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Abstract

A long term goal of Interactive Reinforcement Learning isirioorporate non-
expert human feedback to solve complex tasks. Some stateafrt methods
have approached this problem by mapping human informatioevtards and val-
ues and iterating over them to compute better control gdicin this paper we
argue for an alternate, more effective characterizatidruofian feedback: Policy
Shaping. We introducAdvise, a Bayesian approach that attempts to maximize
the information gained from human feedback by utilizingsitiirect policy labels.
We comparé\dviseto state-of-the-art approaches and show that it can owtperf
them and is robust to infrequent and inconsistent humarbfesd

1 Introduction

A long—term goal of machine learning is to create systemct#vabe interactively trained or guided
by non-expert end-users. This paper focuses specificaliptegrating human feedback with Re-
inforcement Learning. One way to address this problem iseatthuman feedback as a shaping
reward [1+-5]. Yet, recent papers have observed that a mteetigé use of human feedback is as
direct information about policies|[6] 7]. Most techniques fearning from human feedback still,
however, convert feedback signals into a reward or a vatuthi$ paper we introdudeolicy Shap-
ing, which formalizes theneaningof human feedback as policy feedback, and demonstrateschow t
use it directly as policy advice. We also introdukdvise, an algorithm for estimating a human'’s
Bayes optimal feedback policy and a technique for combithirggwith the policy formed from the
agent’s direct experience in the environment (Bayesiare@rhing).

We validate our approach using a series of experiments.eldgseriments use a simulated human
teacher and allow us to systematically test performancemuadariety of conditions of infrequent
and inconsistent feedback. The results demonstrate twanéalyes oAdvise: 1) it is able to outper-
form state of the art techniques for integrating human faeHlwith Reinforcement Learning; and
2) by formalizing human feedback, we avoid ad hoc parametéings and are robust to infrequent
and inconsistent feedback.

2 Reinforcement Learning

Reinforcement Learning (RL) defines a class of algorithmssfaving problems modeled as a
Markov Decision Process (MDP). An MDP is specified by the ey, A, T, R), which defines
the set of possible world stateS, the set of actions available to the agent in each statehe
transition functioril” : S x A — Pr[S], a reward functior? : S x A — R, and a discount factor
0 < v < 1. The goal of a Reinforcement Learning algorithm is to iderdi policy, 7 : S — A,
which maximizes the expected reward from the environmehtusTthe reward function acts as a
single source of information that tells an agent what is &t policy for this MDP.

This paper used an implementation of the Bayegialearning (BQL) Reinforcement Learning
algorithm [8], which is based on Watking-learning [9]. Q-learning is one way to find an optimal



policy from the environment reward signal. The policy foe thhole state space is iteratively refined
by dynamically updating a table of Q-values. A specific Quéesd)[s, a], represents a point estimate
of the long-term expected discounted reward for takingoaetiin states.

Rather than keep a point estimate of the long-term discdurgeard for each state-action pair,
Bayesian@-learning maintains parameters that specify a normalidigton with unknown mean
and precision for each Q-value. This representation hasdvantage that it approximates the
agent’s uncertainty in the optimality of each action, whinhkes the problem of optimizing the
exploration/exploitation trade-off straightforward. @eise the Normal-Gamma (NG) distribution
is the conjugate prior for the normal distribution, the mead the precision are estimated using
a NG distribution with hyperparametetg;“, A*%, o>%, 3%%). These values are updated each
time an agent performs an actiorin states, accumulates reward and transitions to a new state
s'. Details on how these parameters are updated can be foudl iBgcause BQL is known to
under-explore3*“ is updated as shown in [10] using an additional paranteter

The NG distribution for each Q-value can be used to estinha&tetobability that each actiane A,

in a states is optimal, which defines a policy,z, used for action selection. The optimal action can
be estimated by sampling ea(f){s, a) and taking the argmax. A large number of samples can be
used to approximate the probability an action is optimalibypdy counting the number of times an
action has the highest Q-value [8].

