
the same tree terminal nodes corresponding to blocks of different lengths. They use this weighting
to generate Monte Carlo samples and approximate the integral

∫
h(θ)p(θ|T, data)p(T|data) dθ dT,

in which T represents the tree topology, and θ represents transition probabilities associated with the
terminal nodes of the tree.

In our approach, the HDP prior combined with a Markov model of our data will be a key tool in
overcoming some of the difficulties of choosing a block-length appropriately for entropy rate esti-
mation. It will allow us to choose a block length that is large enough to capture possibly important
long time dependencies, while easing the difficulty of estimating the properties of these long time
dependencies from short data.
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Figure 1: A depth-3 hierarchical Dirichlet prior for binary data

3 Markov Models

The usefulness of approximating our data source with a Markov model comes from (1) the flexibility
of Markov models including their ability to well approximate even many processes that are not truly
Markovian, and (2) the fact that for a Markov chain with known transition probabilities the entropy
rate need not be estimated but is in fact a deterministic function of the transition probabilities.

A Markov chain is a sequence of random variables that has the property that the probability
of the next state depends only on the present state, and not on any previous states. That is,
P (Xi+1|Xi, ..., X1) = P (Xi+1|Xi). Note that this property does not mean that for a binary se-
quence the probability of each 0 or 1 depends only on the previous 0 or 1, because we consider the
state variables to be strings of symbols of length k rather than individual 0s and 1s, Thus we will
discuss “depth-k” Markov models, where the probability of the next state depends only previous k
symbols, or what we will call the length-k context of the symbol. With a binary alphabet, there are
2k states the chain can take, and from each state s, transitions are possible only to two other states.
(So that for, example, 110 can transition to state 101 or state 100, but not to any other state). Because
only two transitions are possible from each state, the transition probability distribution from each s
is completely specified by only one parameter, which we denote gs, the probability of observing a 1
given the context s.

The entropy rate of an ergodic Markov chain with finite state set A is given by:

h =
∑
s∈A

p(s)H(x|s), (7)

where p(s) is the stationary probability associated with state s, and H(x|s) is the entropy of the
distribution of possible transitions from state s. The vector of stationary state probabilities p(s) for
all s is computed as a left eigenvector of the transition matrix T:

p(s)T = p(s) ,
∑
s

p(s) = 1 (8)

Since each row of the transition matrix T contains only two non-zero entries, gs, and 1 − gs, p(s)
can be calculated relatively quickly. With equations 7 and 8, h can be calculated analytically from
the vector of all 2k transition probabilities {gs}. A Bayesian estimator of entropy rate based on a
Markov model of order k is given by

ĥBayes =

∫
h(g)p(g|data)dg (9)

where g = {gs : |s| = k}, h is the deterministic function of g given by Equations 7 and 8, and
p(g|data) ∝ p(data|g)p(g) given some appropriate prior over g.

Modeling a time series as a Markov chain requires a choice of the depth of that chain, so we have
not avoided the depth selection problem yet. What will actually mitigate the difficulty here is the
use of hierarchical Dirichlet process priors.

4 Hierarchical Dirichlet Process priors

We describe a hierarchical beta prior, a special case of the hierarchical Dirichlet process (HDP),
which was presented in [5] and applied to problems of natural language processing in [6] and [7].
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The true entropy rate h = limk→∞Hk/k captures time dependencies of infinite depth. Therefore
to calculate the estimate ĥBayes in Equation 9 we would like to choose some large k. However, it is
difficult to estimate transition probabilities for long blocks with short data sequences, so choosing
large k may lead to inaccurate posterior estimates for the transition probabilities g. In particular,
shorter data sequences may not even have observations of all possible symbol sequences of a given
length.

This motivates our use of hierarchical priors as follows. Suppose we have a data sequence in which
the subsequence 0011 is never observed. Then we would not expect to have a very good estimate
for g0011; however, we could improve this by using the assumption that, a priori, g0011 should be
similar to g011. That is, the probability of observing a 1 after the context sequence 0011 should be
similar to that of seeing a 1 after 011, since it might be reasonable to assume that context symbols
from the more distant past matter less. Thus we choose for our prior:

gs|gs′ ∼ Beta(α|s|gs′ , α|s|(1− gs′)) (10)

where s′ denotes the context s with the earliest symbol removed. This choice gives the prior
distribution of gs mean gs′ , as desired. We continue constructing the prior with gs′′ |gs′ ∼
Beta(α|s′|gs′′ , α|s′|(1− gs′′)) and so on until g[] ∼ Beta(α0p∅, α0(1− p∅)) where g[] is the proba-
bility of a spike given no context information and p∅ is a hyperparameter reflecting our prior belief
about the probability of a spike. This hierarchy gives our prior the tree structure as shown in in
Figure 1. A priori, the distribution of each transition probability is centered around the transition
probability from a one-symbol-shorter block of symbols. As long as the assumption that more dis-
tant contextual symbols matter less actually holds (at least to some degree), this structure allows
the sharing of statistical information across different contextual depths. We can obtain reasonable
estimates for the transition probabilities from long blocks of symbols, even from data that is so short
that we may have few (or no) observations of each of these long blocks of symbols.

