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Abstract

Principal geodesic analysis (PGA) is a generalization of principal component anal-
ysis (PCA) for dimensionality reduction of data on a Riemannian manifold. Cur-
rently PGA is defined as a geometric fit to the data, rather than as a probabilistic
model. Inspired by probabilistic PCA, we present a latent variable model for PGA
that provides a probabilistic framework for factor analysis on manifolds. To com-
pute maximum likelihood estimates of the parameters in our model, we develop
a Monte Carlo Expectation Maximization algorithm, where the expectation is ap-
proximated by Hamiltonian Monte Carlo sampling of the latent variables. We
demonstrate the ability of our method to recover the ground truth parameters in
simulated sphere data, as well as its effectiveness in analyzing shape variability of
a corpus callosum data set from human brain images.

1 Introduction

Principal component analysis (PCA) [12] has been widely used to analyze high-dimensional data.
Tipping and Bishop proposed probabilistic PCA (PPCA) [22], which is a latent variable model for
PCA. A similar formulation was proposed by Roweis [18]. Their work opened up the possibility
for probabilistic interpretations for different kinds of factor analyses. For instance, Bayesian PCA
[3] extended PPCA by adding a prior on the factors, resulting in automatic selection of model di-
mensionality. Other examples of latent variable models include probabilistic canonical correlation
analysis (CCA) [1] and Gaussian process latent variable models [15]. Such latent variable models
have not, however, been extended to handle data from a Riemannian manifold.

Manifolds arise naturally as the appropriate representations for data that have smooth constraints.
For example, when analyzing directional data [16], i.e., vectors of unit length in Rn, the correct rep-
resentation is the sphere, Sn−1. Another important example of manifold data is in shape analysis,
where the definition of the shape of an object should not depend on its position, orientation, or scale.
Kendall [14] was the first to formulate a mathematically precise definition of shape as equivalence
classes of all translations, rotations, and scalings of point sets. The result is a manifold represen-
tation of shape, or shape space. Linear operations violate the natural constraints of manifold data,
e.g., a linear average of data on a sphere results in a vector that does not have unit length. As shown
recently [5], using the kernel trick with a Gaussian kernel maps data onto a Hilbert sphere, and
utilizing Riemannian distances on this sphere rather than Euclidean distances improves clustering
and classification performance. Other examples of manifold data include geometric transformations,
such as rotations and affine transforms, symmetric positive-definite tensors [9, 24], Grassmannian
manifolds (the set of m-dimensional linear subspaces of Rn), and Stiefel manifolds (the set of or-
thonormal m-frames in Rn) [23]. There has been some work on density estimation on Riemannian
manifolds. For example, there is a wealth of literature on parametric density estimation for direc-
tional data [16], e.g., spheres, projective spaces, etc. Nonparametric density estimation based on
kernel mixture models [2] was proposed for compact Riemannian manifolds. Methods for sam-
pling from manifold-valued distributions have also been proposed [4, 25]. It’s important to note
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the distinction between manifold data, where the manifold representation is known a priori, versus
manifold learning and nonlinear component analysis [15, 20], where the data lies in Euclidean space
on some unknown, lower-dimensional manifold that must be learned.

Principal geodesic analysis (PGA) [10] generalizes PCA to nonlinear manifolds. It describes the
geometric variability of manifold data by finding lower-dimensional geodesic subspaces that mini-
mize the residual sum-of-squared geodesic distances to the data. While [10] originally proposed an
approximate estimation procedure for PGA, recent contributions [19, 21] have developed algorithms
for exact solutions to PGA. Related work on manifold component analysis has introduced variants of
PGA. This includes relaxing the constraint that geodesics pass through the mean of the data [11] and,
for spherical data, replacing geodesic subspaces with nested spheres of arbitrary radius [13]. All of
these methods are based on geometric, least-squares estimation procedures, i.e., they find subspaces
that minimize the sum-of-squared geodesic distances to the data. Much like the original formulation
of PCA, current component analysis methods on manifolds lack a probabilistic interpretation. In this
paper, we propose a latent variable model for PGA, called probabilistic PGA (PPGA). The model
definition applies to generic manifolds. However, due to the lack of an explicit formulation for the
normalizing constant, our estimation is limited to symmetric spaces, which include many common
manifolds such as Euclidean space, spheres, Kendall shape spaces, Grassman/Stiefel manifolds, and
more. Analogous to PPCA, our method recovers low-dimensional factors as maximum likelihood.