3 Reated Work

A key feature of Reinforcement Learning is the use of a reveigdal. The reward signal can be
modified to suit the addition of a new information sourcegtisi known ageward shapind11]).
This is the most common way human feedback has been applied {@—5]. However, several
difficulties arise when integrating human feedback sigttzds may be infrequent, or occasionally
inconsistent with the optimal policy—violating the nea@gsand sufficient condition that a shaping
function be potential-based [11]. Another difficulty is thmbiguity of translating a statement like
“yes, that's right” or “no, that's wrong” into a reward. Tygally, past attempts have been a manual
process, yieldingd hocapproximations for specific domains. Researchers havesatemded re-
ward shaping to account for idiosyncrasies in human inpat.eéxample, adding a drift parameter
to account for the human tendency to give less feedback ower{1.,/12].

Advancements in recent work sidestep some of these issustlying human feedback can instead
be used as policy feedback. For example, Thomaz and Bregtealded artUNDO function to the
negative feedback signal, which forced an agent to badkti@the previous state after its value
update. Work by Knox and Stone [7./13] has shown that a geirapabvement to learning from
human feedback is possible if it is used to directly modifg Hction selection mechanism of the
Reinforcement Learning algorithm. Although both appraschse human feedback to modify an
agent’s exploration policy, they still treat human feedbas either a reward or a value. In our
work, we assume human feedback is not an evaluative rewatds la label on the optimality of
actions. Thus the human’s feedback is making a direct stateabout the policy itself, rather than
influencing the policy through a reward.

In other works, rather than have the human input be a rewapgisy) input, the human provides
demonstrations of the optimal policy. Several papers haogvs how the policy information in
human demonstrations can be used for inverse optimal dda#p15], to seed an agent’s explo-
ration [16,/17], and in some cases be used entirely in placexploration [18/ 19]. Our work
similarly focuses on people’s knowledge of the policy, mgtéad of requiring demonstrations we
want to allow people to simply critique the agent’s behayitrat was right/wrong”).

Our position that human feedback be used as direct policicadrelated to work in transfer learn-
ing [20,[21], in which an agent learns with “advice” about hibshould behave. This advice is pro-
vided as first order logic rules and is also provided offliagher than interactively during learning.
Our approach only requires very high-level feedback (figtang) and is provided interactively.

4 Policy Shaping
In this section, we formulate human feedback as policy agjnd derive a Bayes optimal algorithm

for converting that feedback into a policy. We also desdnibe to combine the feedback policy with
the policy of an underlying Reinforcement Learning aldarit We call our approachdvise.



4.1 Model Parameters

We assume a scenario where the agent has access to commourficah a human during its learning
process. In addition to receiving environmental reward, dgent may receive a “right”/“wrong”
label after performing an action. In related work, theseslalare converted into shaping rewards
(e.g., “right” becomest1 and “wrong” —1), which are then used to modify Q-values, or to bias
action selection. In contrast, we use this label directlynfer what the human believes is the
optimal policy in the labeled state.

Using feedback in this way is not a trivial matter of prunirgiens from the search tree. Feed-
back can be both inconsistent with the optimal policy andsgig provided. Here, we assume a
human providing feedback knows the right answer, but noiske feedback channel introduces in-
consistencies between what the human intends to commarandtwhat the agent observes. Thus,
feedback is consistert, with the optimal policy with probabilitp < ¢ < 1[1

We also assume that a human watching an agent learn may midgpfeedback after every single
action, thus the likelihoodf, of receiving feedback has probabilily < £ < 1. In the event
feedback is received, it is interpreted as a comment on tlimality of the action just performed.
The issue of credit assignment that naturally arises walni@g from real human feedback is left
for future work (seel[13] for an implementation of creditigasnent in a different framework for
learning from human feedback).

