Learning Adaptive Value of Information
for Structured Prediction

David Weiss Ben Taskar
University of Pennsylvania University of Washington
Philadelphia, PA Seattle, WA
djweiss@cis.upenn.edu taskar@cs.washington.edu
Abstract

Discriminative methods for learning structured models have enabled wide-spread
use of very rich feature representations. However, the computational cost of fea-
ture extraction is prohibitive for large-scale or time-sensitive applications, often
dominating the cost of inference in the models. Significant efforts have been de-
voted to sparsity-based model selection to decrease this cost. Such feature se-
lection methods control computation statically and miss the opportunity to fine-
tune feature extraction to each input at run-time. We address the key challenge
of learning to control fine-grained feature extraction adaptively, exploiting non-
homogeneity of the data. We propose an architecture that uses a rich feedback
loop between extraction and prediction. The run-time control policy is learned us-
ing efficient value-function approximation, which adaptively determines the value
of information of features at the level of individual variables for each input. We
demonstrate significant speedups over state-of-the-art methods on two challeng-
ing datasets. For articulated pose estimation in video, we achieve a more accurate
state-of-the-art model that is also faster, with similar results on an OCR task.

1 Introduction

Effective models in complex computer vision and natural language problems try to strike a favorable
balance between accuracy and speed of prediction. One source of computational cost is inference in
the model, which can be addressed with a variety of approximate inference methods. However, in
many applications, computing the scores of the constituent parts of the structured model-i.e. feature
computation—is the primary bottleneck. For example, when tracking articulated objects in video,
optical flow is a very informative feature that often requires many seconds of computation time per
frame, whereas inference for an entire sequence typically requires only fractions of a second [16];
in natural language parsing, feature computation may take up to 80% of the computation time [7].

In this work, we show that large gains in the speed/accuracy trade-off can be obtained by departing
from the traditional method of “one-size-fits-all” model and feature selection, in which a static set
of features are computed for all inputs uniformly. Instead, we employ an adaptive approach: the
parts of the structured model are constructed specifically at test-time for each particular instance, for
example, at the level of individual video frames. There are several key distinctions of our approach:

e No generative model. One approach is to assume a joint probabilistic model of the input
and output variables and a utility function measuring payoffs. The expected value of infor-
mation measures the increase in expected utility after observing a given variable [12, [§]].
Unfortunately, the problem of computing optimal conditional observation plans is compu-
tationally intractable even for simple graphical models like Naive Bayes [9]. Moreover,
joint models of input and output are typically quite inferior in accuracy to discriminative
models of output given input [10} 3} [19} [1].

e Richly parametrized, conditional value function. The central component of our method
is an approximate value function that utilizes a set of meta-features to estimate future
changes in value of information given a predictive model and a proposed feature set as in-
put. The critical advantage here is that the meta-features can incorporate valuable properties
beyond confidence scores from the predictive model, such as long-range input-dependent
cues that convey information about the self-consistency of a proposed output.

e Non-myopic reinforcement learning. We frame the control problem in terms of find-
ing a feature extraction policy that sequentially adds features to the models until a budget
limit is reached, and we show how to learn approximate policies that result in accurate
structured models that are dramatically more efficient. Specifically, we learn to weigh the
meta-features for the value function using linear function approximation techniques from
reinforcement learning, where we utilize a deterministic model that can be approximately
solved with a simple and effective sampling scheme.

In summary, we provide a discriminative, practical architecture that solves the value of information
problem for structured prediction problems. We first learn a prediction model that is trained to use
subsets of features computed sparsely across the structure of the input. These feature combinations
factorize over the graph structure, and we allow for sparsely computed features such that different
vertices and edges may utilize different features of the input. We then use reinforcement learning to
estimate a value function that adaptively computes an approximately optimal set of features given a
budget constraint. Because of the particular structure of our problem, we can apply value function
estimation in a batch setting using standard least-squares solvers. Finally, we apply our method to
two sequential prediction domains: articulated human pose estimation and handwriting recognition.
In both domains, we achieve more accurate prediction models that utilize less features than the
traditional monolithic approach.

