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Abstract

A long term goal of Interactive Reinforcement Learning is toincorporate non-
expert human feedback to solve complex tasks. Some state-of-the-art methods
have approached this problem by mapping human information to rewards and val-
ues and iterating over them to compute better control policies. In this paper we
argue for an alternate, more effective characterization ofhuman feedback: Policy
Shaping. We introduceAdvise, a Bayesian approach that attempts to maximize
the information gained from human feedback by utilizing it as direct policy labels.
We compareAdvise to state-of-the-art approaches and show that it can outperform
them and is robust to infrequent and inconsistent human feedback.

1 Introduction
A long–term goal of machine learning is to create systems that can be interactively trained or guided
by non-expert end-users. This paper focuses specifically onintegrating human feedback with Re-
inforcement Learning. One way to address this problem is to treat human feedback as a shaping
reward [1–5]. Yet, recent papers have observed that a more effective use of human feedback is as
direct information about policies [6, 7]. Most techniques for learning from human feedback still,
however, convert feedback signals into a reward or a value. In this paper we introducePolicy Shap-
ing, which formalizes themeaningof human feedback as policy feedback, and demonstrates how to
use it directly as policy advice. We also introduceAdvise, an algorithm for estimating a human’s
Bayes optimal feedback policy and a technique for combiningthis with the policy formed from the
agent’s direct experience in the environment (Bayesian Q-Learning).

We validate our approach using a series of experiments. These experiments use a simulated human
teacher and allow us to systematically test performance under a variety of conditions of infrequent
and inconsistent feedback. The results demonstrate two advantages ofAdvise: 1) it is able to outper-
form state of the art techniques for integrating human feedback with Reinforcement Learning; and
2) by formalizing human feedback, we avoid ad hoc parameter settings and are robust to infrequent
and inconsistent feedback.

2 Reinforcement Learning
Reinforcement Learning (RL) defines a class of algorithms for solving problems modeled as a
Markov Decision Process (MDP). An MDP is specified by the tuple (S,A, T,R), which defines
the set of possible world states,S, the set of actions available to the agent in each state,A, the
transition functionT : S × A → Pr[S], a reward functionR : S × A → R, and a discount factor
0 ≤ γ ≤ 1. The goal of a Reinforcement Learning algorithm is to identify a policy,π : S → A,
which maximizes the expected reward from the environment. Thus, the reward function acts as a
single source of information that tells an agent what is the best policy for this MDP.

This paper used an implementation of the BayesianQ-learning (BQL) Reinforcement Learning
algorithm [8], which is based on Watkins’Q-learning [9].Q-learning is one way to find an optimal
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policy from the environment reward signal. The policy for the whole state space is iteratively refined
by dynamically updating a table of Q-values. A specific Q-value,Q[s, a], represents a point estimate
of the long-term expected discounted reward for taking actiona in states.

Rather than keep a point estimate of the long-term discounted reward for each state-action pair,
BayesianQ-learning maintains parameters that specify a normal distribution with unknown mean
and precision for each Q-value. This representation has theadvantage that it approximates the
agent’s uncertainty in the optimality of each action, whichmakes the problem of optimizing the
exploration/exploitation trade-off straightforward. Because the Normal-Gamma (NG) distribution
is the conjugate prior for the normal distribution, the meanand the precision are estimated using
a NG distribution with hyperparameters〈µs,a

0
, λs,a, αs,a, βs,a〉. These values are updated each

time an agent performs an actiona in states, accumulates rewardr, and transitions to a new state
s′. Details on how these parameters are updated can be found in [8]. Because BQL is known to
under-explore,βs,a is updated as shown in [10] using an additional parameterθ.

The NG distribution for each Q-value can be used to estimate the probability that each actiona ∈ As

in a states is optimal, which defines a policy,πR, used for action selection. The optimal action can
be estimated by sampling eacĥQ(s, a) and taking the argmax. A large number of samples can be
used to approximate the probability an action is optimal by simply counting the number of times an
action has the highest Q-value [8].