4.2 Estimating a Policy from Feedback

It is possible that the human may know any number of diffeognitmal actions in a state, the prob-
ability an actiong, in a particular states, is optimal is independent of what labels were provided
to the other actions. Subsequently, the probability is optimal can be computed using only the
“right” and “wrong” labels associated with it. We defide, , to be the difference between the num-
ber of “right” and “wrong” labels. The probability, a is optimal can be obtained using the binomial
distribution as:

CAs.a
1
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Although many different actions may be optimal in a giveriestave will assume for this paper that
the human knows only one optimal action, which is the one thegnd to communicate. In that

case, an actiony, is optimal in states if no other action is optimal (i.e., whether it is optimal now
also depends on the labels to the other actions in the shate® formally:

CAse(1 = C)2ita B )

We take Equatiohl]2 to be the probability of performing according to the feedback policys
(i.e., the value ofr = (s, a)). This is the Bayes optimal feedback policy given the “rigintd “wrong”
labels seen, the value f@t, and that only one action is optimal per state. This is olethihy
application of Bayes’ rule in conjunction with the binoméistribution and enforcing independence
conditions arising from our assumption that there is onlg optimal action. A detailed derivation
of the above results is available in the Appendix Sectionahd A.2.

4.3 Reconciling Policy Information from Multiple Sour ces

Because the use @fdvise assumes an underlying Reinforcement Learning algorithlinalgio be
used (e.g., here we use BQL), the policies derived from pilalinformation sources must be rec-
onciled. Although there is a chandg,that a human could make a mistake when s/he does provide
feedback, given sufficient time, with the likelihood of féedk,£ > 0.0 and the consistency of
feedbaclC # 0.5, the total amount of information received from the humanudthe enough for

the the agent to choose the optimal policy with probabilify. 10f course, an agent will also be
learning on its own at the same time and therefore may coaver@gs own optimal policy much
sooner than it learns the human’s policy. Before an agendnspbetely confident in either policy,
however, it has to determine what action to perform usingthiey information each provides.

INote that the consistency of feedback is not the same as thartisior the agent’s confidence the feedback
is correct.



Pac-Man Frogger

Figure 1: A snapshot of each domain used for the experimétas-Man consisted of a 5x5 grid
world with the yellow Pac-Man avatar, two white food pelletad a blue ghost. Frogger consisted
of a 4x4 grid world with the green Frogger avatar, two red cansl two blue water hazards.

We combine the policies from multiple information sourcgsrbultiplying them together:r
mr X mr. Multiplying distributions together is the Bayes optimattinod for combining probabilities
from (conditionally) independent sources|[22], and hasihesed to solve other machine learning
problems as well (e.g., [23]). Note that BQL can only appneaiely estimate the uncertainty that
each action is optimal from the environment reward signathBr than use a different combination
method to compensate for the fact that BQL converges toktiwe introduced the exploration
tuning parameter), from |10], that can be manually tuned until BQL performsseldo optimal.

5 Experimental Setup

We evaluate our approach using two game domains, Pac-MaRragder (see Fid] 1).

51 Pac-Man

Pac-Man consists of a 2-D grid with food, walls, ghosts, dr@lRac-Man avatar. The goal is to
eat all the food pellets while avoiding moving ghosts (+508pints are also awarded for each
food pellet (+10). Points are taken away as time passes ifd ja losing the game (-500). Our
experiments used@ax 5 grid with two food pellets and one ghost. The action set ciediof the
four primary cartesian directions. The state represantaticluded Pac-Man’s position, the position
and orientation of the ghost and the presence of food pellets

5.2 Frogger

Frogger consists of a 2-D map with moving cars, water hazamis the Frogger avatar. The goal
is to cross the road without being run over or jumping into aewhazard (+500). Points are lost
as time passes (-1), for hopping into a water hazard (-50@)fa being run over (-500). Each car
drives one space per time step. The car placement and dimegftimotion is randomly determined
at the start and does not change. As a car disappears off theféhe map it reemerges at the
beginning of the road and continues to move in the same @reciThe cars moved only in one
direction, and they started out in random positions on tla& rdcach lane was limited to one car.
Our experiments used4x 4 grid with two water hazards and two cars. The action set stetsi

of the four primary cartesian directions and a stay-in-pkaction. The state representation included
frogger’s position and the position of the two cars.