2 Related Work

There is a significant amount of prior work on the issue of controlling test-time complexity. How-
ever, much of this work has focused on the issue of feature extraction for standard classification
problems, e.g. through cascades or ensembles of classifiers that use different subsets of features at
different stages of processing. More recently, feature computation cost has been explicitly incorpo-
rated specifically into the learning procedure (e.g., [6,[14, 2 5].) The most related recent work of this
type is [20], who define a reward function for multi-class classification with a series of increasingly
complex models, or [6], who define a feature acquisition model similar in spirit to ours, but with
a different reward function and modeling a variable trade-off rather than a fixed budget. We also
note that [4]] propose explicitly modeling the value of evaluating a classifier, but their approach uses
ensembles of pre-trained models (rather than the adaptive model we propose). And while the goals
of these works are similar to ours—explicitly controlling feature computation at test time—none of the
classifier cascade literature addresses the structured prediction nor the batch setting.

Most work that addresses learning the accuracy/efficiency trade-off in a structured setting applies
primarily to inference, not feature extraction. E.g., [23]] extend the idea of a classifier cascade to
the structured prediction setting, with the objective defined in terms of obtaining accurate inference
in models with large state spaces after coarse-to-fine pruning. More similar to this work, [[7] incre-
mentally prune the edge space of a parsing model using a meta-features based classifier, reducing
the total the number of features that need to be extracted. However, both of these prior efforts rely
entirely on the marginal scores of the predictive model in order to make their pruning decisions, and
do not allow future feature computations to rectify past mistakes, as in the case of our work.

Most related is the prior work of [22], in which one of an ensemble of structured models is selected
on a per-example basis. This idea is essentially a coarse sub-case of the framework presented in this
work, without the adaptive predictive model that allows for composite features that vary across the
input, without any reinforcement learning to model the future value of taking a decision (which is
critical to the success of our method), and without the local inference method proposed in Section[4]
In our experiments (Section[3)), the “Greedy (Example)” baseline is representative of the limitations
of this earlier approach.

Algorithm 1: Inference for x and budget B.

define an action a as a pair (« € G,t € {1,...,T});
initialize B’ +— 0,z <+ 0,y < h(x,2) ;

EXTRACT Wl . v initialize action space (first tier) A = {(a, 1) | @ € G}
FEATURES while B’ < B and |A| > 0 do
' n a + argmax,c 4 ' ¢(x,z,a);
A — A\ a;
EXTRACT if c, < (B — B’') then
INFERENCE iRl META- z<+ z+a, B + B +c,y « h(x,2);

ASIUIRES A AU (a,t +1);
end

¥
OUTPUT end

Figure 1: Overview of our approach. (Left) A high level summary of the processing pipeline: as in standard
structured prediction, features are extracted and inference is run to produce an output. However, information
may optionally feedback in the form of extracted meta-features that are used by a control policy to determine
another set of features to be extracted. Note that we use stochastic subgradient to learn the inference model w
first and reinforcement learning to learn the control model 5 given w. (Right) Detailed algorithm for factor-
wise inference for an example x given a graph structure G and budget B. The policy repeatedly selects the
highest valued action from an action space .4 that represents extracting features for each constituent part of the
graph structure G.

3 Learning Adaptive Value of Information for Structured Prediction

Setup. We consider the setting of structured prediction, in which our goal is to learn a hypothesis
mapping inputs x € X to outputs y €)(x), where [x| = L and y is a L-vector of K-valued
variables, i.e. Y(x) = Yy x---xYyandeach); = {1, ..., K}. We follow the standard max-margin
structured learning approach [18] and consider linear predictive models of the form w'f(x,y).
However, we introduce an additional explicit feature extraction state vector z:

h(x,z) = argmaxw ' f(x,y,z). (D
YEY(x)

Above, f(x,y, z) is a sparse vector of D features that takes time c ' z to compute for a non-negative
cost vector ¢ and binary indicator vector z of length |z| = F. Intuitively, z indicates which of F' sets
of features are extracted when computing f; z = 1 means every possible feature is extracted, while
z = 0 means that only a minimum set of features is extracted.