We could use any number of distributions with mean gs′ to center the prior distribution of gs at gs′ ;
we use Beta distributions because they are conjugate to the likelihood. The α|s| are concentration
parameters which control how concentrated the distribution is about its mean, and can also be esti-
mated from the data. We assume that there is one value of α for each level in the hierarchy, but one
could also fix alpha to be constant throughout all levels, or let it vary within each level.

This hierarchy of beta distributions is a special case of the hierarchical Dirichlet process . A Dirichlet
process (DP) is a stochastic process whose sample paths are each probability distributions. Formally,
if G is a finite measure on a set S, then X ∼ DP (α,G) if for any finite measurable partition of
the sample space (A1, ...An) we have that X(A1), ...X(An) ∼ Dirichlet(αG(A1), ..., αG(An)).
Thus for a partition into only two sets, the Dirichlet process reduces to a beta distribution, which
is why when we specialize the HDP to binary data, we obtain a hierarchical beta distribution. In
[5] the authors present a hierarchy of DPs where the base measure for each DP is again a DP. In
our case, for example, we have G011 = {g011, 1 − g011} ∼ DP (α3, G11), or more generally,
Gs ∼ DP (α|s|, Gs′).

5 Empirical Bayesian Estimator

One can generate a sequence from an HDP by drawing each subsequent symbol from the transition
probability distribution associated with its context, which is given recursively by [6] :

p(1|s) =

{
cs1

α|s|+cs
+

α|s|
α|s|+cs

p(1|s′) if s 6= ∅
c1

α0+N
+ α0

α0+N
p∅ if s = ∅

(11)

where N is the length of the data string, p∅ is a hyperparameter representing the a prior probability
of observing a 1 given no contextual information, cs1 is the number of times the symbol sequence s
followed by a 1 was observed, and cs is the number of times the symbol sequence s was observed.

We can calculate the posterior predictive distribution ĝpr which is specified by the 2k values {gs =
p(1|s) : |s| = k} by using counts c from the data and performing the above recursive calculation
to estimate gs for each of the 2k states s. Given the estimated Markov transition probabilities ĝpr
we then have an empirical Bayesian entropy rate estimate via Equations 7 and 8. We denote this
estimator hempHDP . Note that while ĝpr is the posterior mean of the transition probabilities, the
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entropy rate estimator hempHDP is no longer a fully Bayesian estimate, and is not equivalent to
the ĥBayes of equation 9. We thus lose some clarity and the ability to easily compute Bayesian
confidence intervals. However, we gain a good deal of computational efficiency because calculating
hempHDP from ĝpr involves only one eigenvector computation, instead of the many needed for the
MC approximation to the integral in Equation 9. We present a fully Bayesian estimate next.

6 Fully Bayesian Estimator

Here we return to the Bayes least squares estimator ĥBayes of Equation 9. The integral is not
analytically tractable, but we can approximate it using Markov Chain Monte Carlo techniques. We
use Gibbs sampling to simulate NMC samples g(i) ∼ g|data from the posterior distribution and
then calculate h(i) from each g(i) via Equations 7 and 8 to obtain the Bayesian estimate:

hHDP =
1

NMC

NMC∑
i=1

h(i) (12)

To perform the Gibbs sampling, we need the posterior conditional probabilities of each gs. Because
the parameters of the model have the structure of a tree, each gs for |s| < k is conditionally inde-
pendent from all but its immediate ancestor in the tree, gs′ , and its two descendants, g0s and g1s. We
have:

p(gs|gs′ , g0s, g1s.α|s|, α|s|=1) ∝Beta(gs;α|s|gs′ , α|s|(1− gs′))Beta(g0s;α|s|+1gs, α|s|+1(1− gs))
Beta(g1s;α|s|+1gs, α|s|+1(1− gs))

(13)

and we can compute these probabilities on a discrete grid since they are each one dimensional, then
sample the posterior gs via this grid. We used a uniform grid of 100 points on the interval [0,1] for
our computation. For the transition probabilities from the bottom level of the tree {gs : |s| = k}, the
conjugacy of the beta distributions with binomial likelihood function gives the posterior conditional
of gs a recognizable form: p(gs|gs′ , data) = Beta(αkgs′ + cs1, αk(1− gs′) + cs0).