2 Riemannian Geometry Background

In this section we briefly review some necessary facts about Riemannian geometry (see [6] for more
details). Recall that a Riemannian manifold is a differentiable manifold M equipped with a metric
g, which is a smoothly varying inner product on the tangent spaces of M . Given two vector fields
v, w on M , the covariant derivative ∇vw gives the change of the vector field w in the v direction.
The covariant derivative is a generalization of the Euclidean directional derivative to the manifold
setting. Consider a curve γ : [0, 1] → M and let γ̇ = dγ/dt be its velocity. Given a vector field
V (t) defined along γ, we can define the covariant derivative of V to be DV

dt = ∇γ̇V . A vector field
is called parallel if the covariant derivative along the curve γ is zero. A curve γ is geodesic if it
satisfies the equation∇γ̇ γ̇ = 0. In other words, geodesics are curves with zero acceleration.

Recall that for any point p ∈ M and tangent vector v ∈ TpM , the tangent space of M at p, there
is a unique geodesic curve γ, with initial conditions γ(0) = p and γ̇(0) = v. This geodesic is only
guaranteed to exist locally. When γ is defined over the interval [0, 1], the Riemannian exponential
map at p is defined as Expp(v) = γ(1). In other words, the exponential map takes a position and
velocity as input and returns the point at time 1 along the geodesic with these initial conditions.
The exponential map is locally diffeomorphic onto a neighbourhood of p. Let V (p) be the largest
such neighbourhood. Then within V (p) the exponential map has an inverse, the Riemannian log
map, Logp : V (p) → TpM . For any point q ∈ V (p), the Riemannian distance function is given by
d(p, q) = ‖Logp(q)‖. It will be convenient to include the point p as a parameter in the exponential
and log maps, i.e., define Exp(p, v) = Expp(v) and Log(p, q) = Logp(q). The gradient of the
squared distance function is∇pd(p, q)2 = −2 Log(p, q).

3 Probabilistic Principal Geodesic Analysis

Before introducing our PPGA model for manifold data, we first review PPCA. The main idea of
PPCA is to model an n-dimensional Euclidean random variable y as

y = µ+Bx+ ε, (1)

where µ is the mean of y, x is a q-dimensional latent variable, with x ∼ N(0, I),B is an n×q factor
matrix that relates x and y, and ε ∼ N(0, σ2I) represents error. We will find it convenient to model
the factors as B = WΛ, where the columns of W are mutually orthogonal, and Λ is a diagonal
matrix of scale factors. This removes the rotation ambiguity of the latent factors and makes them
analogous to the eigenvectors and eigenvalues of standard PCA (there is still of course an ambiguity
of the ordering of the factors). We now generalize this model to random variables on Riemannian
manifolds.
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3.1 Probability Model

Following [8, 17], we use a generalization of the normal distribution for a Riemannian manifold as
our noise model. Consider a random variable y taking values on a Riemannian manifold M , defined
by the probability density function (pdf)

p(y|µ, τ) =
1

C(µ, τ)
exp

(
−τ

2
d(µ, y)2

)
,

C(µ, τ) =

∫
M

exp
(
−τ

2
d(µ, y)2

)
dy.

(2)

We term this distribution a Riemannian normal distribution, and use the notation y ∼ NM (µ, τ−1)
to denote it. The parameter µ ∈ M acts as a location parameter on the manifold, and the parameter
τ ∈ R+ acts as a dispersion parameter, similar to the precision of a Gaussian. This distribution has
the advantages that (1) it is applicable to any Riemannian manifold, (2) it reduces to a multivariate
normal distribution (with isotropic covariance) whenM = Rn, and (3) much like the Euclidean nor-
mal distribution, maximum-likelihood estimation of parameters gives rise to least-squares methods
(see [8] for details). We note that this noise model could be replaced with a different distribution,
perhaps specific to the type of manifold or application, and the inference procedure presented in the
next section could be modified accordingly.