3 Related Work
A key feature of Reinforcement Learning is the use of a rewardsignal. The reward signal can be
modified to suit the addition of a new information source (this is known asreward shaping[11]).
This is the most common way human feedback has been applied toRL [1–5]. However, several
difficulties arise when integrating human feedback signalsthat may be infrequent, or occasionally
inconsistent with the optimal policy–violating the necessary and sufficient condition that a shaping
function be potential-based [11]. Another difficulty is theambiguity of translating a statement like
“yes, that’s right” or “no, that’s wrong” into a reward. Typically, past attempts have been a manual
process, yieldingad hocapproximations for specific domains. Researchers have alsoextended re-
ward shaping to account for idiosyncrasies in human input. For example, adding a drift parameter
to account for the human tendency to give less feedback over time [1, 12].

Advancements in recent work sidestep some of these issues byshowing human feedback can instead
be used as policy feedback. For example, Thomaz and Breazeal[6] added anUNDO function to the
negative feedback signal, which forced an agent to backtrack to the previous state after its value
update. Work by Knox and Stone [7, 13] has shown that a generalimprovement to learning from
human feedback is possible if it is used to directly modify the action selection mechanism of the
Reinforcement Learning algorithm. Although both approaches use human feedback to modify an
agent’s exploration policy, they still treat human feedback as either a reward or a value. In our
work, we assume human feedback is not an evaluative reward, but is a label on the optimality of
actions. Thus the human’s feedback is making a direct statement about the policy itself, rather than
influencing the policy through a reward.

In other works, rather than have the human input be a reward shaping input, the human provides
demonstrations of the optimal policy. Several papers have shown how the policy information in
human demonstrations can be used for inverse optimal control [14, 15], to seed an agent’s explo-
ration [16, 17], and in some cases be used entirely in place ofexploration [18, 19]. Our work
similarly focuses on people’s knowledge of the policy, but instead of requiring demonstrations we
want to allow people to simply critique the agent’s behavior(“that was right/wrong”).

Our position that human feedback be used as direct policy advice is related to work in transfer learn-
ing [20, 21], in which an agent learns with “advice” about howit should behave. This advice is pro-
vided as first order logic rules and is also provided offline, rather than interactively during learning.
Our approach only requires very high-level feedback (right/wrong) and is provided interactively.

4 Policy Shaping
In this section, we formulate human feedback as policy advice, and derive a Bayes optimal algorithm
for converting that feedback into a policy. We also describehow to combine the feedback policy with
the policy of an underlying Reinforcement Learning algorithm. We call our approachAdvise.
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4.1 Model Parameters

We assume a scenario where the agent has access to communication from a human during its learning
process. In addition to receiving environmental reward, the agent may receive a “right”/“wrong”
label after performing an action. In related work, these labels are converted into shaping rewards
(e.g., “right” becomes+1 and “wrong”−1), which are then used to modify Q-values, or to bias
action selection. In contrast, we use this label directly toinfer what the human believes is the
optimal policy in the labeled state.

Using feedback in this way is not a trivial matter of pruning actions from the search tree. Feed-
back can be both inconsistent with the optimal policy and sparsely provided. Here, we assume a
human providing feedback knows the right answer, but noise in the feedback channel introduces in-
consistencies between what the human intends to communicate and what the agent observes. Thus,
feedback is consistent,C, with the optimal policy with probability0 < C < 1.1

We also assume that a human watching an agent learn may not provide feedback after every single
action, thus the likelihood,L, of receiving feedback has probability0 < L < 1. In the event
feedback is received, it is interpreted as a comment on the optimality of the action just performed.
The issue of credit assignment that naturally arises with learning from real human feedback is left
for future work (see [13] for an implementation of credit assignment in a different framework for
learning from human feedback).