Note that by incorporating z into the feature function, the predictor h can learn to use different linear
weights for the same underlying feature value by conditioning the feature on the value of z. As we
discuss in Section[5] adapting the weights in this way is crucial to building a predictor / that works
well for any subset of features. We will discuss how to construct such features in more detail in
Section [l

Suppose we have learned such a model h. At test time, our goal is to make the most accurate
predictions possible for an example under a fixed budget B. Specifically, given h and a loss function
£:Y x Y+ R, we wish to find the following:

H(Xa B) = argmin Ey\x[g(Y7 h(X, Z))} (2

In practice, there are three primary difficulties in optimizing equation (2). First, the distribution
P(Y|X) is unknown. Second, there are exponentially many zs to explore. Most important, how-
ever, is the fact that we do not have free access to the objective function. Instead, given x, we are
optimizing over z using a function oracle since we cannot compute f(x,y,z) without paying ¢z,
and the total cost of all the calls to the oracle must not exceed B. Our approach to solving these
problems is outlined in Figure [T} we learn a control model (i.e. a policy) by posing the optimization
problem as an MDP and using reinforcement learning techniques.

Adaptive extraction MDP. We model the budgeted prediction optimization as the following Markov
Decision Process. The state of the MDP s is the tuple (x,z) for an input x and feature extraction

state z (for brevity we will simply write s). The start state is sp = (x,0), with x ~ P(X), and
z = 0 indicating only a minimal set of features have been extracted. The action space A(s) is
{i] z; = 0}U{0}, where z; is the ¢’the element of z; given a state-action pair (s, a), the next state is
deterministically s’ = (x,z+ e,), where e, is the indicator vector with a 1 in the a’th component or
the zero vector if a = 0. Thus, at each state we can choose to extract one additional set of features,
or none at all (at which point the process terminates.) Finally, for fixed h, we define the shorthand
n(s) = Eyxl(y, h(x,2)) to be the expected error of the predictor h given state z and input x.

We now define the expected reward to be the adaptive value of information of extracting the a’th set
of features given the system state and budget B:

n_ n(s)=n(s') ifcTz(s) < B
il 0.5 = {0 otherwise 3)

Intuitively, says that each time we add additional features to the computation, we gain reward
equal to the decrease in error achieved with the new features (or pay a penalty if the error increases.)
However, if we ever exceed the budget, then any further decrease does not count; no more reward
can be gained. Furthermore, assuming f(x,y, z) can be cached appropriately, it is clear that we pay
only the additional computational cost ¢, for each action a, so the entire cumulative computational
burden of reaching some state s is exactly ¢ " z for the corresponding z vector.

Given a trajectory of states sg, sy, .. ., s, computed by some deterministic policy , it is clear that
the final cumulative reward R, (so) is the difference between the starting error rate and the rate of
the last state satisfying the budget:

Rr(s0) = 1(s0) = nls1) +n(s1) = -~ = nlso) = n(se+),)

where t* is the index of the final state within the budget constraint. Therefore, the optimal policy
7* that maximizes expected reward will compute z* minimizing while satisfying the budget
constraint.

Learning an approximate policy with long-range meta-features. In this work, we focus on a
straightforward method for learning an approximate policy: a batch version of least-squares policy
iteration [[11] based on Q-learning [21]]. We parametrize the policy using a linear function of meta-
features ¢ computed from the current state s = (x,z): 75(s) = argmax, 3 ¢(x, z,a). The meta-
features (which we abbreviate as simply ¢(s,a) henceforth) need to be rich enough to represent
the value of choosing to expand feature a for a given partially-computed example (x,z). Note that
we already have computed f(x, h(x,z),z), which may be useful in estimating the confidence of
the model on a given example. However, we have much more freedom in choosing ¢(s,a) than
we had in choosing f; while f is restricted to ensure that inference is tractable, we have no such
restriction for ¢. We therefore compute functions of h(x,z) that take into account large sets of
output variables, and since we need only compute them for the particular output h(x, z), we can
do so very efficiently. We describe the specific ¢ we use in our experiments in Section [5 typically
measuring the self-consistency of the output as a surrogate for the expected accuracy.