In the HDP model we may treat each α as a fixed hyperparameter, but it is also straightforward to set
a prior over each α and then sample α along with the other model parameters with each pass of the
Gibbs sampler. The full posterior conditional for αi with a uniform prior is (from Bayes’ theorem):

p(αi|gs, gs0, gs1 : |s| = i− 1) ∝
∏

{s:|s|=i−1}

(gs1gs0)
αigs−1((1− gs1)(1− gs0))αi(1−gs)−1

Beta(αigs, αi(1− gs))2
(14)

We sampled α by computing the probabilities above on a grid of values spanning the range [1, 2000].
This upper bound on α is rather arbitrary, but we verified that increasing the range for α had little
effect on the entropy rate estimate, at least for the ranges and block sizes considered.

In some applications, the Markov transition probabilities g, and not just the entropy rate, may be
of interest as a description of the time dependencies present in the data. The Gibbs sampler above
yields samples from the distribution g|data, and averaging these NMC samples yields a Bayes least
squares estimator of transition probabilities, ĝgibbsHDP . Note that this estimate is closely related
to the estimate ĝpr from the previous section; with more MC samples, ĝgibbsHDP converges to the
posterior mean ĝpr (when the α are fixed rather than sampled, to match the fixed α per level used in
Equation 11).

7 Results

We applied the model to both simulated data with a known entropy rate and to neural data, where
the entropy rate is unknown. We examine the accuracy of the fully Bayesian and empirical Bayesian
entropy rate estimators hHDP and hempHDP , and compare the entropy rate estimators hplugin,
hNSB , hMM , hLZ [2], and hCTW [1], which are described in Section 2. We also consider estimates
of the Markov transition probabilities g produced by both inference methods.
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Figure 2: Comparison of es-
timated (a) transition prob-
ability and (b,c,d) entropy
rate for data simulated from
a Markov model of depth
5. In (a) and (d), data sets
are 500 symbols long. The
block-based and HDP esti-
mators in (b) and (c) use
block size k = 8. In (b,c,d)
results were averaged over 5
data sequences, and (c) plots
the average absolute value of
the difference between true
and estimated entropy rates.

7.1 Simulation

We considered data simulated from a Markov model with transition probabilities set so that transi-
tion probabilities from states with similar suffixes are similar (i.e. the process actually does have the
property that more distant context symbols matter less than more recent ones in determining transi-
tions). We used a depth-5 Markov model, whose true transition probabilities are shown in black in
Figure 2a , where each of the 32 points on the x axis represents the probability that the next symbol
is a 1 given the specified 5-symbol context.

In Figure 2a we compare HDP estimates of transition probabilities of this simulated data to the
plugin estimator of transition probabilities ĝs = cs1

cs
calculated from a 500-symbol sequence. (The

other estimators do not include calculating transition probabilities as an intermediate step, and so
cannot be included here.) With a series of 500 symbols, we do not expect enough observations of
each of possible transitions to adequately estimate the 2k transition probabilities, even for rather
modest depths such as k = 5. And indeed, the “plugin” estimates of transition probabilities do not
match the true transition probabilities well. On the other hand, the transition probabilities estimated
using the HDP prior show the kind of “smoothing” the prior was meant to encourage, where states
corresponding to contexts with same suffixes have similar estimated transition probabilities.

Lastly, we plot the convergence of the entropy rate estimators with increased length of the data
sequence and the associated error in Figures 2b,c. If the true depth of the model is no larger than
the depth k considered in the estimators, all the estimators considered should converge. We see in
Figure 2c that the HDP-based entropy rate estimates converge quickly with increasing data, relative
to other models.

The motivation of the hierarchical prior was to allow observations of transitions from shorter con-
texts to inform estimates of transitions from longer contexts. This, it was hoped, would mitigate the
drop-off with larger block-size seen in block-entropy based entropy rate estimators. Figure 2d indi-
cates that for simulated data that is indeed the case, although we do see some bias the fully Bayesian
entropy rate estimator for large block lengths. The empirical Bayes and and fully Bayesian entropy
rate estimators with HDP priors produce estimates that are close to the true entropy rate across a
wider range of block-size.