4.2 Estimating a Policy from Feedback

It is possible that the human may know any number of differentoptimal actions in a state, the prob-
ability an action,a, in a particular state,s, is optimal is independent of what labels were provided
to the other actions. Subsequently, the probabilitys, a is optimal can be computed using only the
“right” and “wrong” labels associated with it. We define∆s,a to be the difference between the num-
ber of “right” and “wrong” labels. The probabilitys, a is optimal can be obtained using the binomial
distribution as:

C∆s,a

C∆s,a + (1− C)∆s,a
, (1)

Although many different actions may be optimal in a given state, we will assume for this paper that
the human knows only one optimal action, which is the one theyintend to communicate. In that
case, an action,a, is optimal in states if no other action is optimal (i.e., whether it is optimal now
also depends on the labels to the other actions in the state).More formally:

C∆s,a(1 − C)
∑

j 6=a ∆s,j (2)

We take Equation 2 to be the probability of performings, a according to the feedback policy,πF

(i.e., the value ofπF (s, a)). This is the Bayes optimal feedback policy given the “right” and “wrong”
labels seen, the value forC, and that only one action is optimal per state. This is obtained by
application of Bayes’ rule in conjunction with the binomialdistribution and enforcing independence
conditions arising from our assumption that there is only one optimal action. A detailed derivation
of the above results is available in the Appendix Section A.1and A.2.

4.3 Reconciling Policy Information from Multiple Sources

Because the use ofAdvise assumes an underlying Reinforcement Learning algorithm will also be
used (e.g., here we use BQL), the policies derived from multiple information sources must be rec-
onciled. Although there is a chance,C, that a human could make a mistake when s/he does provide
feedback, given sufficient time, with the likelihood of feedback,L > 0.0 and the consistency of
feedbackC 6= 0.5, the total amount of information received from the human should be enough for
the the agent to choose the optimal policy with probability 1.0. Of course, an agent will also be
learning on its own at the same time and therefore may converge to its own optimal policy much
sooner than it learns the human’s policy. Before an agent is completely confident in either policy,
however, it has to determine what action to perform using thepolicy information each provides.

1Note that the consistency of feedback is not the same as the human’s or the agent’s confidence the feedback
is correct.
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Pac-Man Frogger

Figure 1: A snapshot of each domain used for the experiments.Pac-Man consisted of a 5x5 grid
world with the yellow Pac-Man avatar, two white food pellets, and a blue ghost. Frogger consisted
of a 4x4 grid world with the green Frogger avatar, two red cars, and two blue water hazards.

We combine the policies from multiple information sources by multiplying them together:π ∝
πR×πF . Multiplying distributions together is the Bayes optimal method for combining probabilities
from (conditionally) independent sources [22], and has been used to solve other machine learning
problems as well (e.g., [23]). Note that BQL can only approximately estimate the uncertainty that
each action is optimal from the environment reward signal. Rather than use a different combination
method to compensate for the fact that BQL converges too quickly, we introduced the exploration
tuning parameter,θ, from [10], that can be manually tuned until BQL performs close to optimal.

5 Experimental Setup
We evaluate our approach using two game domains, Pac-Man andFrogger (see Fig. 1).

5.1 Pac-Man

Pac-Man consists of a 2-D grid with food, walls, ghosts, and the Pac-Man avatar. The goal is to
eat all the food pellets while avoiding moving ghosts (+500). Points are also awarded for each
food pellet (+10). Points are taken away as time passes (-1) and for losing the game (-500). Our
experiments used a5 × 5 grid with two food pellets and one ghost. The action set consisted of the
four primary cartesian directions. The state representation included Pac-Man’s position, the position
and orientation of the ghost and the presence of food pellets.

5.2 Frogger

Frogger consists of a 2-D map with moving cars, water hazards, and the Frogger avatar. The goal
is to cross the road without being run over or jumping into a water hazard (+500). Points are lost
as time passes (-1), for hopping into a water hazard (-500), and for being run over (-500). Each car
drives one space per time step. The car placement and direction of motion is randomly determined
at the start and does not change. As a car disappears off the end of the map it reemerges at the
beginning of the road and continues to move in the same direction. The cars moved only in one
direction, and they started out in random positions on the road. Each lane was limited to one car.
Our experiments used a4 × 4 grid with two water hazards and two cars. The action set consisted
of the four primary cartesian directions and a stay-in-place action. The state representation included
frogger’s position and the position of the two cars.