5.3 Constructing an Oracle

We used a simulated oracle in the place of human feedbaca&ubechis allows us to systematically
vary the parameters of feedback likelihodd,and consistency, and test different learning settings
in which human feedback is less than ideal. The oracle wasentenanually by a human before
the experiments by hand labeling the optimal actions in statle. For states with multiple optimal
actions, a small negative reward (-10) was added to the amwient reward signal of the extra
optimal state-action pairs to preserve the assumptiorotiigtone action be optimal in each state.

6 Experiments
6.1 A Comparison tothe State of the Art
In this evaluation we compare Policy Shaping witvise to the more traditional Reward Shaping,

as well as recent Interactive Reinforcement Learning tieghes. Knox and Stonel[7, /13] tried eight
different strategies for combining feedback with an enwin@ntal reward signal and they found that



Ideal Case Reduced Consistencyl Reduced Frequency| Moderate Case
(L=10,C=1.0) (L=01,C=10) (L=1.0,C=0.55) (L=05,C=038)
Pac-Man | Frogger Pac-Man |  Frogger Pac-Man | Frogger Pac-Man | Frogger
BQL + Action Biasing || 0.58+ 0.02| 0.16+ 0.05] -0.33+ 0.17] 0.05+0.06 | 0.16+ 0.04| 0.04+ 0.06 | 0.25+ 0.04 | 0.09+ 0.06
BQL + Control Sharing|| 0.34+ 0.03 | 0.07+ 0.06 | -2.87+0.12| -0.32+ 0.13 | 0.01+0.12| 0.02+ 0.07 | -0.18+ 0.19 | 0.01+ 0.07
BQL + Reward Shapind| 0.54+0.02| 0.11+ 0.07 | -0.47+ 0.30 0+0.08 0.14+ 0.04| 0.03+0.07| 0.17+0.12 | 0.05+ 0.07
BQL + Advise 0.77+002 [ 045+0.04 | -001+£0.11 | 0.02+£0.07 | 021+ 0.05 | 0.16 £ 0.06 | 0.13+0.08 | 0.22 + 0.06

Table 1: Comparing the learning rates of BQAdvise to BQL + Action Biasing, BQL + Control
Sharing, and BQL + Reward Shaping for four different combores of feedback likelihood;, and
consistency;, across two domains. Each entry represents the averagésawudisl deviation of the
cumulative reward in 300 episodes, expressed as the perttrg maximum possible cumulative
reward for the domain with respect to the BQL baseline. Negatalues indicate performance
worse than the baseline. Bold values indicate the best pedgioce for that case.

two strategiesAction BiasingandControl Sharing consistently produced the best results. Both of
these methods use human feedback rewards to modify the/paliber than shape the MDP reward
function. Thus, they still convert human feedback to a vdluerecognize that the information
contained in that value is policy information. As will be seédvise has similar performance
to these state of the art methods, but is more robust to a s@sal from the human and other
parameter changes.

Action Biasing uses human feedback to bias the action sefestechanism of the underlying RL
algorithm. Positive and negative feedback is declared anmew,, and—r;, respectively. A table
of values,H s, a] stores the feedback signal fera. The modified action selection mechanism is
given asargmax, Q(s, a)+B[s, a] « H[s, a], whereQ(s, a) is an estimate of the long-term expected
discounted reward for, a from BQL, andB|s, a] controls the influence of feedback on learning. The
value ofB(s, a] is incremented by a constanivhen feedback is received fera, and is decayed by

a constant at all other time steps.