One-step off-policy ()-learning with least-squares. To simplify the notation, we will assume given
current state s, taking action a deterministically yields state s’. Given a policy 7, the value of a policy
is recursively defined as the immediate expected reward plus the discounted value of the next state:

Qx(s,a) = R(s,a,s") +vQx(s',7(s")). (5)

The goal of (-learning is to learn the) for the optimal policy 7* with maximal @)~ ; however, it is
clear that we can increase Q) by simply stopping early when Q) (s, a) < 0 (the future reward in this
case is simply zero.) Therefore, we define the off-policy optimized value Q)% as follows:

Qr(st,m(s¢)) = R(se, m(5¢), se41) + 7 [Qr (5641, T(Se41))] 4 - (6)
We propose the following one-step algorithm for learning () from data. Suppose we have a finite
trajectory so, ..., S. Because both 7 and the state transitions are deterministic, we can unroll the

recursion in (6) and compute Q% (s, w(s;)) for each sample using simple dynamic programming.
For example, if v = 1 (there is no discount for future reward), we obtain Q% (s;, w(s;)) = n(s;) —
n(s¢), where t* is the optimal stopping time that satisfies the given budget.

We therefore learn parameters 5* for an approximate () as follows. Given an initial policy 7, we
execute 7 for each example (x7, y7) to obtain trajectories s}, . .., s7.. We then solve the following

least-squares optimization,

. 1 A , A N2
B* = argmin N|[8]2 + — >~ (BT (st n(s1)) — Qa(shm(s1)) ™
B nT it
using cross validation to determine the regularization parameter \.

We perform a simple form of policy iteration as follows. We first initialize 8 by estimating the
expected reward function (this can be estimated by randomly sampling pairs (s, s"), which are more
efficient to compute than Q-functions on trajectories). We then compute trajectories under 7z and
use these trajectories to compute 3* that approximates (5. We found that additional iterations of
policy iteration did not noticeably change the results.

Learning for multiple budgets. One potential drawback of our approach just described is that we
must learn a different policy for every desired budget. A more attractive alternative is to learn a
single policy that is tuned to a range of possible budgets. One solution is to set v = 1 and learn
with B = o0, so that the value % represents the best improvement possible using some optimal
budget B*; however, at test time, it may be that B* is greater than the available budget B and Q7. is
an over-estimate. By choosing v < 1, we can trade-off between valuing reward for short-term gain
with smaller budgets B < B* and longer-term gain with the unknown optimal budget B*.

In fact, we can further encourage our learned policy to be useful for smaller budgets by adjusting
the reward function. Note that two trajectories that start at sp and end at s;« will have the same
reward, yet one trajectory might maintain much lower error rate than the other during the process
and therefore be more useful for smaller budgets. We therefore add a shaping component to the
expected reward in order to favor the more useful trajectory as follows:

Ro(s,a,8") = n(s) —n(s) —an(s’) —n(s)], . (8)

This modification introduces a term that does not cancel when transitioning from one state to the
next, if the next state has higher error than our current state. Thus, we can only achieve optimal
reward n(sp) — n(s¢+) when there is a sequence of feature extractions that never increases the error
ratd'} if such a sequence does not exist, then the parameter o controls the trade-off between the
importance of reaching s;» and minimizing any errors along the way. Note that we can still use the
procedure described above to learn 5 when using R,, instead of R. We use a development set to
tune « as well as + to find the most useful policy when sweeping B across a range of budgets.

Batch mode inference. At test time, we are typically given a test set of m examples, rather than
a single example. In this setting the budget applies to the entire inference process, and it may be
useful to spend more of the budget on difficult examples rather than allocate the budget evenly across
all examples. In this case, we extend our framework to concatenate the states of all m examples
s = (X1,..-,%Xm,Z1,---,%mn). The action consists of choosing an example and then choosing
an action within that example’s sub-state; our policy searches over the space of all actions for all
examples simultaneously. Because of this, we impose additional constraints on the action space,
specifically:

z(a,...)=1 = z(d,...)=1, Vd <a. 9)
Equation @D states that there is an inherent ordering of feature extractions, such that we cannot
compute the a’th feature set without first computing feature sets 1, . .., a — 1. This greatly simplifies

the search space in the batch setting while at the same time preserving enough flexibility to yield
significant improvements in efficiency.

Baselines. We compare to two baselines: a simply entropy-based approach and a more complex
imitation learning scheme (inspired by [7]) in which we learn a classifier to reproduce a target
policy given by an oracle. The entropy-based approach simply computes probabilistic marginals
and extracts features for whichever portion of the output space has highest entropy in the predicted
distribution. For the imitation learning model, we use the same trajectories used to learn @)%, but
instead we create a classification dataset of positive and negative examples given a budget B by
assigning all state/action pairs along a trajectory within the budget as positive examples and all
budget violations as negative examples. We tune the budget B using a development set to optimize
the overall trade-off when the policy is evaluated with multiple budgets.