5.3 Constructing an Oracle

We used a simulated oracle in the place of human feedback, because this allows us to systematically
vary the parameters of feedback likelihood,L, and consistency,C and test different learning settings
in which human feedback is less than ideal. The oracle was created manually by a human before
the experiments by hand labeling the optimal actions in eachstate. For states with multiple optimal
actions, a small negative reward (-10) was added to the environment reward signal of the extra
optimal state-action pairs to preserve the assumption thatonly one action be optimal in each state.

6 Experiments
6.1 A Comparison to the State of the Art

In this evaluation we compare Policy Shaping withAdvise to the more traditional Reward Shaping,
as well as recent Interactive Reinforcement Learning techniques. Knox and Stone [7, 13] tried eight
different strategies for combining feedback with an environmental reward signal and they found that
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Ideal Case Reduced Consistency Reduced Frequency Moderate Case
(L = 1.0, C = 1.0) (L = 0.1, C = 1.0) (L = 1.0, C = 0.55) (L = 0.5, C = 0.8)

Pac-Man Frogger Pac-Man Frogger Pac-Man Frogger Pac-Man Frogger
BQL + Action Biasing 0.58± 0.02 0.16± 0.05 -0.33± 0.17 0.05± 0.06 0.16± 0.04 0.04± 0.06 0.25 ± 0.04 0.09± 0.06
BQL + Control Sharing 0.34± 0.03 0.07± 0.06 -2.87± 0.12 -0.32± 0.13 0.01± 0.12 0.02± 0.07 -0.18± 0.19 0.01± 0.07
BQL + Reward Shaping 0.54± 0.02 0.11± 0.07 -0.47± 0.30 0± 0.08 0.14± 0.04 0.03± 0.07 0.17± 0.12 0.05± 0.07

BQL + Advise 0.77 ± 0.02 0.45 ± 0.04 -0.01 ± 0.11 0.02± 0.07 0.21 ± 0.05 0.16 ± 0.06 0.13± 0.08 0.22 ± 0.06

Table 1: Comparing the learning rates of BQL +Advise to BQL + Action Biasing, BQL + Control
Sharing, and BQL + Reward Shaping for four different combinations of feedback likelihood,L, and
consistency,C, across two domains. Each entry represents the average and standard deviation of the
cumulative reward in 300 episodes, expressed as the percentof the maximum possible cumulative
reward for the domain with respect to the BQL baseline. Negative values indicate performance
worse than the baseline. Bold values indicate the best performance for that case.

two strategies,Action BiasingandControl Sharing, consistently produced the best results. Both of
these methods use human feedback rewards to modify the policy, rather than shape the MDP reward
function. Thus, they still convert human feedback to a valuebut recognize that the information
contained in that value is policy information. As will be seen, Advise has similar performance
to these state of the art methods, but is more robust to a noisysignal from the human and other
parameter changes.

Action Biasing uses human feedback to bias the action selection mechanism of the underlying RL
algorithm. Positive and negative feedback is declared a rewardrh, and−rh, respectively. A table
of values,H [s, a] stores the feedback signal fors, a. The modified action selection mechanism is
given asargmaxa Q̂(s, a)+B[s, a]∗H [s, a], whereQ̂(s, a) is an estimate of the long-term expected
discounted reward fors, a from BQL, andB[s, a] controls the influence of feedback on learning. The
value ofB[s, a] is incremented by a constantb when feedback is received fors, a, and is decayed by
a constantd at all other time steps.

Control Sharing modifies the action selection mechanism directly with the addition of a transition
between 1) the action that gains an agent the maximum known reward according to feedback, and
2) the policy produced using the original action selection method. The transition is defined as the
probabilityP (a = argmaxa H [s, a]) = min(B[s, a], 1.0). An agent transfers control to a feedback
policy as feedback is received, and begins to switch controlto the underlying RL algorithm as
B[s, a] decays. Although feedback is initially interpreted as a reward, Control Sharing does not use
that information, and thus is unaffected if the value ofrh is changed.