The PPGA model for a random variable y on a smooth Riemannian manifold M is

y|x ∼ NM
(
Exp(µ, z), τ−1

)
, z = WΛx, (3)

where x ∼ N(0, 1) are again latent random variables in Rq , µ here is a base point on M , W is
a matrix with q columns of mutually orthogonal tangent vectors in TµM , Λ is a q × q diagonal
matrix of scale factors for the columns of W , and τ is a scale parameter for the noise. In this
model, a linear combination ofWΛ and the latent variables x forms a new tangent vector z ∈ TµM .
Next, the exponential map shoots the base point µ by z to generate the location parameter of a
Riemannian normal distribution, from which the data point y is drawn. Note that in Euclidean
space, the exponential map is an addition operation, Exp(µ, z) = µ+ z. Thus, our model coincides
with (1), the standard PPCA model, when M = Rn.

3.2 Inference

We develop a maximum likelihood procedure to estimate the parameters θ = (µ,W,Λ, τ) of the
PPGA model defined in (3). Given observed data yi ∈ {y1, ..., yN} on M , with associated latent
variable xi ∈ Rq , and zi = WΛxi, we formulate an expectation maximization (EM) algorithm.
Since the expectation step over the latent variables does not yield a closed-form solution, we develop
a Hamiltonian Monte Carlo (HMC) method to sample xi from the posterior p(x|y; θ), the log of
which is given by

log

N∏
i=1

p(xi|yi; θ) ∝ −N logC −
N∑
i=1

τ

2
d (Exp(µ, zi), yi)

2 − ‖xi‖
2

2
, (4)

and use this in a Monte Carlo Expectation Maximization (MCEM) scheme to estimate θ. The
procedure contains two main steps:

3.2.1 E-step: HMC

For each xi, we draw a sample of size S from the posterior distribution (4) using HMC with the cur-
rent estimated parameters θk. Denote xij as the jth sample for xi, the Monte Carlo approximation
of the Q function is given by

Q(θ|θk) = Exi|yi;θk

[
N∏
i=1

log p(xi|yi; θk)

]
≈ 1

S

S∑
j=1

N∑
i=1

log p(xij |yi; θk). (5)

In our HMC sampling procedure, the potential energy of the Hamiltonian H(xi,m) = U(xi) +
V (m) is defined as U(xi) = − log p(xi|yi; θ), and the kinetic energy V (m) is a typical isotropic
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Gaussian distribution on a q-dimensional auxiliary momentum variable, m. This gives us a Hamil-
tonian system to integrate: dxi

dt = ∂H
∂m = m, and dm

dt = − ∂H
∂xi

= −∇xi
U . Due to the fact that xi is

a Euclidean variable, we use a standard “leap-frog” numerical integration scheme, which approxi-
mately conserves the Hamiltonian and results in high acceptance rates.

The computation of the gradient term∇xi
U(xi) requires we compute dv Exp(p, v), i.e., the deriva-

tive operator (Jacobian matrix) of the exponential map with respect to the initial velocity v. To derive
this, consider a variation of geodesics c(s, t) = Exp(p, su + tv), where u ∈ TpM . The variation
c produces a “fan” of geodesics; this is illustrated for a sphere on the left side of Figure 1. Taking
the derivative of this variation results in a Jacobi field: Jv(t) = dc/ds(0, t). Finally, this gives an
expression for the exponential map derivative as

dv Exp(p, v)u = Jv(1). (6)

For a general manifold, computing the Jacobi field Jv requires solving a second-order ordinary dif-
ferential equation. However, Jacobi fields can be evaluated in closed-form for the class of manifolds
known as symmetric spaces. For the sphere and Kendall shape space examples, we provide explicit
formulas for these computations in Section 4. For more details on the derivation of the Jacobi field
equation and symmetric spaces, see for instance [6].

Now, the gradient with respect to each xi is

∇xi
U = xi − τΛWT {dzi Exp(µ, zi)

†Log(Exp(µ, zi), yi)}, (7)

where † represents the adjoint of a linear operator, i.e.

〈dzi Exp(µ, zi)û, v̂〉 = 〈û, dzi Exp(µ, zi)
†v̂〉.

3.2.2 M-step: Gradient Ascent

In this section, we derive the maximization step for updating the parameters θ = (µ,W,Λ, τ) by
maximizing the HMC approximation of the Q function in (5). This turns out to be a gradient ascent
scheme for all the parameters since there are no closed-form solutions.

Gradient for τ : The gradient of theQ function with respect to τ requires evaulation of the deriva-
tive of the normalizing constant in the Riemannian normal distribution (2). WhenM is a symmetric
space, this constant does not depend on the mean parameter, µ, because the distribution is invariant
to isometrics (see [8] for details). Thus, the normalizing constant can be written as

C(τ) =

∫
M

exp
(
−τ

2
d(µ, y)2

)
dy.