"While adding features decreases training error on average, even on the training set additional features may
lead to increased error for any particular example.

Feature Time (s)
Tier (T') | Error (%) | Fixed Entropy @Q-Learn
4 44.07 16.20s 16.20s 8.91s
3 46.17 12.00s 8.10s 5.51s
2 46.98 5.50s 6.80s 4.86s
1 51.49 2.75s — —
Best 43.45 — — 13.45s

Table 1: Trade-off between average elbow and wrist error rate and total runtime time achieved by our method
on the pose dataset; each row fixes an error rate and determines the amount of time required by each method
to achieve the error. Unlike using entropy-based confidence scores, our Q-learning approach always improves
runtime over a priori selection and even yields a faster model that is also more accurate (final row).

4 Design of the information-adaptive predictor h

Learning. We now address the problem of learning /(x, z) from n labeled data points {(x7, y’}7_,
Since we do not necessarily know the test-time budget during training (nor would we want to repeat
the training process for every possible budget), we formulate the problem of minimizing the expected
training loss according to a uniform distribution over budgets:

w* = argmin \||w]||? + ZIE vy, h(x?, z)). (10)

Note that if ¢ is convex, then is a weighted sum of convex functions and is also convex. Our
choice of distribution for z will determine how the predictor A is calibrated. In our experiments, we
sampled z’s uniformly at random. To learn w, we use Pegasos-style [17] stochastic sub-gradient de-
scent; we approximate the expectation in by resampling z every time we pick up a new example
(x7,y7). We set \ and a stopping-time criterion through cross-validation onto a development set.

Feature design. We now turn to the question of designing f(x,y,z). In the standard pair-wise
graphical model setting (before considering z), we decompose a feature function f(x,y) into unary
and pairwise features. We consider several different schemes of incorporating z of varying com-
plexity. The simplest scheme is to use several different feature functions f*, ... f'. Then |z| = F,
and z, = 1 indicates that f* is computed. Thus, we have the following expression, where we use
z(a) to indicate the a’th element of z:

F
f(XaYaZ) :ZZ(G) ZfS(X7yZ)+ Z fg(x7yiayj) (11)
a=1

S (i,5)€€
Note that in practice we can choose each f* to be a sparse vector such that £ - f o — (foralla # a;
that is, each feature function f* “fills out” a complementary section of the feature vector f.

A much more powerful approach is to create a feature vector as the composite of different extracted
features for each vertex and edge in the model. In this setting, we set z = [z, z.], where |z| =
(IV| + |E|)F, and we have

f(x,y,z ZZZU a,)3 (x,y;) Z Zze a, 15)f2 (%, yi, yj)- (12)

icy a=1 (z,])ega 1

We refer to this latter feature extraction method a factor-level feature extraction, and the former as
example-level]

Reducing inference overhead. Feature computation time is only one component of the computa-
tional cost in making predictions; computing the argmax (I)) given f can also be expensive. Note

The restriction (@) also allows us to increase the complexity of the feature function f as follows; when
using the a’th extraction, we allow the model to re-weight the features from extractions 1 through a. In other
words, we condition the value of the feature on the current set of features that have been computed; since
there are only F sets in the restricted setting (and not 2), this is a feasible option. We simply define fo =
[0 ... f' ... f* ... 0], where we add duplicates of features f' through £ for each feature block a. Thus,
the model can learn different weights for the same underlying features based on the current level of feature
extraction; we found that this was crucial for optimal performance.

Accuracy gained per Computation (Wrist) Accuracy gained per Computation (Elbow)

A Accuracy (Wrist)
A Accuracy (Elbow)

<+ Forward selection
= = = Entropy (Factor)
= Greedy (Example) ||
=1 = Greedy (Factor)
m— | mitation
Q-Learning