Control Sharing modifies the action selection mechanisectir with the addition of a transition
between 1) the action that gains an agent the maximum knowerdeaccording to feedback, and
2) the policy produced using the original action selecticgthnod. The transition is defined as the
probability P(a = argmax, H|[s,a]) = min(B[s,a], 1.0). An agent transfers control to a feedback
policy as feedback is received, and begins to switch comtrdhe underlying RL algorithm as
BJs, a] decays. Although feedback is initially interpreted as aanrelyControl Sharing does not use
that information, and thus is unaffected if the value-pis changed.

Reward Shaping, the traditional approach to learning freedback, works by modifying the MDP
reward. Feedback is first converted into a rewayd,or —r;,. The modified MDP reward function
is R/(s,a) « R(s,a)+ B[s,a] x H[s,a]. The values t®[s, a] and H|s, a] are updated as above.

The parameters to each method were manually tuned beforextreximents to maximize learn-
ing performance. We initialized the BQL hyperparameterg td)“ = 0,\>% = 0.01,a%% =
1000, 5% = 0.0000), which resulted in random initial Q-values. We set the BQhleration pa-
rameterd = 0.5 for Pac-Man and = 0.0001 for Frogger. We used a discount factorof= 0.99.
Action Biasing, Control Sharing, and Reward Shaping useekedliack influence df = 1 and a
decay factor off = 0.001. We setr, = 100 for Action Biasing in both domains. For Reward
Shaping we set;, = 100 in Pac-Man and, = 1 in Froggef

We compared the methods using four different combinatidrieedback likelihood L, and con-
sistency,C, in Pac-Man and Frogger, for a total of eight experimentsbldd summarizes the
guantitative results. Fi§l 2 shows the learning curve far frases.

In the ideal case of frequent and correct feedbatk=(1.0; C = 1.0), we see in Fig[]2 thaAdvise
does much better than the other methods early in the leapnowess. A human reward that does not
match both the feedback consistency and the domain mayfalirhinate unnecessary exploration
and produce learning rates similar to or worse than the in@séldvise avoided these issues by not
converting feedback into a reward.

The remaining three graphs in Fig] 2 show one example frorh ea¢he non-ideal conditions
that we tested: reduced feedback consistercy=(1.0; C = 0.55), reduced frequency( = 0.1;

2\We used the conversian, = 1, 10, 100, or 1000 that maximized MDP reward in the ideal case to also
evaluate the three cases of non-ideal feedback.
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Figure 2: Learning curves for each method in four differeades. Each line is the average with
standard error bars of 500 separate runs to a duration of 3i80des. The Bayesiaf-learning
baseline (blue) is shown for reference.

C = 1.0), and a case that we call moderate £ 0.5; C = 0.8). Action Biasing and Reward
ShapinB)performed comparably tAdvise in two cases. Action Biasing does better than Advise in
one case in part because the feedback likelihood is highgimimucounter Action Biasing’s overly
influential feedback policy. This gives the agent an extrshpioward the goal without becoming
detrimental to learning (e.g., causing loops). In its cofrferm, Advise makes no assumptions
about the likelihood the human will provide feedback.

The cumulative reward numbers in Table 1 show thdvise always performed near or above the
BQL baseline, which indicates robustness to reduced feddibagquency and consistency. In con-
trast, Action Biasing, Control Sharing, and Reward Shaftilogked learning progress in several
cases with reduced consistency (the most extreme exang#elisin column 3 of Tablg 1). Control

Sharing performed worse than the baseline in three caséi®n/Riasing and Reward Shaping both
performed worse than the baseline in one case.

Thus having a prior estimate of the feedback consisteneyvgtue ofC) allows Advise to balance
what it learns from the human appropriately with its own test policy. We could have provided
the known value of to the other methods, but doing so would not have helper},sét ord. These
parameters had to be tuned since they only slightly corre$poC. We manually selected their
values in the ideal case, and then used these same settirnthe father cases. However, different
values forry,, b, andd may produce better results in the cases with redutedC. We tested this in
our next experiment.