We can rewrite this integral in normal coordinates, which can be thought of as a polar coordinate sys-
tem in the tangent space, TµM . The radial coordinate is defined as r = d(µ, y), and the remaining
n− 1 coordinates are parametrized by a unit vector v, i.e., a point on the unit sphere Sn−1 ⊂ TµM .
Thus we have the change-of-variables, φ(rv) = Exp(µ, rv). Now the integral for the normalizing
constant becomes

C(τ) =

∫
Sn−1

∫ R(v)

0

exp
(
−τ

2
r2
)
|det(dφ(rv))|dr dv, (8)

where R(v) is the maximum distance that φ(rv) is defined. Note that this formula is only valid if
M is a complete manifold, which guarantees that normal coordinates are defined everywhere except
possibly a set of measure zero on M .

The integral in (8) is difficult to compute for general manifolds, due to the presence of the determi-
nant of the Jacobian of φ. However, for symmetric spaces this change-of-variables term has a simple
form. If M is a symmetric space, there exists a orthonormal basis u1, . . . , un, with u1 = v, such
that

|det(dφ(rv))| =
n∏
k=2

1
√
κk
fk(
√
κkr), (9)
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where κk = K(u1, uk) denotes the sectional curvature, and fk is defined as

fk(x) =


sin(x) if κk > 0,

sinh(x) if κk < 0,

x if κk = 0.

Notice that with this expression for the Jacobian determinant there is no longer a dependence on v
inside the integral in (8). Also, if M is simply connected, then R(v) = R does not depend on the
direction v, and we can write the normalizing constant as

C(τ) = An−1

∫ R

0

exp
(
−τ

2
r2
) n∏
k=2

κ
−1/2
k fk(

√
κkr)dr,

where An−1 is the surface area of the n − 1 hypersphere, Sn−1. The remaining integral is one-
dimensional, and can be quickly and accurately approximated by numerical integration. While
this formula works only for simply connected symmetric spaces, other symmetric spaces could be
handled by lifting to the universal cover, which is simply connected, or by restricting the definition
of the Riemannian normal pdf in (2) to have support only up to the injectivity radius, i.e., R =
minv R(v).

The gradient term for estimating τ is

∇τQ =

N∑
i=1

S∑
j=1

1

C(τ)
An−1

∫ R

0

r2

2
exp

(
−τ

2
r2
) n∏
k=2

κ
−1/2
k fk(

√
κkr)dr−

1

2
d(Exp(µ, zij), yi)

2dr.

Gradient for µ: From (4) and (5), the gradient term for updating µ is

∇µQ =
1

S

N∑
i=1

S∑
j=1

τdµ Exp(µ, zij)
†Log (Exp(µ, zij), yi).

Here the derivative dµ Exp(µ, v) is with respect to the base point, µ. Similar to before (6),
this derivative can be derived from a variation of geodesics: c(s, t) = Exp(Exp(µ, su), tv(s)),
where v(s) comes from parallel translating v along the geodesic Exp(µ, su). Again, the deriva-
tive of the exponential map is given by a Jacobi field satisfying Jµ(t) = dc/ds(0, t), and we have
dµ Exp(µ, v) = Jµ(1).

Gradient for Λ: For updating Λ, we take the derivative w.r.t. each ath diagonal element Λa as

∂Q

∂Λa
=

1

S

N∑
i=1

S∑
j=1

τ(W axaij)
T {dzij Exp(µ, zij)

†Log(Exp(µ, zij), yi)},

where W a denotes the ath column of W , and xaij is the ath component of xij .

Gradient for W : The gradient w.r.t. W is

∇WQ =
1

S

N∑
i=1

S∑
j=1

τdzij Exp(µ, zij)
† Log(Exp(µ, zij), yi)x

T
ijΛ. (10)

To preserve the mutual orthogonality constraint on the columns of W , we represent W as a point
on the Stiefel manifold Vq(TµM), i.e., the space of orthonormal q-frames in TµM . We project the
gradient in (10) onto the tangent space TWVq(TµM), and then update W by taking a small step
along the geodesic in the projected gradient direction. For details on the geodesic computations for
Stiefel manifolds, see [7].