= Forward Selection

|
I
I
I
R : = = = Entropy (Factor) [o
W ’ — Greedy (Example) [| |
I
I
I
-+

-

= = Greedy (Factor)
— |itation

Q-Learning ,

02 L <‘1 l‘-) é 1‘0 1‘2 14 16 2 A‘l 6 é 1‘0 1‘2 14 1‘6‘

Total runtime (s) Total runtime (s)
Figure 2: Trade-off performance on the pose dataset for wrists (left) and elbows (right). The curve shows
the increase in accuracy over the minimal-feature model as a function of total runtime per frame (including
all overhead). We compare to two baselines that involve no learning: forward selection and extracting factor-
wise features based on the entropy of marginals at each position (“Entropy”). The learned policy results are
either greedy (“Greedy” example-level and factor-level) or non-myopic (either our “Q-learning” or the baseline
“Imitation”). Note that the example-wise method is far less effective than the factor-wise extraction strategy.
Furthermore, ()-learning in particular achieves higher accuracy models at a fraction of the computational cost
of using all features, and is more effective than imitation learning.

that for reasons of simplicity, we only consider low tree-width models in this work for which (1)) can
be efficiently solved via a standard max-sum message-passing algorithm. Nonetheless, since ¢(s, a)
requires access to h(x,z) then we must run message-passing every time we compute a new state s
in order to compute the next action. Therefore, we run message passing once and then perform less
expensive local updates using saved messages from the previous iteration. We define an simple al-
gorithm for such quiescent inference (given in the Supplemental material); we refer to this inference
scheme as g-inference. The intuition is that we stop propagating messages once the magnitude of
the update to the max-marginal decreases below a certain threshold g; we define ¢ in terms of the
margin of the current MAP decoding at the given position, since that margin must be surpassed if
the MAP decoding will change as a result of inference.

S Experiments
5.1 Tracking of human pose in video

Setup. For this problem, our goal is to predict the joint locations of human limbs in video clips
extracted from Hollywood movies. Our testbed is the MODEC+S model proposed in [22]; the
MODEC+S model uses the MODEC model of [15] to generate 32 proposed poses per frame of a
video sequence, and then combines the predictions using a linear-chain structured sequential pre-
diction model. There are four types of features used by MODECH+S, the final and most expensive
of which is a coarse-to-fine optical flow [13]]; we incrementally compute poses and features to mini-
mize the total runtime. For more details on the dataset/features, see [22]]. We present cross validation
results averaged over 40 80/20 train/test splits of the dataset. We measure localization performance
or elbow and wrists in terms of percentage of times the predicted locations fall within 20 pixels of
the ground truth.

Meta-features. We define the meta-features ¢(s, a) in terms of the targeted position in the sequence
i and the current predictions y* = h(x, z). Specifically, we concatenate the already computed unary
and edge features of y; and its neighbors (conditioned on the value of z at ¢), the margin of the
current MAP decoding at position ¢, and a measure of self-consistency computed on y* as follows.
For all sets of m frames overlapping with frame ¢, we extract color histograms for the predicted
arm segments and compute the maximum Y?2-distance from the first frame to any other frame; we
then also add an indicator feature each of these maximum distances exceeds 0.5, and repeat for
m = 2,...,5. We also add several bias terms for which sets of features have been extracted around
position .

OCR Trade-off (Feature Only) OCR Trade-off (Feature+Overhead)

@

Improvement (%)
N

Improvement (%)

= single Tier
Greedy (Example)
— Q-learning (q=0) |[{
== Q-learning (q = 0.1)

Q-learning (q = 0.5)

= single Tier

— Greedy (Example)
— Q-learning (q =0) |1 ir
s Q—le@MNING (q = 0.1)

Q-learning (q = 0.5)

14 16 18 05 1 15 35 4 45 5

0.6 0.8 1 12 2 25 3

Additional Feature Cost (s) Additional Total Cost (s)
Figure 3: Controlling overhead on the OCR dataset. While our approach is is extremely efficient in terms of
how many features are extracted (Left), the additional overhead of inference is prohibitively expensive for the
OCR task without applying g-inference (Right) with a large threshold. Furthermore, although the example-wise
strategy is less efficient in terms of features extracted, it is more efficient in terms of overhead.

Discussion. We present a short summary of our pose results in Table [I] and compare to various
baselines in Figure[2] We found that our)-learning approach is consistently more effective than all
baselines; -learning yields a model that is both more accurate and faster than the baseline model
trained with all features. Furthermore, while the feature extraction decisions of the ()-learning model
are significantly correlated with the error of the starting predictions (p = 0.23), the entropy-based
are not (p = 0.02), indicating that our learned reward signal is much more informative.