7.2 Neural Data

We applied the same analysis to neural spike train data collected from primate retinal ganglion cells
stimulated with binary full-field movies refreshed at 100 Hz [8]. In this case, the true transition
probabilities are unknown (and indeed the process may not be exactly Markovian). However, we
calculate the plug-in transition probabilities from a longer data sequence (167,000 bins) so that the
estimates are approximately converged (black trace in Figure 3a), and note that transition probabil-
ities from contexts with the same most-recent context symbols do appear to be similar. Thus the
estimated transition probabilities reflect the idea that more distant context cues matter less, and the
smoothing of the HDP prior appears to be appropriate for this neural data.
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Figure 3: Comparison of es-
timated (a) transition prob-
ability and (b,c,d) entropy
rate for neural data. The
‘converged’ estimates are
calculated from 700s of
data with 4ms bins (167,000
symbols). In (a) and (d),
training data sequences are
500 symbols (2s) long. The
block-based and HDP esti-
mators in (b) and (c) use
block size k = 8. In (b,c,d),
results were averaged over 5
data sequences sampled ran-
domly from the full dataset.

The true entropy rate is also unknown, but again we estimate it using the plugin estimator on a large
data set. We again note the relatively fast convergence of hHDP and hempHDP in Figures 3b,c, and
the long plateau of the estimators in Figure 3d indicating the relative stability of the HDP entropy
rate estimators with respect to choice of model depth.

8 Discussion

We have presented two estimators of the entropy rate of a spike train or arbitrary binary sequence.
The true entropy rate of a stochastic process involves consideration of infinitely long time depen-
dencies. To make entropy rate estimation tractable, one can try to fix a maximum depth of time
dependencies to be considered, but it is difficult to choose an appropriate depth that is large enough
to take into account long time dependencies and small enough relative to the data at hand to avoid
a severe downward bias of the estimate. We have approached this problem by modeling the data as
a Markov chain and estimating transition probabilities using a hierarchical prior that links transition
probabilities from longer contexts to transition probabilities from shorter contexts. This allowed us
to choose a large depth even in the presence of limited data, since the structure of the prior allowed
observations of transitions from shorter contexts (of which we have many instances in the data) to
inform estimates of transitions from longer contexts (of which we may have only a few instances).

We presented both a fully Bayesian estimator, which allows for Bayesian confidence intervals, and
an empirical Bayesian estimator, which provides computational efficiency. Both estimators show
excellent performance on simulated and neural data in terms of their robustness to the choice of
model depth, their accuracy on short data sequences, and their convergence with increased data.
Both methods of entropy rate estimation also yield estimates of the transition probabilities when
the data is modeled as a Markov chain, parameters which may be of interest in the own right as
descriptive of the statistical structure and time dependencies in a spike train. Our results indicate that
tools from modern Bayesian nonparametric statistics hold great promise for revealing the structure
of neural spike trains despite the challenges of limited data.

Acknowledgments

We thank V. J. Uzzell and E. J. Chichilnisky for retinal data. This work was supported by a Sloan
Research Fellowship, McKnight Scholar’s Award, and NSF CAREER Award IIS-1150186.

8



References

[1] Matthew B Kennel, Jonathon Shlens, Henry DI Abarbanel, and EJ Chichilnisky. Estimating
entropy rates with bayesian confidence intervals. Neural Computation, 17(7):1531–1576, 2005.

[2] Abraham Lempel and Jacob Ziv. On the complexity of finite sequences. Information Theory,
IEEE Transactions on, 22(1):75–81, 1976.

[3] Ilya Nemenman, Fariel Shafee, and William Bialek. Entropy and inference, revisited. arXiv
preprint physics/0108025, 2001.

[4] George Armitage Miller and William Gregory Madow. On the Maximum Likelihood Esti-
mate of the Shannon-Weiner Measure of Information. Operational Applications Laboratory,
Air Force Cambridge Research Center, Air Research and Development Command, Bolling Air
Force Base, 1954.

[5] Yee Whye Teh, Michael I Jordan, Matthew J Beal, and David M Blei. Hierarchical dirichlet
processes. Journal of the American Statistical Association, 101(476), 2006.

[6] Yee Whye Teh. A hierarchical bayesian language model based on pitman-yor processes. In
Proceedings of the 21st International Conference on Computational Linguistics and the 44th
annual meeting of the Association for Computational Linguistics, pages 985–992. Association
for Computational Linguistics, 2006.

[7] Frank Wood, Cédric Archambeau, Jan Gasthaus, Lancelot James, and Yee Whye Teh. A stochas-
tic memoizer for sequence data. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 1129–1136. ACM, 2009.

[8] V. J. Uzzell and E. J. Chichilnisky. Precision of spike trains in primate retinal ganglion cells.
Journal of Neurophysiology, 92:780–789, 2004.

9