The MCEM algorithm for PPGA is an iterative procedure for finding the subspace spanned by q
principal components, shown in Algorithm 1. The computation time per iteration depends on the
complexity of exponential map, log map, and Jacobi field which may vary for different manifold.
Note the cost of the gradient ascent algorithm also linearly depends on the data size, dimensionality,
and the number of samples drawn. An advantage of MCEM is that it can run in parallel for each
data point.
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Algorithm 1 Monte Carlo Expectation Maximization for Probabilistic Principal Geodesic Analysis
Input: Data set Y , reduced dimension q.
Initialize µ,W,Λ, σ.
repeat

Sample X according to (7),
Update µ,W,Λ, σ by gradient ascent in Section 3.2.2.

until convergence

4 Experiments

In this section, we demonstrate the effectiveness of PPGA and our ML estimation using both simu-
lated data on the 2D sphere and a real corpus callosum data set. Before presenting the experiments
of PPGA, we briefly review the necessary computations for the specific types of manifolds used,
including, the Riemannian exponential map, log map, and Jacobi fields.

4.1 Simulated Sphere Data

Sphere geometry overview: Let p be a point on an n-dimensional sphere embedded in Rn+1, and
let v be a tangent at p. The inner product between tangents at a base point p is the usual Euclidean
inner product. The exponential map is given by a 2D rotation of p by an angle given by the norm of
the tangent, i.e.,

Exp(p, v) = cos θ · p+
sin θ

θ
· v, θ = ‖v‖. (11)

The log map between two points p, q on the sphere can be computed by finding the initial velocity
of the rotation between the two points. Let πp(q) = p · 〈p, q〉 denote the projection of the vector q
onto p. Then,

Log(p, q) =
θ · (q − πp(q))
‖q − πp(q)‖

, θ = arccos(〈p, q〉). (12)

All sectional curvatures for Sn are equal to one. The adjoint derivatives of the exponential map are
given by

dp Exp(p, v)†w = cos(‖v‖)w⊥ + w>, dv Exp(p, v)†w =
sin(‖v‖)
‖v‖

w⊥ + w>,

where w⊥, w> denote the components of w that are orthogonal and tangent to v, respectively. An
illustration of geodesics and the Jacobi fields that give rise to the exponential map derivatives is
shown in Figure 1.

Parameter estimation on the sphere: Using our generative model for PGA (3), we forward
simulated a random sample of 100 data points on the unit sphere S2, with known parameters θ =
(µ,W,Λ, τ), shown in Table 1. Next, we ran our maximum likelihood estimation procedure to test
whether we could recover those parameters. We initialized µ from a random uniform point on the
sphere. We initializedW as a random Gaussian matrix, to which we then applied the Gram-Schmidt
algorithm to ensure its columns were orthonormal. Figure 1 compares the ground truth principal
geodesics and MLE principal geodesic analysis using our algorithm. A good overlap between the
first principal geodesic shows that PPGA recovers the model parameters.

One advantage that our PPGA model has over the least-squares PGA formulation is that the mean
point is estimated jointly with the principal geodesics. In the standard PGA algorithm, the mean
is estimated first (using geodesic least-squares), then the principal geodesics are estimated second.
This does not make a difference in the Euclidean case (principal components must pass through the
mean), but it does in the nonlinear case. We compared our model with PGA and standard PCA (in
the Euclidean embedding space). The estimation error of principal geodesics turned to be larger in
PGA compared to our model. Furthermore, the standard PCA converges to an incorrect solution due
to its inappropriate use of a Euclidean metric on Riemannian data. A comparison of the ground truth
parameters and these methods is given in Table 1. Note that the noise precision τ is not a part of
either the PGA or PCA models.
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µ w Λ τ
Ground truth (−0.78, 0.48,−0.37) (−0.59,−0.42, 0.68) 0.40 100
PPGA (−0.78, 0.48,−0.40) (−0.59,−0.43, 0.69) 0.41 102
PGA (−0.79, 0.46,−0.41) (−0.59,−0.38, 0.70) 0.41 N/A
PCA (−0.70, 0.41,−0.46) (−0.62,−0.37, 0.69) 0.38 N/A

Table 1: Comparison between ground truth parameters for the simulated data and the MLE of PPGA,
non-probabilistic PGA, and standard PCA.

p
v

J(x)

M

Figure 1: Left: Jacobi fields; Right: the principal geodesic of random generated data on unit sphere.
Blue dots: random generated sphere data set. Yellow line: ground truth principal geodesic. Red
line: estimated principal geodesic using PPGA.