6.2 How The Reward Parameter Affects Action Biasing

In contrast toAdvise, Action Biasing and Control Sharing do not use an explicitdeloof the
feedback consistency. The optimal valuesjpb, andd for learning with consistent feedback may
be the wrong values to use for learning with inconsistertifeek. Here, we test how Action Biasing
performed with a range of values fey, for the case of moderate feedbagk+£ 0.5 andC = 0.8),
and for the case of reduced consistenfy=£ 1.0 andC = 0.55). Control Sharing was left out of
this evaluation because changingdid not affect its learning rate. Reward Shaping was leftafut
this evaluation due to the problems mentioned in Seétidn Bt conversion from feedback into
reward was set to eithey, = 500 or 1000. Usingr;, = 0 is equivalent to the BQL baseline.

The results in Figl]3 show that a large value fgris appropriate for more consistent feedback;
a small value for, is best for reduced consistency. This is clear in Pac-Mamveheeward of

r, = 1000 led to better-than-baseline learning performance in theerate feedback case, but
decreased learning rates dramatically below the basalitteeireduced consistency case. A reward
of zero produced the best results in the reduced consistaisey Therefore;, depends on feedback
consistency.

This experiment also shows that the best valuerfpis somewhat robust to a slightly reduced
consistency. A value of either= 500 or 1000, in addition tor = 100 (see Fig[R.d), can produce
good results with moderate feedback in both Pac-Man andgerod he use of a human influence
parameteB(s, a] to modulate the value fary, is presumably meant to help make Action Biasing
more robust to reduced consistency. The valueBpy, o] is, however, increased bywhenever

3The results with Reward Shaping are misleading because iwed up in infinite loops when feedback is
infrequent or inconsistent with the optimal policy. In fggr we had this problem for, > 1.0, which forced
us to use, = 1.0. This was not a problem in Pac-Man because the ghost canPlizdVan around the map;
instead of roaming the map on its own Pac-Man oscillated éetvadjacent cells until the ghost approached.
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Figure 3: How dlfferent feedback reward values affected BQction Biasing. Each line shows the
average and standard error of 500 learning curves over diaucf 300 episodes. Reward values
of r, = 0, 500, and1000 were used for the experiments. Results were computed fontuerate
feedback case = 0.5; C = 0.8) and the reduced consistency caSe<{ 1.0; C = 0.55).

feedback is received, and reduceddyver time;b andd are more a function of the domain than the
information in accumulated feedback. Our next experimentanstrates why this is bad for IRL.

6.3 How Domain Size AffectsLearning

Action Biasing, Control Sharing, and Reward Shaping useuadn influence’ parametes|s, a|,
that is a function of the domain size more than the amountfofimation in accumulated feedback.
To show this we held constant the parameter values and testedhe algorithms performed in a
larger domain. Frogger was increased €< grid with four cars (see Fifl4). An oracle was created
automatically by running BQL to 50,000 episodes 500 times, then for each state choosing the
action with the highest value. The oracle provided modeestdback £ = 0.5; C = 0.8) for the
33360 different states that were identified in this process.

Figure[4 shows the results. Wheresdvise still has a learning curve above the BQL baseline (as
it did in the smaller Frogger domain; see the last column ibldal), Action Biasing, Control
Sharing, and Reward Shaping all had a negligible effect amlag, performing very similar to the
BQL baseline. In order for those methods to perform as weteg did with the smaller version of
Frogger, the value foB|s, a] needs to be set higher and decayed more slowly by manualipdind
new values fob andd. Thus, liker;,, the optimal values tbandd are dependent on both the domain
and the quality of feedback. In contrast, the estimateddaekiconsistency;, used byAdvise only
depends on the true feedback consistedicyror comparison, we next show how sensitivevise

is to a suboptimal estimate 6f

6.4 Using an Inaccurate Estimate of Feedback Consistency

Interactions with a real human will mean that in most casegise will not have an exact estimate,
C, of the true feedback consisten€y,It is presumably possible to identify a value tbthat is close
to the true value. Any deviation from the true value, howereay be detrimental to learning. This
experiment shows how an inaccurate estimaté affected the learning rate #fdvise. Feedback
was generated with likelihool = 0.5 and a true consistency 6f= 0.8. The estimated consistency

was eitheC = 1.0, 0.8, or 0.55.