Reward Shaping, the traditional approach to learning from feedback, works by modifying the MDP
reward. Feedback is first converted into a reward,rh, or−rh. The modified MDP reward function
isR′(s, a)← R(s, a) + B[s, a] ∗H [s, a]. The values toB[s, a] andH [s, a] are updated as above.

The parameters to each method were manually tuned before theexperiments to maximize learn-
ing performance. We initialized the BQL hyperparameters to〈µs,a

0
= 0, λs,a = 0.01, αs,a =

1000, βs,a = 0.0000〉, which resulted in random initial Q-values. We set the BQL exploration pa-
rameterθ = 0.5 for Pac-Man andθ = 0.0001 for Frogger. We used a discount factor ofγ = 0.99.
Action Biasing, Control Sharing, and Reward Shaping used a feedback influence ofb = 1 and a
decay factor ofd = 0.001. We setrh = 100 for Action Biasing in both domains. For Reward
Shaping we setrh = 100 in Pac-Man andrh = 1 in Frogger2

We compared the methods using four different combinations of feedback likelihood,L, and con-
sistency,C, in Pac-Man and Frogger, for a total of eight experiments. Table 1 summarizes the
quantitative results. Fig. 2 shows the learning curve for four cases.

In the ideal case of frequent and correct feedback (L = 1.0; C = 1.0), we see in Fig. 2 thatAdvise
does much better than the other methods early in the learningprocess. A human reward that does not
match both the feedback consistency and the domain may fail to eliminate unnecessary exploration
and produce learning rates similar to or worse than the baseline. Advise avoided these issues by not
converting feedback into a reward.

The remaining three graphs in Fig. 2 show one example from each of the non-ideal conditions
that we tested: reduced feedback consistency (L = 1.0; C = 0.55), reduced frequency (L = 0.1;

2We used the conversionrh = 1, 10, 100, or 1000 that maximized MDP reward in the ideal case to also
evaluate the three cases of non-ideal feedback.
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Figure 2: Learning curves for each method in four different cases. Each line is the average with
standard error bars of 500 separate runs to a duration of 300 episodes. The BayesianQ-learning
baseline (blue) is shown for reference.

C = 1.0), and a case that we call moderate (L = 0.5; C = 0.8). Action Biasing and Reward
Shaping3 performed comparably toAdvise in two cases. Action Biasing does better than Advise in
one case in part because the feedback likelihood is high enough to counter Action Biasing’s overly
influential feedback policy. This gives the agent an extra push toward the goal without becoming
detrimental to learning (e.g., causing loops). In its current form, Advise makes no assumptions
about the likelihood the human will provide feedback.

The cumulative reward numbers in Table 1 show thatAdvise always performed near or above the
BQL baseline, which indicates robustness to reduced feedback frequency and consistency. In con-
trast, Action Biasing, Control Sharing, and Reward Shapingblocked learning progress in several
cases with reduced consistency (the most extreme example isseen in column 3 of Table 1). Control
Sharing performed worse than the baseline in three cases. Action Biasing and Reward Shaping both
performed worse than the baseline in one case.

Thus having a prior estimate of the feedback consistency (the value ofC) allowsAdvise to balance
what it learns from the human appropriately with its own learned policy. We could have provided
the known value ofC to the other methods, but doing so would not have helped setrh, b, ord. These
parameters had to be tuned since they only slightly correspond to C. We manually selected their
values in the ideal case, and then used these same settings for the other cases. However, different
values forrh, b, andd may produce better results in the cases with reducedL or C. We tested this in
our next experiment.