4.2 Shape Analysis of the Corpus Callosum

Shape space geometry: A configuration of k points in the 2D plane is considered as a complex
k-vector, z ∈ Ck. Removing translation, by requiring the centroid to be zero, projects this point to
the linear complex subspace V = {z ∈ Ck :

∑
zi = 0}, which is equivalent to the space Ck−1.

Next, points in this subspace are deemed equivalent if they are a rotation and scaling of each other,
which can be represented as multiplication by a complex number, ρeiθ, where ρ is the scaling factor
and θ is the rotation angle. The set of such equivalence classes forms the complex projective space,
CP k−2.

We think of a centered shape p ∈ V as representing the complex line Lp = {z · p : z ∈ C\{0} },
i.e., Lp consists of all point configurations with the same shape as p. A tangent vector at Lp ∈ V is
a complex vector, v ∈ V , such that 〈p, v〉 = 0. The exponential map is given by rotating (within V )
the complex line Lp by the initial velocity v, that is,

Exp(p, v) = cos θ · p+
‖p‖ sin θ

θ
· v, θ = ‖v‖. (13)

Likewise, the log map between two shapes p, q ∈ V is given by finding the initial velocity of the
rotation between the two complex lines Lp and Lq . Let πp(q) = p·〈p, q〉/‖p‖2 denote the projection
of the vector q onto p. Then the log map is given by

Log(p, q) =
θ · (q − πp(q))
‖q − πp(q)‖

, θ = arccos
|〈p, q〉|
‖p‖‖q‖

. (14)

The sectional curvatures of CP k−2, κi = K(ui, v), used in (9), can be computed as follows. Let
u1 = i · v, where we treat v as a complex vector and i =

√
−1. The remaining u2, . . . , un can be

chosen arbitrarily to be construct an orthonormal frame with v and u1 Then we have K(u1, v) = 4
and K(ui, v) = 1 for i > 1. The adjoint derivatives of the exponential map are given by

dp Exp(p, v)†w = cos(‖v‖)w⊥1 + cos(2‖v‖)w⊥2 + w>,

dv Exp(p, v)†w =
sin(‖v‖)
‖v‖

w⊥1 +
sin(2‖v‖)

2‖v‖
+ w>2 ,

where w⊥1 denotes the component of w parallel to u1, i.e., w⊥1 = 〈w, u1〉u1, u>2 denotes the remain-
ing orthogonal component of w, and w> denotes the component tangent to v.
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Shape variability of corpus callosum data: As a demonstration of PPGA on Kendall shape
space, we applied it to corpus callosum shape data derived from the OASIS database (www.
oasis-brains.org). The data consisted of magnetic resonance images (MRI) from 32 healthy
adult subjects. The corpus callosum was segmented in a midsagittal slice using the ITK SNAP
program (www.itksnap.org). An example of a segmented corpus callosum in an MRI is
shown in Figure 2. The boundaries of these segmentations were sampled with 64 points us-
ing ShapeWorks (www.sci.utah.edu/software.html). This algorithm generates a sam-
pling of a set of shape boundaries while enforcing correspondences between different point mod-
els within the population. Figure 2 displays the first two modes of corpus callosum shape varia-
tion, generated from the as points along the estimated principal geodesics: Exp(µ, αiwi), where
αi = −3λi,−1.5λi, 0, 1.5λi, 3λi, for i = 1, 2.

− 3λ1

− 1.5λ1

0
1.5λ1

3λ1

− 3λ2

− 1.5λ2

0
1.5λ2

3λ2

Figure 2: Left: example corpus callosum segmentation from an MRI slice. Middle to right: first and
second PGA mode of shape variation with −3, −1.5, 1.5, and 3× λ.

5 Conclusion

We presented a latent variable model of PGA on Riemannian manifolds. We developed a Monte
Carlo Expectation Maximization for maximum likelihood estimation of parameters that uses Hamil-
tonian Monte Carlo to integrate over the posterior distribution of latent variables. This work takes the
first step to bring latent variable models to Riemannian manifolds. This opens up several possibili-
ties for new factor analyses on Riemannian manifolds, including a rigorous formulation for mixture
models of PGA and automatic dimensionality selection with a Bayesian formulation of PGA.
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