The results are shown in Fig. 5. In both Pac-Man and Frogdegds= 0.55 reduced the effective-
ness ofAdvise. The learning curves are similar to the baseline BQL lea@rourves because using
an estimate of near0.5 is equivalent to not using feedback at all. In general, \@foeC belowC
decreased the possible gains from feedback. In contrast) as overestimate @f boosted learning
rates for these particular domains and case of feedbackygualgeneral, however, overestimating
C can lead to a suboptimal policy especially if feedback is/pted very infrequently. Therefore, it
is desirable to us€ as the closest overestimate of its true valligs possible.

7 Discussion

Overall, our experiments indicate that it is useful to iptet feedback as a direct comment on the
optimality of an action, without converting it into a rewarda value Advise was able to outperform
tuned versions of Action Biasing, Control Sharing, and Rev@&haping. The performance of Action
Biasing and Control Sharing was not as gooddsisein many cases (as shown in Table 1) because
they use feedback as policy information only after it hasmbmsnverted into a reward.
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Action Biasing, Control Sharing, and Reward Shaping sufésrause their use of ‘human influence’
parameters is disconnected from the amount of informatighe accumulated feedback. Although
b andd were empirically optimized before the experiments, thénogkvalues of those parameters
are dependent on the convergence time of the underlying gririghm. If the size of the domain in-
creased, for exampl®|s, a] would have to be decayed more slowly because the numbersefdgs
required for BQL to converge would increase. Otherwise dweBiasing, Control Sharing, and Re-
ward Shaping would have a negligible affect on learning. t@BrSharing is especially sensitive
to how well the value of the feedback influence paramédé¢s, o], approximates the amount of
information in both policies. Its performance bottomed isusome cases with infrequent and in-
consistent feedback becau3l, a] overestimated the amount of information in the feedbacicpol
However, even iB(s, a] is set in proportion to the exact probability of the correstmof each policy
(i.e., calculated usingdvise), Control Sharing does not allow an agent to simultaneouslize
information from both sources.

Advise has only one input parameter, the estimated feedback tensjsC, in contrast to three.
C is a fundamental parameter that depends only on the truédekconsistency;, and does not
change if the domain size is increased. When it has the riglieviorC, Advise represents the
exact amount of information in the accumulated feedbaclaghestate, and then combines it with
the BQL policy using an amount of influence equivalent to tm@ant of information in each policy.
These advantages help makdvise robust to infrequent and inconsistent feedback, and fair we
with an inaccurate estimate 6f

A primary direction for future work is to investigate how tetienateC during learning. That is, a
static model ofC may be insufficient for learning from real humans. An altéikeeapproach is to
computeC online as a human interacts with an agent. We are also in¢erés addressing other
aspects of human feedback like errors in credit assignm®igiood place to start is the approach
described in [[13] which is based on using gamma distribgtidnother direction is to investigate
Advise for knowledge transfer in a sequence of reinforcement legrtasks ¢f. [24]). With these
extensionsAdvise may be especially suitable for learning from humans in vealld settings.

8 Conclusion

This paper defined the Policy Shaping paradigm for integgdtedback with Reinforcement Learn-
ing. We introduced\dvise, which tries to maximize the utility of feedback using a Bsiga ap-
proach to learningAdvise produced results on par with or better than the current statiee art
Interactive Reinforcement Learning techniques, showedra/kthose approaches fail whitalvise

is unaffected, and it demonstrated robustness to infracarahinconsistent feedback. With these
advancements this paper may help to make learning from hdegaliback an increasingly viable
option for intelligent systems.
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