6.2 How The Reward Parameter Affects Action Biasing

In contrast toAdvise, Action Biasing and Control Sharing do not use an explicit model of the
feedback consistency. The optimal values torh, b, andd for learning with consistent feedback may
be the wrong values to use for learning with inconsistent feedback. Here, we test how Action Biasing
performed with a range of values forrh for the case of moderate feedback (L = 0.5 andC = 0.8),
and for the case of reduced consistency (L = 1.0 andC = 0.55). Control Sharing was left out of
this evaluation because changingrh did not affect its learning rate. Reward Shaping was left outof
this evaluation due to the problems mentioned in Section 6.1. The conversion from feedback into
reward was set to eitherrh = 500 or 1000. Usingrh = 0 is equivalent to the BQL baseline.

The results in Fig. 3 show that a large value forrh is appropriate for more consistent feedback;
a small value forrh is best for reduced consistency. This is clear in Pac-Man when a reward of
rh = 1000 led to better-than-baseline learning performance in the moderate feedback case, but
decreased learning rates dramatically below the baseline in the reduced consistency case. A reward
of zero produced the best results in the reduced consistencycase. Therefore,rh depends on feedback
consistency.

This experiment also shows that the best value forrh is somewhat robust to a slightly reduced
consistency. A value of eitherr = 500 or 1000, in addition tor = 100 (see Fig. 2.d), can produce
good results with moderate feedback in both Pac-Man and Frogger. The use of a human influence
parameterB[s, a] to modulate the value forrh is presumably meant to help make Action Biasing
more robust to reduced consistency. The value forB[s, a] is, however, increased byb whenever

3The results with Reward Shaping are misleading because it can end up in infinite loops when feedback is
infrequent or inconsistent with the optimal policy. In frogger we had this problem forrh > 1.0, which forced
us to userh = 1.0. This was not a problem in Pac-Man because the ghost can drivePac-Man around the map;
instead of roaming the map on its own Pac-Man oscillated between adjacent cells until the ghost approached.
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Figure 3: How different feedback reward values affected BQL+ Action Biasing. Each line shows the
average and standard error of 500 learning curves over a duration of 300 episodes. Reward values
of rh = 0, 500, and1000 were used for the experiments. Results were computed for themoderate
feedback case (L = 0.5; C = 0.8) and the reduced consistency case (L = 1.0; C = 0.55).

feedback is received, and reduced byd over time;b andd are more a function of the domain than the
information in accumulated feedback. Our next experiment demonstrates why this is bad for IRL.

6.3 How Domain Size Affects Learning

Action Biasing, Control Sharing, and Reward Shaping use a ‘human influence’ parameter,B[s, a],
that is a function of the domain size more than the amount of information in accumulated feedback.
To show this we held constant the parameter values and testedhow the algorithms performed in a
larger domain. Frogger was increased to a6×6 grid with four cars (see Fig. 4). An oracle was created
automatically by running BQL to 50,000 episodes 500 times, and then for each state choosing the
action with the highest value. The oracle provided moderatefeedback (L = 0.5; C = 0.8) for the
33360 different states that were identified in this process.

Figure 4 shows the results. WhereasAdvise still has a learning curve above the BQL baseline (as
it did in the smaller Frogger domain; see the last column in Table. 1), Action Biasing, Control
Sharing, and Reward Shaping all had a negligible effect on learning, performing very similar to the
BQL baseline. In order for those methods to perform as well asthey did with the smaller version of
Frogger, the value forB[s, a] needs to be set higher and decayed more slowly by manually finding
new values forb andd. Thus, likerh, the optimal values tob andd are dependent on both the domain
and the quality of feedback. In contrast, the estimated feedback consistency,̂C, used byAdvise only
depends on the true feedback consistency,C. For comparison, we next show how sensitiveAdvise
is to a suboptimal estimate ofC.

6.4 Using an Inaccurate Estimate of Feedback Consistency

Interactions with a real human will mean that in most casesAdvise will not have an exact estimate,
Ĉ, of the true feedback consistency,C. It is presumably possible to identify a value forĈ that is close
to the true value. Any deviation from the true value, however, may be detrimental to learning. This
experiment shows how an inaccurate estimate ofC affected the learning rate ofAdvise. Feedback
was generated with likelihoodL = 0.5 and a true consistency ofC = 0.8. The estimated consistency
was eitherĈ = 1.0, 0.8, or 0.55.