5.2 Handwriting recognition

Setup. For this problem, we use the OCR dataset from [[19], which is pre-divided into 10 folds that
we use for cross validation. We use three sets of features: the original pixels (free), and two sets
of Histogram-of-Gradient (HoG) features computed on the images for different bin sizes. Unlike
the pose setting, the features are very fast to compute compared to inference. Thus, we evaluate the
effectiveness of g-inference with various thresholds to minimize inference time. For meta-features,
we use the same construction as for pose, but instead of inter-frame y2-distance we use a binary
indicator as to whether or not the specific m-gram occurred in the training set. The results are
summarized in Figure[3} see caption for details.

Discussion. Our method is extremely efficient in terms of the features computed for h; however,
unlike the pose setting, the overhead of inference is on par with the feature computation. Thus, we
obtain a more accurate model with ¢ = 0.5 that is 1.5% faster, even though it uses only 1/5 of the
features; if the implementation of inference were improved, we would expect a speedup much closer
to 5X.

6 Conclusion

We have introduced a framework for learning feature extraction policies and predictive models that
adaptively select features for extraction in a factor-wise, on-line fashion. On two tasks our approach
yields models that both more accurate and far more efficient; our work is a significant step towards
eliminating the feature extraction bottleneck in structured prediction. In the future, we intend to
extend this approach to apply to loopy model structures where inference is intractable, and more
importantly, to allow for features that change the structure of the underlying graph, so that the graph
structure can adapt to both the complexity of the input and the test-time computational budget.

Acknowledgements. The authors were partially supported by ONR MURI N000141010934, NSF
CAREER 1054215, and by STARnet, a Semiconductor Research Corporation program sponsored
by MARCO and DARPA.

References

(1]

(2]

(3]

[4
[5

—_— =

(6]
(7]
(8]

[9

—

[10]

(11]
[12]

(13]

[14]

[15]

(16]
(17]

(18]

(19]
[20]

(21]
(22]
(23]

Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov support vector machines. In Proc. ICML,
2003.

M. Chen, Z. Xu, K.Q. Weinberg, O. Chapelle, and D. Kedem. Classifier cascade for minimizing feature
evaluation cost. In AISATATS, 2012.

M. Collins. Discriminative training methods for hidden markov models: theory and experiments with
perceptron algorithms. In Proc. EMNLP, 2002.

T. Gao and D. Koller. Active classification based on value of classifier. In NIPS, 2011.

A. Grubb and D. Bagnell. Speedboost: Anytime prediction with uniform near-optimality. In AISTATS,
2012.

H. He, H. Daumé 111, and J. Eisner. Imitation learning by coaching. In NIPS, 2012.
H. He, H. Daumé III, and J. Eisner. Dynamic feature selection for dependency parsing. In EMNLP, 2013.

R. A Howard. Information value theory. Systems Science and Cybernetics, IEEE Transactions on,
2(1):22-26, 1966.

Andreas Krause and Carlos Guestrin. Optimal value of information in graphical models. Journal of
Artificial Intelligence Research (JAIR), 35:557-591, 2009.

J.D. Lafferty, A. McCallum, and F.C.N. Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proc. ICML, 2001.

M. Lagoudakis and R. Parr. Least-squares policy iteration. JMLR, 2003.

Dennis V Lindley. On a measure of the information provided by an experiment. The Annals of Mathe-
matical Statistics, pages 986—1005, 1956.

C. Liu. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. PhD thesis,
MIT, 2009.

V.C. Raykar, B. Krishnapuram, and S. Yu. Designing efficient cascaded classifiers: tradeoff between
accuracy and cost. In SIGKDD, 2010.

B. Sapp and B. Taskar. MODEC: Multimodal decomposable models for human pose estimation. In
CVPR, 2013.

B. Sapp, D. Weiss, and B. Taskar. Parsing human motion with stretchable models. In CVPR, 2011.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM. In
ICML, 2007.

B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured prediction models: A large
margin approach. In ICML, 2005.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In NIPS, 2003.

K. Trapeznikov and V. Saligrama. Supervised sequential classification under budget constraints. In
AISTATS, 2013.

C. Watkins and P. Dayan. Q-learning. Machine learning, 1992.
D. Weiss, B. Sapp, and B. Taskar. Dynamic structured model selection. In /CCV, 2013.
D. Weiss and B. Taskar. Structured prediction cascades. In AISTATS, 2010.