The results are shown in Fig. 5. In both Pac-Man and Frogger using Ĉ = 0.55 reduced the effective-
ness ofAdvise. The learning curves are similar to the baseline BQL learning curves because using
an estimate ofC near0.5 is equivalent to not using feedback at all. In general, values for Ĉ belowC
decreased the possible gains from feedback. In contrast, using an overestimate ofC boosted learning
rates for these particular domains and case of feedback quality. In general, however, overestimating
C can lead to a suboptimal policy especially if feedback is provided very infrequently. Therefore, it
is desirable to usêC as the closest overestimate of its true value,C, as possible.

7 Discussion
Overall, our experiments indicate that it is useful to interpret feedback as a direct comment on the
optimality of an action, without converting it into a rewardor a value.Advise was able to outperform
tuned versions of Action Biasing, Control Sharing, and Reward Shaping. The performance of Action
Biasing and Control Sharing was not as good asAdvise in many cases (as shown in Table 1) because
they use feedback as policy information only after it has been converted into a reward.
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Figure 5: The affect of over and underesti-
mating the true feedback consistency,C, on
BQL + Advise in the case of moderate feedback
(L = 0.5, C = 0.8). A line shows the average
and standard error of 500 learning curves over a
duration of 300 episodes.

Action Biasing, Control Sharing, and Reward Shaping sufferbecause their use of ‘human influence’
parameters is disconnected from the amount of information in the accumulated feedback. Although
b andd were empirically optimized before the experiments, the optimal values of those parameters
are dependent on the convergence time of the underlying RL algorithm. If the size of the domain in-
creased, for example,B[s, a] would have to be decayed more slowly because the number of episodes
required for BQL to converge would increase. Otherwise Action Biasing, Control Sharing, and Re-
ward Shaping would have a negligible affect on learning. Control Sharing is especially sensitive
to how well the value of the feedback influence parameter,B[s, a], approximates the amount of
information in both policies. Its performance bottomed outin some cases with infrequent and in-
consistent feedback becauseB[s, a] overestimated the amount of information in the feedback policy.
However, even ifB[s, a] is set in proportion to the exact probability of the correctness of each policy
(i.e., calculated usingAdvise), Control Sharing does not allow an agent to simultaneouslyutilize
information from both sources.

Advise has only one input parameter, the estimated feedback consistency,Ĉ, in contrast to three.
Ĉ is a fundamental parameter that depends only on the true feedback consistency,C, and does not
change if the domain size is increased. When it has the right value for Ĉ, Advise represents the
exact amount of information in the accumulated feedback in each state, and then combines it with
the BQL policy using an amount of influence equivalent to the amount of information in each policy.
These advantages help makeAdvise robust to infrequent and inconsistent feedback, and fair well
with an inaccurate estimate ofC.

A primary direction for future work is to investigate how to estimateĈ during learning. That is, a
static model ofC may be insufficient for learning from real humans. An alternative approach is to
computeĈ online as a human interacts with an agent. We are also interested in addressing other
aspects of human feedback like errors in credit assignment.A good place to start is the approach
described in [13] which is based on using gamma distributions. Another direction is to investigate
Advise for knowledge transfer in a sequence of reinforcement learning tasks (cf. [24]). With these
extensions,Advise may be especially suitable for learning from humans in real-world settings.

8 Conclusion
This paper defined the Policy Shaping paradigm for integrating feedback with Reinforcement Learn-
ing. We introducedAdvise, which tries to maximize the utility of feedback using a Bayesian ap-
proach to learning.Advise produced results on par with or better than the current stateof the art
Interactive Reinforcement Learning techniques, showed where those approaches fail whileAdvise
is unaffected, and it demonstrated robustness to infrequent and inconsistent feedback. With these
advancements this paper may help to make learning from humanfeedback an increasingly viable
option for intelligent systems.
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